0579eaae1f
The idea is to make include statements more explicit and obvious where the file is coming from, additionally reducing chance of wrong header being picked up. For example, it was not obvious whether bvh.h was refferring to builder or traversal, whenter node.h is a generic graph node or a shader node and cases like that. Surely this might look obvious for the active developers, but after some time of not touching the code it becomes less obvious where file is coming from. This was briefly mentioned in T50824 and seems @brecht is fine with such explicitness, but need to agree with all active developers before committing this. Please note that this patch is lacking changes related on GPU/OpenCL support. This will be solved if/when we all agree this is a good idea to move forward. Reviewers: brecht, lukasstockner97, maiself, nirved, dingto, juicyfruit, swerner Reviewed By: lukasstockner97, maiself, nirved, dingto Subscribers: brecht Differential Revision: https://developer.blender.org/D2586
223 lines
7.1 KiB
C++
223 lines
7.1 KiB
C++
/*
|
|
* Copyright 2011-2016 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef __UTIL_IMAGE_IMPL_H__
|
|
#define __UTIL_IMAGE_IMPL_H__
|
|
|
|
#include "util/util_algorithm.h"
|
|
#include "util/util_debug.h"
|
|
#include "util/util_half.h"
|
|
#include "util/util_image.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
namespace {
|
|
|
|
template<typename T>
|
|
const T *util_image_read(const vector<T>& pixels,
|
|
const size_t width,
|
|
const size_t height,
|
|
const size_t /*depth*/,
|
|
const size_t components,
|
|
const size_t x, const size_t y, const size_t z) {
|
|
const size_t index = ((size_t)z * (width * height) +
|
|
(size_t)y * width +
|
|
(size_t)x) * components;
|
|
return &pixels[index];
|
|
}
|
|
|
|
/* Cast input pixel from unknown storage to float. */
|
|
template<typename T>
|
|
inline float cast_to_float(T value);
|
|
|
|
template<>
|
|
inline float cast_to_float(float value)
|
|
{
|
|
return value;
|
|
}
|
|
template<>
|
|
inline float cast_to_float(uchar value)
|
|
{
|
|
return (float)value / 255.0f;
|
|
}
|
|
template<>
|
|
inline float cast_to_float(half value)
|
|
{
|
|
return half_to_float(value);
|
|
}
|
|
|
|
/* Cast float value to output pixel type. */
|
|
template<typename T>
|
|
inline T cast_from_float(float value);
|
|
|
|
template<>
|
|
inline float cast_from_float(float value)
|
|
{
|
|
return value;
|
|
}
|
|
template<>
|
|
inline uchar cast_from_float(float value)
|
|
{
|
|
if(value < 0.0f) {
|
|
return 0;
|
|
}
|
|
else if(value > (1.0f - 0.5f / 255.0f)) {
|
|
return 255;
|
|
}
|
|
return (uchar)((255.0f * value) + 0.5f);
|
|
}
|
|
template<>
|
|
inline half cast_from_float(float value)
|
|
{
|
|
return float_to_half(value);
|
|
}
|
|
|
|
template<typename T>
|
|
void util_image_downscale_sample(const vector<T>& pixels,
|
|
const size_t width,
|
|
const size_t height,
|
|
const size_t depth,
|
|
const size_t components,
|
|
const size_t kernel_size,
|
|
const float x,
|
|
const float y,
|
|
const float z,
|
|
T *result)
|
|
{
|
|
assert(components <= 4);
|
|
const size_t ix = (size_t)x,
|
|
iy = (size_t)y,
|
|
iz = (size_t)z;
|
|
/* TODO(sergey): Support something smarter than box filer. */
|
|
float accum[4] = {0};
|
|
size_t count = 0;
|
|
for(size_t dz = 0; dz < kernel_size; ++dz) {
|
|
for(size_t dy = 0; dy < kernel_size; ++dy) {
|
|
for(size_t dx = 0; dx < kernel_size; ++dx) {
|
|
const size_t nx = ix + dx,
|
|
ny = iy + dy,
|
|
nz = iz + dz;
|
|
if(nx >= width || ny >= height || nz >= depth) {
|
|
continue;
|
|
}
|
|
const T *pixel = util_image_read(pixels,
|
|
width, height, depth,
|
|
components,
|
|
nx, ny, nz);
|
|
for(size_t k = 0; k < components; ++k) {
|
|
accum[k] += cast_to_float(pixel[k]);
|
|
}
|
|
++count;
|
|
}
|
|
}
|
|
}
|
|
if(count != 0) {
|
|
const float inv_count = 1.0f / (float)count;
|
|
for(size_t k = 0; k < components; ++k) {
|
|
result[k] = cast_from_float<T>(accum[k] * inv_count);
|
|
}
|
|
}
|
|
else {
|
|
for(size_t k = 0; k < components; ++k) {
|
|
result[k] = T(0.0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
void util_image_downscale_pixels(const vector<T>& input_pixels,
|
|
const size_t input_width,
|
|
const size_t input_height,
|
|
const size_t input_depth,
|
|
const size_t components,
|
|
const float inv_scale_factor,
|
|
const size_t output_width,
|
|
const size_t output_height,
|
|
const size_t output_depth,
|
|
vector<T> *output_pixels)
|
|
{
|
|
const size_t kernel_size = (size_t)(inv_scale_factor + 0.5f);
|
|
for(size_t z = 0; z < output_depth; ++z) {
|
|
for(size_t y = 0; y < output_height; ++y) {
|
|
for(size_t x = 0; x < output_width; ++x) {
|
|
const float input_x = (float)x * inv_scale_factor,
|
|
input_y = (float)y * inv_scale_factor,
|
|
input_z = (float)z * inv_scale_factor;
|
|
const size_t output_index =
|
|
(z * output_width * output_height +
|
|
y * output_width + x) * components;
|
|
util_image_downscale_sample(input_pixels,
|
|
input_width, input_height, input_depth,
|
|
components,
|
|
kernel_size,
|
|
input_x, input_y, input_z,
|
|
&output_pixels->at(output_index));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} /* namespace */
|
|
|
|
template<typename T>
|
|
void util_image_resize_pixels(const vector<T>& input_pixels,
|
|
const size_t input_width,
|
|
const size_t input_height,
|
|
const size_t input_depth,
|
|
const size_t components,
|
|
const float scale_factor,
|
|
vector<T> *output_pixels,
|
|
size_t *output_width,
|
|
size_t *output_height,
|
|
size_t *output_depth)
|
|
{
|
|
/* Early output for case when no scaling is applied. */
|
|
if(scale_factor == 1.0f) {
|
|
*output_width = input_width;
|
|
*output_height = input_height;
|
|
*output_depth = input_depth;
|
|
*output_pixels = input_pixels;
|
|
return;
|
|
}
|
|
/* First of all, we calculate output image dimensions.
|
|
* We clamp them to be 1 pixel at least so we do not generate degenerate
|
|
* image.
|
|
*/
|
|
*output_width = max((size_t)((float)input_width * scale_factor), (size_t)1);
|
|
*output_height = max((size_t)((float)input_height * scale_factor), (size_t)1);
|
|
*output_depth = max((size_t)((float)input_depth * scale_factor), (size_t)1);
|
|
/* Prepare pixel storage for the result. */
|
|
const size_t num_output_pixels = ((*output_width) *
|
|
(*output_height) *
|
|
(*output_depth)) * components;
|
|
output_pixels->resize(num_output_pixels);
|
|
if(scale_factor < 1.0f) {
|
|
const float inv_scale_factor = 1.0f / scale_factor;
|
|
util_image_downscale_pixels(input_pixels,
|
|
input_width, input_height, input_depth,
|
|
components,
|
|
inv_scale_factor,
|
|
*output_width, *output_height, *output_depth,
|
|
output_pixels);
|
|
} else {
|
|
/* TODO(sergey): Needs implementation. */
|
|
}
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|
|
#endif /* __UTIL_IMAGE_IMPL_H__ */
|