blender/scripts/startup/bl_operators/object_align.py
Sergey Sharybin 03806d0b67 Re-design of submodules used in blender.git
This commit implements described in the #104573.

The goal is to fix the confusion of the submodule hashes change, which are not
ideal for any of the supported git-module configuration (they are either always
visible causing confusion, or silently staged and committed, also causing
confusion).

This commit replaces submodules with a checkout of addons and addons_contrib,
covered by the .gitignore, and locale and developer tools are moved to the
main repository.

This also changes the paths:
- /release/scripts are moved to the /scripts
- /source/tools are moved to the /tools
- /release/datafiles/locale is moved to /locale

This is done to avoid conflicts when using bisect, and also allow buildbot to
automatically "recover" wgen building older or newer branches/patches.

Running `make update` will initialize the local checkout to the changed
repository configuration.

Another aspect of the change is that the make update will support Github style
of remote organization (origin remote pointing to thy fork, upstream remote
pointing to the upstream blender/blender.git).

Pull Request #104755
2023-02-21 16:39:58 +01:00

413 lines
11 KiB
Python

# SPDX-License-Identifier: GPL-2.0-or-later
from bpy.types import Operator
from mathutils import Vector
def worldspace_bounds_from_object_bounds(bb_world):
# Initialize the variables with the 8th vertex
left, right, front, back, down, up = (
bb_world[7][0],
bb_world[7][0],
bb_world[7][1],
bb_world[7][1],
bb_world[7][2],
bb_world[7][2],
)
# Test against the other 7 verts
for i in range(7):
# X Range
val = bb_world[i][0]
if val < left:
left = val
if val > right:
right = val
# Y Range
val = bb_world[i][1]
if val < front:
front = val
if val > back:
back = val
# Z Range
val = bb_world[i][2]
if val < down:
down = val
if val > up:
up = val
return (Vector((left, front, up)), Vector((right, back, down)))
def worldspace_bounds_from_object_data(depsgraph, obj):
matrix_world = obj.matrix_world.copy()
# Initialize the variables with the last vertex
ob_eval = obj.evaluated_get(depsgraph)
me = ob_eval.to_mesh()
verts = me.vertices
val = matrix_world @ (verts[-1].co if verts else Vector((0.0, 0.0, 0.0)))
left, right, front, back, down, up = (
val[0],
val[0],
val[1],
val[1],
val[2],
val[2],
)
# Test against all other verts
for v in verts:
vco = matrix_world @ v.co
# X Range
val = vco[0]
if val < left:
left = val
if val > right:
right = val
# Y Range
val = vco[1]
if val < front:
front = val
if val > back:
back = val
# Z Range
val = vco[2]
if val < down:
down = val
if val > up:
up = val
ob_eval.to_mesh_clear()
return Vector((left, front, up)), Vector((right, back, down))
def align_objects(context,
align_x,
align_y,
align_z,
align_mode,
relative_to,
bb_quality):
depsgraph = context.evaluated_depsgraph_get()
scene = context.scene
cursor = scene.cursor.location
# We are accessing runtime data such as evaluated bounding box, so we need to
# be sure it is properly updated and valid (bounding box might be lost on operator
# redo).
context.view_layer.update()
Left_Front_Up_SEL = [0.0, 0.0, 0.0]
Right_Back_Down_SEL = [0.0, 0.0, 0.0]
flag_first = True
objects = []
for obj in context.selected_objects:
matrix_world = obj.matrix_world.copy()
bb_world = [matrix_world @ Vector(v) for v in obj.bound_box]
objects.append((obj, bb_world))
if not objects:
return False
for obj, bb_world in objects:
if bb_quality and obj.type == 'MESH':
GBB = worldspace_bounds_from_object_data(depsgraph, obj)
else:
GBB = worldspace_bounds_from_object_bounds(bb_world)
Left_Front_Up = GBB[0]
Right_Back_Down = GBB[1]
# Active Center
if obj == context.active_object:
center_active_x = (Left_Front_Up[0] + Right_Back_Down[0]) / 2.0
center_active_y = (Left_Front_Up[1] + Right_Back_Down[1]) / 2.0
center_active_z = (Left_Front_Up[2] + Right_Back_Down[2]) / 2.0
size_active_x = (Right_Back_Down[0] - Left_Front_Up[0]) / 2.0
size_active_y = (Right_Back_Down[1] - Left_Front_Up[1]) / 2.0
size_active_z = (Left_Front_Up[2] - Right_Back_Down[2]) / 2.0
# Selection Center
if flag_first:
flag_first = False
Left_Front_Up_SEL[0] = Left_Front_Up[0]
Left_Front_Up_SEL[1] = Left_Front_Up[1]
Left_Front_Up_SEL[2] = Left_Front_Up[2]
Right_Back_Down_SEL[0] = Right_Back_Down[0]
Right_Back_Down_SEL[1] = Right_Back_Down[1]
Right_Back_Down_SEL[2] = Right_Back_Down[2]
else:
# X axis
if Left_Front_Up[0] < Left_Front_Up_SEL[0]:
Left_Front_Up_SEL[0] = Left_Front_Up[0]
# Y axis
if Left_Front_Up[1] < Left_Front_Up_SEL[1]:
Left_Front_Up_SEL[1] = Left_Front_Up[1]
# Z axis
if Left_Front_Up[2] > Left_Front_Up_SEL[2]:
Left_Front_Up_SEL[2] = Left_Front_Up[2]
# X axis
if Right_Back_Down[0] > Right_Back_Down_SEL[0]:
Right_Back_Down_SEL[0] = Right_Back_Down[0]
# Y axis
if Right_Back_Down[1] > Right_Back_Down_SEL[1]:
Right_Back_Down_SEL[1] = Right_Back_Down[1]
# Z axis
if Right_Back_Down[2] < Right_Back_Down_SEL[2]:
Right_Back_Down_SEL[2] = Right_Back_Down[2]
center_sel_x = (Left_Front_Up_SEL[0] + Right_Back_Down_SEL[0]) / 2.0
center_sel_y = (Left_Front_Up_SEL[1] + Right_Back_Down_SEL[1]) / 2.0
center_sel_z = (Left_Front_Up_SEL[2] + Right_Back_Down_SEL[2]) / 2.0
# Main Loop
for obj, bb_world in objects:
matrix_world = obj.matrix_world.copy()
bb_world = [matrix_world @ Vector(v[:]) for v in obj.bound_box]
if bb_quality and obj.type == 'MESH':
GBB = worldspace_bounds_from_object_data(depsgraph, obj)
else:
GBB = worldspace_bounds_from_object_bounds(bb_world)
Left_Front_Up = GBB[0]
Right_Back_Down = GBB[1]
center_x = (Left_Front_Up[0] + Right_Back_Down[0]) / 2.0
center_y = (Left_Front_Up[1] + Right_Back_Down[1]) / 2.0
center_z = (Left_Front_Up[2] + Right_Back_Down[2]) / 2.0
positive_x = Right_Back_Down[0]
positive_y = Right_Back_Down[1]
positive_z = Left_Front_Up[2]
negative_x = Left_Front_Up[0]
negative_y = Left_Front_Up[1]
negative_z = Right_Back_Down[2]
obj_loc = obj.location
if align_x:
# Align Mode
if relative_to == 'OPT_4': # Active relative
if align_mode == 'OPT_1':
obj_x = obj_loc[0] - negative_x - size_active_x
elif align_mode == 'OPT_3':
obj_x = obj_loc[0] - positive_x + size_active_x
else: # Everything else relative
if align_mode == 'OPT_1':
obj_x = obj_loc[0] - negative_x
elif align_mode == 'OPT_3':
obj_x = obj_loc[0] - positive_x
if align_mode == 'OPT_2': # All relative
obj_x = obj_loc[0] - center_x
# Relative To
if relative_to == 'OPT_1':
loc_x = obj_x
elif relative_to == 'OPT_2':
loc_x = obj_x + cursor[0]
elif relative_to == 'OPT_3':
loc_x = obj_x + center_sel_x
elif relative_to == 'OPT_4':
loc_x = obj_x + center_active_x
obj.location[0] = loc_x
if align_y:
# Align Mode
if relative_to == 'OPT_4': # Active relative
if align_mode == 'OPT_1':
obj_y = obj_loc[1] - negative_y - size_active_y
elif align_mode == 'OPT_3':
obj_y = obj_loc[1] - positive_y + size_active_y
else: # Everything else relative
if align_mode == 'OPT_1':
obj_y = obj_loc[1] - negative_y
elif align_mode == 'OPT_3':
obj_y = obj_loc[1] - positive_y
if align_mode == 'OPT_2': # All relative
obj_y = obj_loc[1] - center_y
# Relative To
if relative_to == 'OPT_1':
loc_y = obj_y
elif relative_to == 'OPT_2':
loc_y = obj_y + cursor[1]
elif relative_to == 'OPT_3':
loc_y = obj_y + center_sel_y
elif relative_to == 'OPT_4':
loc_y = obj_y + center_active_y
obj.location[1] = loc_y
if align_z:
# Align Mode
if relative_to == 'OPT_4': # Active relative
if align_mode == 'OPT_1':
obj_z = obj_loc[2] - negative_z - size_active_z
elif align_mode == 'OPT_3':
obj_z = obj_loc[2] - positive_z + size_active_z
else: # Everything else relative
if align_mode == 'OPT_1':
obj_z = obj_loc[2] - negative_z
elif align_mode == 'OPT_3':
obj_z = obj_loc[2] - positive_z
if align_mode == 'OPT_2': # All relative
obj_z = obj_loc[2] - center_z
# Relative To
if relative_to == 'OPT_1':
loc_z = obj_z
elif relative_to == 'OPT_2':
loc_z = obj_z + cursor[2]
elif relative_to == 'OPT_3':
loc_z = obj_z + center_sel_z
elif relative_to == 'OPT_4':
loc_z = obj_z + center_active_z
obj.location[2] = loc_z
return True
from bpy.props import (
BoolProperty,
EnumProperty,
)
class AlignObjects(Operator):
"""Align objects"""
bl_idname = "object.align"
bl_label = "Align Objects"
bl_options = {'REGISTER', 'UNDO'}
bb_quality: BoolProperty(
name="High Quality",
description=(
"Enables high quality but slow calculation of the "
"bounding box for perfect results on complex "
"shape meshes with rotation/scale"
),
default=True,
)
align_mode: EnumProperty(
name="Align Mode",
description="Side of object to use for alignment",
items=(
('OPT_1', "Negative Sides", ""),
('OPT_2', "Centers", ""),
('OPT_3', "Positive Sides", ""),
),
default='OPT_2',
)
relative_to: EnumProperty(
name="Relative To",
description="Reference location to align to",
items=(
('OPT_1', "Scene Origin", "Use the scene origin as the position for the selected objects to align to"),
('OPT_2', "3D Cursor", "Use the 3D cursor as the position for the selected objects to align to"),
('OPT_3', "Selection", "Use the selected objects as the position for the selected objects to align to"),
('OPT_4', "Active", "Use the active object as the position for the selected objects to align to"),
),
default='OPT_4',
)
align_axis: EnumProperty(
name="Align",
description="Align to axis",
items=(
('X', "X", ""),
('Y', "Y", ""),
('Z', "Z", ""),
),
options={'ENUM_FLAG'},
)
@classmethod
def poll(cls, context):
return context.mode == 'OBJECT'
def execute(self, context):
align_axis = self.align_axis
ret = align_objects(
context,
'X' in align_axis,
'Y' in align_axis,
'Z' in align_axis,
self.align_mode,
self.relative_to,
self.bb_quality,
)
if not ret:
self.report({'WARNING'}, "No objects with bound-box selected")
return {'CANCELLED'}
else:
return {'FINISHED'}
classes = (
AlignObjects,
)