blender/release/scripts/export_cal3d.py
Campbell Barton c84d18a679 export_cal3d - exporting all actions (option) wasnt working
export_fbx - blender cameras now work properly (converted lens angle, rotate to the right axis)
	Made meshes, armatures and cameras use the same namespace.
DirectX8Exporter - update from David Teviotdale, change names of exported objects so some DX readers dont fail
xsi_export - Null materials made the export fail (python error).
	This may not be a correct solution since material indicies could be messed up now. I have no way of reading these files.
2007-04-27 17:19:26 +00:00

1113 lines
37 KiB
Python

#!BPY
"""
Name: 'Cal3D (.cfg .xaf .xsf .xmf .xrf)...'
Blender: 243
Group: 'Export'
Tip: 'Export armature/bone/mesh/action data to the Cal3D format.'
"""
# export_cal3d.py
# Copyright (C) 2003-2004 Jean-Baptiste LAMY -- jibalamy@free.fr
# Copyright (C) 2004 Matthias Braun -- matze@braunis.de
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
__version__ = '0.9f'
__author__ = 'Jean-Baptiste, Jiba, Lamy, Campbell Barton (Ideasman42)'
__email__ = ['Authors email, jibalamy:free*fr']
__url__ = ['Soya3ds homepage, http://home.gna.org/oomadness/en/soya/', 'Cal3d, http://cal3d.sourceforge.net']
__bpydoc__ =\
'''This script is a Blender => Cal3D converter.
(See http://blender.org and http://cal3d.sourceforge.net)
USAGE:
To install it, place the script in your $HOME/.blender/scripts directory.
Then open the File->Export->Cal3d v0.9 menu. And select the filename of the .cfg file.
The exporter will create a set of other files with same prefix (ie. bla.cfg, bla.xsf,
bla_Action1.xaf, bla_Action2.xaf, ...).
You should be able to open the .cfg file in cal3d_miniviewer.
NOT (YET) SUPPORTED:
- Rotation, translation, or stretching Blender objects is still quite
buggy, so AVOID MOVING / ROTATING / RESIZE OBJECTS (either mesh or armature) !
Instead, edit the object (with tab), select all points / bones (with "a"),
and move / rotate / resize them.<br>
- no support for exporting springs yet<br>
- no support for exporting material colors (most games should only use images
I think...)
KNOWN ISSUES:
- Cal3D versions <=0.9.1 have a bug where animations aren't played when the root bone
is not animated;<br>
- Cal3D versions <=0.9.1 have a bug where objects that aren't influenced by any bones
are not drawn (fixed in Cal3D CVS).
NOTES:
It requires a very recent version of Blender (>= 2.44).
Build a model following a few rules:<br>
- Use only a single armature;<br>
- Use only a single rootbone (Cal3D doesn't support floating bones);<br>
- Use only locrot keys (Cal3D doesn't support bone's size change);<br>
- Don't try to create child/parent constructs in blender object, that gets exported
incorrectly at the moment;<br>
- Objects or animations whose names start by "_" are not exported (hidden object).
You can pass as many parameters as you want at the end, "EXPORT_FOR_SOYA=1" is just an
example. The parameters are the same as below.
'''
# True (=1) to export for the Soya 3D engine
# (http://oomadness.tuxfamily.org/en/soya).
# (=> rotate meshes and skeletons so as X is right, Y is top and -Z is front)
# EXPORT_FOR_SOYA = 0
# Enables LODs computation. LODs computation is quite slow, and the algo is
# surely not optimal :-(
LODS = 0
# Scale the model (not supported by Soya).
# See also BASE_MATRIX below, if you want to rotate/scale/translate the model at
# the exportation.
#########################################################################################
# Code starts here.
# The script should be quite re-useable for writing another Blender animation exporter.
# Most of the hell of it is to deal with Blender's head-tail-roll bone's definition.
import math
import Blender
import BPyMesh
import BPySys
import BPyArmature
import BPyObject
import bpy
def best_armature_root(armature):
'''
Find the armature root bone with the most children, return that bone
'''
bones = [bone for bone in armature.bones.values() if bone.hasChildren() == True]
if len(bones) == 1:
return bones[0]
# Get the best root since we have more then 1
bones = [(len(bone.getAllChildren()), bone) for bone in bones]
bones.sort()
return bones[-1][1] # bone with most children
Vector = Blender.Mathutils.Vector
Quaternion = Blender.Mathutils.Quaternion
Matrix = Blender.Mathutils.Matrix
# HACK -- it seems that some Blender versions don't define sys.argv,
# which may crash Python if a warning occurs.
# if not hasattr(sys, 'argv'): sys.argv = ['???']
def matrix_multiply(b, a):
return [ [
a[0][0] * b[0][0] + a[0][1] * b[1][0] + a[0][2] * b[2][0],
a[0][0] * b[0][1] + a[0][1] * b[1][1] + a[0][2] * b[2][1],
a[0][0] * b[0][2] + a[0][1] * b[1][2] + a[0][2] * b[2][2],
0.0,
], [
a[1][0] * b[0][0] + a[1][1] * b[1][0] + a[1][2] * b[2][0],
a[1][0] * b[0][1] + a[1][1] * b[1][1] + a[1][2] * b[2][1],
a[1][0] * b[0][2] + a[1][1] * b[1][2] + a[1][2] * b[2][2],
0.0,
], [
a[2][0] * b[0][0] + a[2][1] * b[1][0] + a[2][2] * b[2][0],
a[2][0] * b[0][1] + a[2][1] * b[1][1] + a[2][2] * b[2][1],
a[2][0] * b[0][2] + a[2][1] * b[1][2] + a[2][2] * b[2][2],
0.0,
], [
a[3][0] * b[0][0] + a[3][1] * b[1][0] + a[3][2] * b[2][0] + b[3][0],
a[3][0] * b[0][1] + a[3][1] * b[1][1] + a[3][2] * b[2][1] + b[3][1],
a[3][0] * b[0][2] + a[3][1] * b[1][2] + a[3][2] * b[2][2] + b[3][2],
1.0,
] ]
# multiplies 2 quaternions in x,y,z,w notation
def quaternion_multiply(q1, q2):
return Quaternion(\
q2[3] * q1[0] + q2[0] * q1[3] + q2[1] * q1[2] - q2[2] * q1[1],
q2[3] * q1[1] + q2[1] * q1[3] + q2[2] * q1[0] - q2[0] * q1[2],
q2[3] * q1[2] + q2[2] * q1[3] + q2[0] * q1[1] - q2[1] * q1[0],
q2[3] * q1[3] - q2[0] * q1[0] - q2[1] * q1[1] - q2[2] * q1[2],\
)
def matrix_translate(m, v):
m[3][0] += v[0]
m[3][1] += v[1]
m[3][2] += v[2]
return m
def matrix2quaternion(m):
s = math.sqrt(abs(m[0][0] + m[1][1] + m[2][2] + m[3][3]))
if s == 0.0:
x = abs(m[2][1] - m[1][2])
y = abs(m[0][2] - m[2][0])
z = abs(m[1][0] - m[0][1])
if (x >= y) and (x >= z): return Quaternion(1.0, 0.0, 0.0, 0.0)
elif (y >= x) and (y >= z): return Quaternion(0.0, 1.0, 0.0, 0.0)
else: return Quaternion(0.0, 0.0, 1.0, 0.0)
q = Quaternion([
-(m[2][1] - m[1][2]) / (2.0 * s),
-(m[0][2] - m[2][0]) / (2.0 * s),
-(m[1][0] - m[0][1]) / (2.0 * s),
0.5 * s,
])
q.normalize()
#print q
return q
def vector_by_matrix_3x3(p, m):
return [p[0] * m[0][0] + p[1] * m[1][0] + p[2] * m[2][0],
p[0] * m[0][1] + p[1] * m[1][1] + p[2] * m[2][1],
p[0] * m[0][2] + p[1] * m[1][2] + p[2] * m[2][2]]
def vector_add(v1, v2):
return [v1[0]+v2[0], v1[1]+v2[1], v1[2]+v2[2]]
def vector_sub(v1, v2):
return [v1[0]-v2[0], v1[1]-v2[1], v1[2]-v2[2]]
def quaternion2matrix(q):
xx = q[0] * q[0]
yy = q[1] * q[1]
zz = q[2] * q[2]
xy = q[0] * q[1]
xz = q[0] * q[2]
yz = q[1] * q[2]
wx = q[3] * q[0]
wy = q[3] * q[1]
wz = q[3] * q[2]
return Matrix([1.0 - 2.0 * (yy + zz), 2.0 * (xy + wz), 2.0 * (xz - wy), 0.0],
[ 2.0 * (xy - wz), 1.0 - 2.0 * (xx + zz), 2.0 * (yz + wx), 0.0],
[ 2.0 * (xz + wy), 2.0 * (yz - wx), 1.0 - 2.0 * (xx + yy), 0.0],
[0.0 , 0.0 , 0.0 , 1.0])
def matrix_invert(m):
det = (m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2])
- m[1][0] * (m[0][1] * m[2][2] - m[2][1] * m[0][2])
+ m[2][0] * (m[0][1] * m[1][2] - m[1][1] * m[0][2]))
if det == 0.0: return None
det = 1.0 / det
r = [ [
det * (m[1][1] * m[2][2] - m[2][1] * m[1][2]),
- det * (m[0][1] * m[2][2] - m[2][1] * m[0][2]),
det * (m[0][1] * m[1][2] - m[1][1] * m[0][2]),
0.0,
], [
- det * (m[1][0] * m[2][2] - m[2][0] * m[1][2]),
det * (m[0][0] * m[2][2] - m[2][0] * m[0][2]),
- det * (m[0][0] * m[1][2] - m[1][0] * m[0][2]),
0.0
], [
det * (m[1][0] * m[2][1] - m[2][0] * m[1][1]),
- det * (m[0][0] * m[2][1] - m[2][0] * m[0][1]),
det * (m[0][0] * m[1][1] - m[1][0] * m[0][1]),
0.0,
] ]
r.append([
-(m[3][0] * r[0][0] + m[3][1] * r[1][0] + m[3][2] * r[2][0]),
-(m[3][0] * r[0][1] + m[3][1] * r[1][1] + m[3][2] * r[2][1]),
-(m[3][0] * r[0][2] + m[3][1] * r[1][2] + m[3][2] * r[2][2]),
1.0,
])
return r
def point_by_matrix(p, m):
return [p[0] * m[0][0] + p[1] * m[1][0] + p[2] * m[2][0] + m[3][0],
p[0] * m[0][1] + p[1] * m[1][1] + p[2] * m[2][1] + m[3][1],
p[0] * m[0][2] + p[1] * m[1][2] + p[2] * m[2][2] + m[3][2]]
# Hack for having the model rotated right.
# Put in BASE_MATRIX your own rotation if you need some.
BASE_MATRIX = None
# Cal3D data structures
CAL3D_VERSION = 910
MATERIALS = {} # keys are (mat.name, img.name)
class Cal3DMaterial(object):
__slots__ = 'amb', 'diff', 'spec', 'shininess', 'maps_filenames', 'id'
def __init__(self, blend_world, blend_material, blend_images):
# Material Settings
if blend_world: amb = [ int(c*255) for c in blend_world.amb ]
else: amb = [0,0,0] # Default value
if blend_material:
self.amb = tuple([int(c*blend_material.amb) for c in amb] + [255])
self.diff = tuple([int(c*255) for c in blend_material.rgbCol] + [int(blend_material.alpha*255)])
self.spec = tuple([int(c*255) for c in blend_material.rgbCol] + [int(blend_material.alpha*255)])
self.shininess = (float(blend_material.hard)-1)/5.10
else:
self.amb = tuple(amb + [255])
self.diff = (255,255,255,255)
self.spec = (255,255,255,255)
self.shininess = 1.0
self.maps_filenames = []
for image in blend_images:
if image:
self.maps_filenames.append( image.filename.split('\\')[-1].split('/')[-1] )
self.id = len(MATERIALS)
MATERIALS[blend_material, blend_images] = self
# new xml format
def writeCal3D(self, file):
file.write('<?xml version="1.0"?>\n')
file.write('<HEADER MAGIC="XRF" VERSION="%i"/>\n' % CAL3D_VERSION)
file.write('<MATERIAL NUMMAPS="%s">\n' % len(self.maps_filenames))
file.write('\t<AMBIENT>%i %i %i %i</AMBIENT>\n' % self.amb)
file.write('\t<DIFFUSE>%i %i %i %i</DIFFUSE>\n' % self.diff)
file.write('\t<SPECULAR>%i %i %i %i</SPECULAR>\n' % self.spec)
file.write('\t<SHININESS>%.6f</SHININESS>\n' % self.shininess)
for map_filename in self.maps_filenames:
file.write('\t<MAP>%s</MAP>\n' % map_filename)
file.write('</MATERIAL>\n')
class Cal3DMesh(object):
__slots__ = 'name', 'submeshes', 'matrix', 'matrix_normal'
def __init__(self, ob, blend_mesh, blend_world):
self.name = ob.name
self.submeshes = []
BPyMesh.meshCalcNormals(blend_mesh)
self.matrix = ob.matrixWorld
self.matrix_normal = self.matrix.copy().rotationPart()
#if BASE_MATRIX:
# matrix = matrix_multiply(BASE_MATRIX, matrix)
face_groups = {}
blend_materials = blend_mesh.materials
uvlayers = ()
mat = None # incase we have no materials
if blend_mesh.faceUV:
uvlayers = blend_mesh.getUVLayerNames()
if len(uvlayers) == 1:
for f in blend_mesh.faces:
image = (f.image,) # bit in a tuple so we can match multi UV code
if blend_materials: mat = blend_materials[f.mat] # if no materials, mat will always be None
face_groups.setdefault( (mat,image), (mat,image,[]) )[2].append( f )
else:
# Multi UV's
face_multi_images = [[] for i in xrange(len(blend_mesh.faces))]
face_multi_uvs = [[[] for i in xrange(len(f)) ] for f in blend_mesh.faces]
for uvlayer in uvlayers:
blend_mesh.activeUVLayer = uvlayer
for i, f in enumerate(blend_mesh.faces):
face_multi_images[i].append(f.image)
if f.image:
for j, uv in enumerate(f.uv):
face_multi_uvs[i][j].append( tuple(uv) )
# Convert UV's to tuples so they can be compared with eachother
# when creating new verts
for fuv in face_multi_uvs:
for i, uv in enumerate(fuv):
fuv[i] = tuple(uv)
for i, f in enumerate(blend_mesh.faces):
image = tuple(face_multi_images[i])
if blend_materials: mat = blend_materials[f.mat]
face_groups.setdefault( (mat,image), (mat,image,[]) )[2].append( f )
else:
# No UV's
for f in blend_mesh.faces:
if blend_materials: mat = blend_materials[f.mat]
face_groups.setdefault( (mat,()), (mat,(),[]) )[2].append( f )
for blend_material, blend_images, faces in face_groups.itervalues():
try: material = MATERIALS[blend_material, blend_images]
except: material = MATERIALS[blend_material, blend_images] = Cal3DMaterial(blend_world, blend_material, blend_images)
submesh = Cal3DSubMesh(self, material, len(self.submeshes))
self.submeshes.append(submesh)
# Check weather we need to write UVs, dont do it if theres no image
# Multilayer UV's have alredy checked that they have images when
# building face_multi_uvs
if len(uvlayers) == 1:
if blend_images == (None,):
write_single_layer_uvs = False
else:
write_single_layer_uvs = True
for face in faces:
if not face.smooth:
normal = face.no
face_vertices = []
face_v = face.v
if len(uvlayers)>1:
for i, blend_vert in enumerate(face_v):
if face.smooth: normal = blend_vert.no
vertex = submesh.getVertex(blend_mesh, blend_vert, normal, face_multi_uvs[face.index][i])
face_vertices.append(vertex)
elif len(uvlayers)==1:
if write_single_layer_uvs:
face_uv = face.uv
for i, blend_vert in enumerate(face_v):
if face.smooth: normal = blend_vert.no
if write_single_layer_uvs: uvs = (tuple(face_uv[i]),)
else: uvs = ()
vertex = submesh.getVertex(blend_mesh, blend_vert, normal, uvs )
face_vertices.append(vertex)
else:
# No UVs
for i, blend_vert in enumerate(face_v):
if face.smooth: normal = blend_vert.no
vertex = submesh.getVertex(blend_mesh, blend_vert, normal, () )
face_vertices.append(vertex)
# Split faces with more than 3 vertices
for i in xrange(1, len(face) - 1):
submesh.faces.append(Cal3DFace(face_vertices[0], face_vertices[i], face_vertices[i + 1]))
def writeCal3D(self, file):
file.write('<?xml version="1.0"?>\n')
file.write('<HEADER MAGIC="XMF" VERSION="%i"/>\n' % CAL3D_VERSION)
file.write('<MESH NUMSUBMESH="%i">\n' % len(self.submeshes))
for submesh in self.submeshes:
submesh.writeCal3D(file, self.matrix, self.matrix_normal)
file.write('</MESH>\n')
class Cal3DSubMesh(object):
__slots__ = 'material', 'vertices', 'vert_mapping', 'vert_count', 'faces', 'nb_lodsteps', 'springs', 'id'
def __init__(self, mesh, material, id):
self.material = material
self.vertices = []
self.vert_mapping = {} # map original indicies to local
self.vert_count = 0
self.faces = []
self.nb_lodsteps = 0
self.springs = []
self.id = id
def getVertex(self, blend_mesh, blend_vert, normal, maps):
'''
Request a vertex, and create a new one or return a matching vertex
'''
blend_index = blend_vert.index
index_map = self.vert_mapping.get(blend_index)
if index_map == None:
vertex = Cal3DVertex(blend_vert.co, normal, maps, blend_mesh.getVertexInfluences(blend_index))
self.vertices.append([vertex])
self.vert_mapping[blend_index] = len(self.vert_mapping)
self.vert_count +=1
return vertex
else:
vertex_list = self.vertices[index_map]
for v in vertex_list:
if v.normal == normal and\
v.maps == maps:
return v # reusing
# No match, add a new vert
# Use the first verts influences
vertex = Cal3DVertex(blend_vert.co, normal, maps, vertex_list[0].influences)
vertex_list.append(vertex)
# self.vert_mapping[blend_index] = len(self.vert_mapping)
self.vert_count +=1
return vertex
def compute_lods(self):
'''Computes LODs info for Cal3D (there's no Blender related stuff here).'''
print 'Start LODs computation...'
vertex2faces = {}
for face in self.faces:
for vertex in (face.vertex1, face.vertex2, face.vertex3):
l = vertex2faces.get(vertex)
if not l: vertex2faces[vertex] = [face]
else: l.append(face)
couple_treated = {}
couple_collapse_factor = []
for face in self.faces:
for a, b in ((face.vertex1, face.vertex2), (face.vertex1, face.vertex3), (face.vertex2, face.vertex3)):
a = a.cloned_from or a
b = b.cloned_from or b
if a.id > b.id: a, b = b, a
if not couple_treated.has_key((a, b)):
# The collapse factor is simply the distance between the 2 points :-(
# This should be improved !!
if vector_dotproduct(a.normal, b.normal) < 0.9: continue
couple_collapse_factor.append((point_distance(a.loc, b.loc), a, b))
couple_treated[a, b] = 1
couple_collapse_factor.sort()
collapsed = {}
new_vertices = []
new_faces = []
for factor, v1, v2 in couple_collapse_factor:
# Determines if v1 collapses to v2 or v2 to v1.
# We choose to keep the vertex which is on the smaller number of faces, since
# this one has more chance of being in an extrimity of the body.
# Though heuristic, this rule yields very good results in practice.
if len(vertex2faces[v1]) < len(vertex2faces[v2]): v2, v1 = v1, v2
elif len(vertex2faces[v1]) == len(vertex2faces[v2]):
if collapsed.get(v1, 0): v2, v1 = v1, v2 # v1 already collapsed, try v2
if (not collapsed.get(v1, 0)) and (not collapsed.get(v2, 0)):
collapsed[v1] = 1
collapsed[v2] = 1
# Check if v2 is already colapsed
while v2.collapse_to: v2 = v2.collapse_to
common_faces = filter(vertex2faces[v1].__contains__, vertex2faces[v2])
v1.collapse_to = v2
v1.face_collapse_count = len(common_faces)
for clone in v1.clones:
# Find the clone of v2 that correspond to this clone of v1
possibles = []
for face in vertex2faces[clone]:
possibles.append(face.vertex1)
possibles.append(face.vertex2)
possibles.append(face.vertex3)
clone.collapse_to = v2
for vertex in v2.clones:
if vertex in possibles:
clone.collapse_to = vertex
break
clone.face_collapse_count = 0
new_vertices.append(clone)
# HACK -- all faces get collapsed with v1 (and no faces are collapsed with v1's
# clones). This is why we add v1 in new_vertices after v1's clones.
# This hack has no other incidence that consuming a little few memory for the
# extra faces if some v1's clone are collapsed but v1 is not.
new_vertices.append(v1)
self.nb_lodsteps += 1 + len(v1.clones)
new_faces.extend(common_faces)
for face in common_faces:
face.can_collapse = 1
# Updates vertex2faces
vertex2faces[face.vertex1].remove(face)
vertex2faces[face.vertex2].remove(face)
vertex2faces[face.vertex3].remove(face)
vertex2faces[v2].extend(vertex2faces[v1])
new_vertices.extend(filter(lambda vertex: not vertex.collapse_to, self.vertices))
new_vertices.reverse() # Cal3D want LODed vertices at the end
for i in xrange(len(new_vertices)): new_vertices[i].id = i
self.vertices = new_vertices
new_faces.extend(filter(lambda face: not face.can_collapse, self.faces))
new_faces.reverse() # Cal3D want LODed faces at the end
self.faces = new_faces
print 'LODs computed : %s vertices can be removed (from a total of %s).' % (self.nb_lodsteps, len(self.vertices))
def writeCal3D(self, file, matrix, matrix_normal):
file.write('\t<SUBMESH NUMVERTICES="%i" NUMFACES="%i" MATERIAL="%i" ' % \
(self.vert_count, len(self.faces), self.material.id))
file.write('NUMLODSTEPS="%i" NUMSPRINGS="%i" NUMTEXCOORDS="%i">\n' % \
(self.nb_lodsteps, len(self.springs),
len(self.material.maps_filenames)))
i = 0
for v in self.vertices:
for item in v:
item.id = i
item.writeCal3D(file, matrix, matrix_normal)
i += 1
for item in self.springs:
item.writeCal3D(file)
for item in self.faces:
item.writeCal3D(file)
file.write('\t</SUBMESH>\n')
class Cal3DVertex(object):
__slots__ = 'loc','normal','collapse_to','face_collapse_count','maps','influences','weight','cloned_from','clones','id'
def __init__(self, loc, normal, maps, blend_influences):
self.loc = loc
self.normal = normal
self.collapse_to = None
self.face_collapse_count = 0
self.maps = maps
self.weight = None
self.cloned_from = None
self.clones = []
self.id = -1
if len(blend_influences) == 0 or isinstance(blend_influences[0], Cal3DInfluence):
# This is a copy from another vert
self.influences = blend_influences
else:
# Pass the blender influences
self.influences = []
# should this really be a warning? (well currently enabled,
# because blender has some bugs where it doesn't return
# influences in python api though they are set, and because
# cal3d<=0.9.1 had bugs where objects without influences
# aren't drawn.
#if not blend_influences:
# print 'A vertex of object "%s" has no influences.\n(This occurs on objects placed in an invisible layer, you can fix it by using a single layer)' % ob.name
# sum of influences is not always 1.0 in Blender ?!?!
sum = 0.0
for bone_name, weight in blend_influences:
sum += weight
for bone_name, weight in blend_influences:
bone = BONES.get(bone_name)
if not bone: # keys
# print 'Couldnt find bone "%s" which influences object "%s"' % (bone_name, ob.name)
continue
if weight:
self.influences.append(Cal3DInfluence(bone, weight / sum))
def writeCal3D(self, file, matrix, matrix_normal):
if self.collapse_to:
collapse_id = self.collapse_to.id
else:
collapse_id = -1
file.write('\t\t<VERTEX ID="%i" NUMINFLUENCES="%i">\n' % \
(self.id, len(self.influences)))
file.write('\t\t\t<POS>%.6f %.6f %.6f</POS>\n' % tuple(self.loc*matrix))
file.write('\t\t\t<NORM>%.6f %.6f %.6f</NORM>\n' % tuple( (self.normal*matrix_normal).normalize() ))
if collapse_id != -1:
file.write('\t\t\t<COLLAPSEID>%i</COLLAPSEID>\n' % collapse_id)
file.write('\t\t\t<COLLAPSECOUNT>%i</COLLAPSECOUNT>\n' % \
self.face_collapse_count)
for uv in self.maps:
# we cant have more UV's then our materials image maps
# check for this
file.write('\t\t\t<TEXCOORD>%.6f %.6f</TEXCOORD>\n' % uv)
for item in self.influences:
item.writeCal3D(file)
if self.weight != None:
file.write('\t\t\t<PHYSIQUE>%.6f</PHYSIQUE>\n' % len(self.weight))
file.write('\t\t</VERTEX>\n')
class Cal3DInfluence(object):
__slots__ = 'bone', 'weight'
def __init__(self, bone, weight):
self.bone = bone
self.weight = weight
def writeCal3D(self, file):
file.write('\t\t\t<INFLUENCE ID="%i">%.6f</INFLUENCE>\n' % \
(self.bone.id, self.weight))
class Cal3DSpring(object):
__slots__ = 'vertex1', 'vertex2', 'spring_coefficient', 'idlelength'
def __init__(self, vertex1, vertex2):
self.vertex1 = vertex1
self.vertex2 = vertex2
self.spring_coefficient = 0.0
self.idlelength = 0.0
def writeCal3D(self, file):
file.write('\t\t<SPRING VERTEXID="%i %i" COEF="%.6f" LENGTH="%.6f"/>\n' % \
(self.vertex1.id, self.vertex2.id, self.spring_coefficient, self.idlelength))
class Cal3DFace(object):
__slots__ = 'vertex1', 'vertex2', 'vertex3', 'can_collapse',
def __init__(self, vertex1, vertex2, vertex3):
self.vertex1 = vertex1
self.vertex2 = vertex2
self.vertex3 = vertex3
self.can_collapse = 0
def writeCal3D(self, file):
file.write('\t\t<FACE VERTEXID="%i %i %i"/>\n' % \
(self.vertex1.id, self.vertex2.id, self.vertex3.id))
class Cal3DSkeleton(object):
__slots__ = 'bones'
def __init__(self):
self.bones = []
def writeCal3D(self, file):
file.write('<?xml version="1.0"?>\n')
file.write('<HEADER MAGIC="XSF" VERSION="%i"/>\n' % CAL3D_VERSION)
file.write('<SKELETON NUMBONES="%i">\n' % len(self.bones))
for item in self.bones:
item.writeCal3D(file)
file.write('</SKELETON>\n')
BONES = {}
POSEBONES= {}
class Cal3DBone(object):
__slots__ = 'head', 'tail', 'name', 'cal3d_parent', 'loc', 'quat', 'children', 'matrix', 'lloc', 'lquat', 'id'
def __init__(self, skeleton, blend_bone, arm_matrix, cal3d_parent=None):
# def treat_bone(b, parent = None):
head = blend_bone.head['BONESPACE']
tail = blend_bone.tail['BONESPACE']
#print parent.quat
# Turns the Blender's head-tail-roll notation into a quaternion
#quat = matrix2quaternion(blender_bone2matrix(head, tail, blend_bone.roll['BONESPACE']))
quat = matrix2quaternion(blend_bone.matrix['BONESPACE'].copy().resize4x4())
# Pose location
ploc = POSEBONES[blend_bone.name].loc
if cal3d_parent:
# Compute the translation from the parent bone's head to the child
# bone's head, in the parent bone coordinate system.
# The translation is parent_tail - parent_head + child_head,
# but parent_tail and parent_head must be converted from the parent's parent
# system coordinate into the parent system coordinate.
parent_invert_transform = matrix_invert(quaternion2matrix(cal3d_parent.quat))
parent_head = vector_by_matrix_3x3(cal3d_parent.head, parent_invert_transform)
parent_tail = vector_by_matrix_3x3(cal3d_parent.tail, parent_invert_transform)
ploc = vector_add(ploc, blend_bone.head['BONESPACE'])
# EDIT!!! FIX BONE OFFSET BE CAREFULL OF THIS PART!!! ??
#diff = vector_by_matrix_3x3(head, parent_invert_transform)
parent_tail= vector_add(parent_tail, head)
# DONE!!!
parentheadtotail = vector_sub(parent_tail, parent_head)
# hmm this should be handled by the IPos, but isn't for non-animated
# bones which are transformed in the pose mode...
loc = parentheadtotail
else:
# Apply the armature's matrix to the root bones
head = point_by_matrix(head, arm_matrix)
tail = point_by_matrix(tail, arm_matrix)
loc = head
quat = matrix2quaternion(matrix_multiply(arm_matrix, quaternion2matrix(quat))) # Probably not optimal
self.head = head
self.tail = tail
self.cal3d_parent = cal3d_parent
self.name = blend_bone.name
self.loc = loc
self.quat = quat
self.children = []
self.matrix = matrix_translate(quaternion2matrix(quat), loc)
if cal3d_parent:
self.matrix = matrix_multiply(cal3d_parent.matrix, self.matrix)
# lloc and lquat are the bone => model space transformation (translation and rotation).
# They are probably specific to Cal3D.
m = matrix_invert(self.matrix)
self.lloc = m[3][0], m[3][1], m[3][2]
self.lquat = matrix2quaternion(m)
self.id = len(skeleton.bones)
skeleton.bones.append(self)
BONES[self.name] = self
if not blend_bone.hasChildren(): return
for blend_child in blend_bone.children:
self.children.append(Cal3DBone(skeleton, blend_child, arm_matrix, self))
def writeCal3D(self, file):
file.write('\t<BONE ID="%i" NAME="%s" NUMCHILD="%i">\n' % \
(self.id, self.name, len(self.children)))
# We need to negate quaternion W value, but why ?
file.write('\t\t<TRANSLATION>%.6f %.6f %.6f</TRANSLATION>\n' % \
(self.loc[0], self.loc[1], self.loc[2]))
file.write('\t\t<ROTATION>%.6f %.6f %.6f %.6f</ROTATION>\n' % \
(self.quat[0], self.quat[1], self.quat[2], -self.quat[3]))
file.write('\t\t<LOCALTRANSLATION>%.6f %.6f %.6f</LOCALTRANSLATION>\n' % \
(self.lloc[0], self.lloc[1], self.lloc[2]))
file.write('\t\t<LOCALROTATION>%.6f %.6f %.6f %.6f</LOCALROTATION>\n' % \
(self.lquat[0], self.lquat[1], self.lquat[2], -self.lquat[3]))
if self.cal3d_parent:
file.write('\t\t<PARENTID>%i</PARENTID>\n' % self.cal3d_parent.id)
else:
file.write('\t\t<PARENTID>%i</PARENTID>\n' % -1)
for item in self.children:
file.write('\t\t<CHILDID>%i</CHILDID>\n' % item.id)
file.write('\t</BONE>\n')
class Cal3DAnimation:
def __init__(self, name, duration = 0.0):
self.name = name
self.duration = duration
self.tracks = {} # Map bone names to tracks
def writeCal3D(self, file):
file.write('<?xml version="1.0"?>\n')
file.write('<HEADER MAGIC="XAF" VERSION="%i"/>\n' % CAL3D_VERSION)
file.write('<ANIMATION DURATION="%.6f" NUMTRACKS="%i">\n' % \
(self.duration, len(self.tracks)))
for item in self.tracks.itervalues():
item.writeCal3D(file)
file.write('</ANIMATION>\n')
class Cal3DTrack(object):
__slots__ = 'bone', 'keyframes'
def __init__(self, bone):
self.bone = bone
self.keyframes = []
def writeCal3D(self, file):
file.write('\t<TRACK BONEID="%i" NUMKEYFRAMES="%i">\n' %
(self.bone.id, len(self.keyframes)))
for item in self.keyframes:
item.writeCal3D(file)
file.write('\t</TRACK>\n')
class Cal3DKeyFrame(object):
__slots__ = 'time', 'loc', 'quat'
def __init__(self, time, loc, quat):
self.time = time
self.loc = loc
self.quat = quat
def writeCal3D(self, file):
file.write('\t\t<KEYFRAME TIME="%.6f">\n' % self.time)
file.write('\t\t\t<TRANSLATION>%.6f %.6f %.6f</TRANSLATION>\n' % \
(self.loc[0], self.loc[1], self.loc[2]))
# We need to negate quaternion W value, but why ?
file.write('\t\t\t<ROTATION>%.6f %.6f %.6f %.6f</ROTATION>\n' % \
(self.quat[0], self.quat[1], self.quat[2], -self.quat[3]))
file.write('\t\t</KEYFRAME>\n')
def export_cal3d(filename, PREF_SCALE=0.1, PREF_BAKE_MOTION = True, PREF_ACT_ACTION_ONLY=True, PREF_SCENE_FRAMES=False):
if not filename.endswith('.cfg'):
filename += '.cfg'
file_only = filename.split('/')[-1].split('\\')[-1]
file_only_noext = file_only.split('.')[0]
base_only = filename[:-len(file_only)]
def new_name(dataname, ext):
return file_only_noext + '_' + BPySys.cleanName(dataname) + ext
#if EXPORT_FOR_SOYA:
# global BASE_MATRIX
# BASE_MATRIX = matrix_rotate_x(-math.pi / 2.0)
# Get the sce
sce = bpy.data.scenes.active
blend_world = sce.world
# ---- Export skeleton (armature) ----------------------------------------
skeleton = Cal3DSkeleton()
blender_armature = [ob for ob in sce.objects.context if ob.type == 'Armature']
if len(blender_armature) > 1: print "Found multiple armatures! using ",armatures[0].name
if blender_armature: blender_armature = blender_armature[0]
else:
# Try find a meshes armature
for ob in sce.objects.context:
blender_armature = BPyObject.getObjectArmature(ob)
if blender_armature:
break
if not blender_armature:
Blender.Draw.PupMenu('Aborting%t|No Armature in selection')
return
# we need pose bone locations
for pbone in blender_armature.getPose().bones.values():
POSEBONES[pbone.name] = pbone
Cal3DBone(skeleton, best_armature_root(blender_armature.getData()), blender_armature.matrixWorld)
# ---- Export Mesh data ---------------------------------------------------
meshes = []
for ob in sce.objects.context:
if ob.type != 'Mesh': continue
blend_mesh = ob.getData(mesh=1)
if not blend_mesh.faces: continue
meshes.append( Cal3DMesh(ob, blend_mesh, blend_world) )
# ---- Export animations --------------------------------------------------
backup_action = blender_armature.action
ANIMATIONS = []
SUPPORTED_IPOS = 'QuatW', 'QuatX', 'QuatY', 'QuatZ', 'LocX', 'LocY', 'LocZ'
if PREF_ACT_ACTION_ONLY: action_items = [(blender_armature.action.name, blender_armature.action)]
else: action_items = Blender.Armature.NLA.GetActions().items()
print len(action_items), 'action_items'
for animation_name, blend_action in action_items:
# get frame range
if PREF_SCENE_FRAMES:
action_start= Blender.Get('staframe')
action_end= Blender.Get('endframe')
else:
_frames = blend_action.getFrameNumbers()
action_start= min(_frames);
action_end= max(_frames);
del _frames
blender_armature.action = blend_action
if PREF_BAKE_MOTION:
# We need to set the action active if we are getting baked data
pose_data = BPyArmature.getBakedPoseData(blender_armature, action_start, action_end)
# Fake, all we need is bone names
blend_action_ipos_items = [(pbone, True) for pbone in POSEBONES.iterkeys()]
else:
# real (bone_name, ipo) pairs
blend_action_ipos_items = blend_action.getAllChannelIpos().items()
# Now we mau have some bones with no channels, easiest to add their names and an empty list here
# this way they are exported with dummy keyfraames at teh first used frame
action_bone_names = [name for name, ipo in blend_action_ipos_items]
for bone_name in BONES: # iterkeys
if bone_name not in action_bone_names:
blend_action_ipos_items.append( (bone_name, []) )
animation = Cal3DAnimation(animation_name)
# ----------------------------
ANIMATIONS.append(animation)
animation.duration = 0.0
for bone_name, ipo in blend_action_ipos_items:
# Baked bones may have no IPO's width motion still
if bone_name not in BONES:
print '\tNo Bone "' + bone_name + '" in (from Animation "' + animation_name + '") ?!?'
continue
# So we can loop without errors
if ipo==None: ipo = []
bone = BONES[bone_name]
track = animation.tracks[bone_name] = Cal3DTrack(bone)
if PREF_BAKE_MOTION:
for i in xrange(action_end - action_start):
cal3dtime = i / 25.0 # assume 25FPS by default
if cal3dtime > animation.duration:
animation.duration = cal3dtime
#print pose_data[i][bone_name], i
loc, quat = pose_data[i][bone_name]
loc = vector_by_matrix_3x3(loc, bone.matrix)
loc = vector_add(bone.loc, loc)
quat = quaternion_multiply(quat, bone.quat)
quat = Quaternion(quat)
quat.normalize()
quat = tuple(quat)
track.keyframes.append( Cal3DKeyFrame(cal3dtime, loc, quat) )
else:
#run 1: we need to find all time values where we need to produce keyframes
times = set()
for curve in ipo:
curve_name = curve.name
if curve_name in SUPPORTED_IPOS:
for p in curve.bezierPoints:
times.add( p.pt[0] )
times = list(times)
times.sort()
# Incase we have no keys here or ipo==None
if not times: times.append(action_start)
# run2: now create keyframes
for time in times:
cal3dtime = (time-1) / 25.0 # assume 25FPS by default
if cal3dtime > animation.duration:
animation.duration = cal3dtime
trans = Vector()
quat = Quaternion()
for curve in ipo:
val = curve.evaluate(time)
# val = 0.0
curve_name= curve.name
if curve_name == 'LocX': trans[0] = val
elif curve_name == 'LocY': trans[1] = val
elif curve_name == 'LocZ': trans[2] = val
elif curve_name == 'QuatW': quat[3] = val
elif curve_name == 'QuatX': quat[0] = val
elif curve_name == 'QuatY': quat[1] = val
elif curve_name == 'QuatZ': quat[2] = val
transt = vector_by_matrix_3x3(trans, bone.matrix)
loc = vector_add(bone.loc, transt)
quat = quaternion_multiply(quat, bone.quat)
quat = Quaternion(quat)
quat.normalize()
quat = tuple(quat)
track.keyframes.append( Cal3DKeyFrame(cal3dtime, loc, quat) )
if animation.duration <= 0:
print 'Ignoring Animation "' + animation_name + '": duration is 0.\n'
continue
# Restore the original armature
blender_armature.action = backup_action
# ------------------------------------- End Animation
cfg = open((filename), 'wb')
cfg.write('# Cal3D model exported from Blender with export_cal3d.py\n# from %s\n' % Blender.Get('filename'))
if PREF_SCALE != 1.0: cfg.write('scale=%.6f\n' % PREF_SCALE)
fname = file_only_noext + '.xsf'
file = open( base_only + fname, 'wb')
skeleton.writeCal3D(file)
file.close()
cfg.write('skeleton=%s\n' % fname)
for animation in ANIMATIONS:
if not animation.name.startswith('_'):
if animation.duration > 0.1: # Cal3D does not support animation with only one state
fname = new_name(animation.name, '.xaf')
file = open(base_only + fname, 'wb')
animation.writeCal3D(file)
file.close()
cfg.write('animation=%s\n' % fname)
for mesh in meshes:
if not mesh.name.startswith('_'):
fname = new_name(mesh.name, '.xmf')
file = open(base_only + fname, 'wb')
mesh.writeCal3D(file)
file.close()
cfg.write('mesh=%s\n' % fname)
materials = MATERIALS.values()
materials.sort(key = lambda a: a.id)
for material in materials:
# Just number materials, its less trouble
fname = new_name(str(material.id), '.xrf')
file = open(base_only + fname, 'wb')
material.writeCal3D(file)
file.close()
cfg.write('material=%s\n' % fname)
print 'Cal3D Saved to "%s.cfg"' % file_only_noext
# Warnings
if len(animation.tracks) < 2:
Blender.Draw.PupMenu('Warning, the armature has less then 2 tracks, file may not load in Cal3d')
def export_cal3d_ui(filename):
PREF_SCALE= Blender.Draw.Create(1.0)
PREF_BAKE_MOTION = Blender.Draw.Create(1)
PREF_ACT_ACTION_ONLY= Blender.Draw.Create(1)
PREF_SCENE_FRAMES= Blender.Draw.Create(0)
block = [\
('Scale: ', PREF_SCALE, 0.01, 100, 'The scale to set in the Cal3d .cfg file (unsupported by soya)'),\
('Baked Motion', PREF_BAKE_MOTION, 'use final pose position instead of ipo keyframes (IK and constraint support)'),\
('Active Action', PREF_ACT_ACTION_ONLY, 'Only export action applied to this armature, else export all actions.'),\
('Scene Frames', PREF_SCENE_FRAMES, 'Use scene frame range, else the actions start/end'),\
]
if not Blender.Draw.PupBlock('Cal3D Options', block):
return
Blender.Window.WaitCursor(1)
export_cal3d(filename, 1.0/PREF_SCALE.val, PREF_BAKE_MOTION.val, PREF_ACT_ACTION_ONLY.val, PREF_SCENE_FRAMES.val)
Blender.Window.WaitCursor(0)
#import os
if __name__ == '__main__':
Blender.Window.FileSelector(export_cal3d_ui, 'Cal3D Export', Blender.Get('filename').replace('.blend', '.cfg'))
#export_cal3d('/cally/data/skeleton/skeleton' + '.cfg', 1.0, True, False, False)
#export_cal3d('/test' + '.cfg')
#export_cal3d_ui('/test' + '.cfg')
#os.system('cd /; wine /cal3d_miniviewer.exe /skeleton.cfg')
#os.system('cd /cally/;wine cally')