blender/extern/libmv/libmv-capi.cc
Sergey Sharybin 24ce60cfe4 Merge plane track feature from tomato branch
This commit includes all the changes made for plane tracker
in tomato branch.

Movie clip editor changes:

- Artist might create a plane track out of multiple point
  tracks which belongs to the same track (minimum amount of
  point tracks is 4, maximum is not actually limited).

  When new plane track is added, it's getting "tracked"
  across all point tracks, which makes it stick to the same
  plane point tracks belong to.

- After plane track was added, it need to be manually adjusted
  in a way it covers feature one might to mask/replace.

  General transform tools (G, R, S) or sliding corners with
  a mouse could be sued for this. Plane corner which
  corresponds to left bottom image corner has got X/Y axis
  on it (red is for X axis, green for Y).

- Re-adjusting plane corners makes plane to be "re-tracked"
  for the frames sequence between current frame and next
  and previous keyframes.

- Kayframes might be removed from the plane, using Shit-X
  (Marker Delete) operator. However, currently manual
  re-adjustment or "re-track" trigger is needed.

Compositor changes:

- Added new node called Plane Track Deform.

- User selects which plane track to use (for this he need
  to select movie clip datablock, object and track names).

- Node gets an image input, which need to be warped into
  the plane.

- Node outputs:
  * Input image warped into the plane.
  * Plane, rasterized to a mask.

Masking changes:

- Mask points might be parented to a plane track, which
  makes this point deforming in a way as if it belongs
  to the tracked plane.

Some video tutorials are available:
- Coder video: http://www.youtube.com/watch?v=vISEwqNHqe4
- Artist video: https://vimeo.com/71727578

This is mine and Keir's holiday code project :)
2013-08-16 09:46:30 +00:00

1110 lines
36 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2011 Blender Foundation.
* All rights reserved.
*
* Contributor(s): Blender Foundation,
* Sergey Sharybin
*
* ***** END GPL LICENSE BLOCK *****
*/
#ifdef WITH_LIBMV
/* define this to generate PNG images with content of search areas
tracking between which failed */
#undef DUMP_FAILURE
/* define this to generate PNG images with content of search areas
on every itteration of tracking */
#undef DUMP_ALWAYS
#include "libmv-capi.h"
#include <cstdlib>
#include <cassert>
#if defined(DUMP_FAILURE) || defined (DUMP_ALWAYS)
# include <png.h>
#endif
#include "libmv/logging/logging.h"
#include "libmv/tracking/track_region.h"
#include "libmv/simple_pipeline/callbacks.h"
#include "libmv/simple_pipeline/tracks.h"
#include "libmv/simple_pipeline/initialize_reconstruction.h"
#include "libmv/simple_pipeline/bundle.h"
#include "libmv/simple_pipeline/detect.h"
#include "libmv/simple_pipeline/pipeline.h"
#include "libmv/simple_pipeline/camera_intrinsics.h"
#include "libmv/simple_pipeline/modal_solver.h"
#include "libmv/simple_pipeline/reconstruction_scale.h"
#include "libmv/simple_pipeline/keyframe_selection.h"
#include "libmv/multiview/homography.h"
#ifdef _MSC_VER
# define snprintf _snprintf
#endif
struct libmv_Reconstruction {
libmv::EuclideanReconstruction reconstruction;
/* used for per-track average error calculation after reconstruction */
libmv::Tracks tracks;
libmv::CameraIntrinsics intrinsics;
double error;
};
struct libmv_Features {
int count, margin;
libmv::Feature *features;
};
/* ************ Logging ************ */
void libmv_initLogging(const char *argv0)
{
/* Make it so FATAL messages are always print into console */
char severity_fatal[32];
snprintf(severity_fatal, sizeof(severity_fatal), "%d",
google::GLOG_FATAL);
google::InitGoogleLogging(argv0);
google::SetCommandLineOption("logtostderr", "1");
google::SetCommandLineOption("v", "0");
google::SetCommandLineOption("stderrthreshold", severity_fatal);
google::SetCommandLineOption("minloglevel", severity_fatal);
}
void libmv_startDebugLogging(void)
{
google::SetCommandLineOption("logtostderr", "1");
google::SetCommandLineOption("v", "2");
google::SetCommandLineOption("stderrthreshold", "1");
google::SetCommandLineOption("minloglevel", "0");
}
void libmv_setLoggingVerbosity(int verbosity)
{
char val[10];
snprintf(val, sizeof(val), "%d", verbosity);
google::SetCommandLineOption("v", val);
}
/* ************ Utility ************ */
static void floatBufToImage(const float *buf, int width, int height, int channels, libmv::FloatImage *image)
{
int x, y, k, a = 0;
image->Resize(height, width, channels);
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
for (k = 0; k < channels; k++) {
(*image)(y, x, k) = buf[a++];
}
}
}
}
static void imageToFloatBuf(const libmv::FloatImage *image, int channels, float *buf)
{
int x, y, k, a = 0;
for (y = 0; y < image->Height(); y++) {
for (x = 0; x < image->Width(); x++) {
for (k = 0; k < channels; k++) {
buf[a++] = (*image)(y, x, k);
}
}
}
}
#if defined(DUMP_FAILURE) || defined (DUMP_ALWAYS)
static void savePNGImage(png_bytep *row_pointers, int width, int height, int depth, int color_type,
const char *file_name)
{
png_infop info_ptr;
png_structp png_ptr;
FILE *fp = fopen(file_name, "wb");
if (!fp)
return;
/* Initialize stuff */
png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
info_ptr = png_create_info_struct(png_ptr);
if (setjmp(png_jmpbuf(png_ptr))) {
fclose(fp);
return;
}
png_init_io(png_ptr, fp);
/* write header */
if (setjmp(png_jmpbuf(png_ptr))) {
fclose(fp);
return;
}
png_set_IHDR(png_ptr, info_ptr, width, height,
depth, color_type, PNG_INTERLACE_NONE,
PNG_COMPRESSION_TYPE_BASE, PNG_FILTER_TYPE_BASE);
png_write_info(png_ptr, info_ptr);
/* write bytes */
if (setjmp(png_jmpbuf(png_ptr))) {
fclose(fp);
return;
}
png_write_image(png_ptr, row_pointers);
/* end write */
if (setjmp(png_jmpbuf(png_ptr))) {
fclose(fp);
return;
}
png_write_end(png_ptr, NULL);
fclose(fp);
}
static void saveImage(const char *prefix, libmv::FloatImage image, int x0, int y0)
{
int x, y;
png_bytep *row_pointers;
row_pointers = (png_bytep *) malloc(sizeof(png_bytep) * image.Height());
for (y = 0; y < image.Height(); y++) {
row_pointers[y] = (png_bytep) malloc(sizeof(png_byte) * 4 * image.Width());
for (x = 0; x < image.Width(); x++) {
if (x0 == x && image.Height() - y0 - 1 == y) {
row_pointers[y][x * 4 + 0] = 255;
row_pointers[y][x * 4 + 1] = 0;
row_pointers[y][x * 4 + 2] = 0;
row_pointers[y][x * 4 + 3] = 255;
}
else {
float pixel = image(image.Height() - y - 1, x, 0);
row_pointers[y][x * 4 + 0] = pixel * 255;
row_pointers[y][x * 4 + 1] = pixel * 255;
row_pointers[y][x * 4 + 2] = pixel * 255;
row_pointers[y][x * 4 + 3] = 255;
}
}
}
{
static int a = 0;
char buf[128];
snprintf(buf, sizeof(buf), "%s_%02d.png", prefix, ++a);
savePNGImage(row_pointers, image.Width(), image.Height(), 8, PNG_COLOR_TYPE_RGBA, buf);
}
for (y = 0; y < image.Height(); y++) {
free(row_pointers[y]);
}
free(row_pointers);
}
static void saveBytesImage(const char *prefix, unsigned char *data, int width, int height)
{
int x, y;
png_bytep *row_pointers;
row_pointers = (png_bytep *) malloc(sizeof(png_bytep) * height);
for (y = 0; y < height; y++) {
row_pointers[y] = (png_bytep) malloc(sizeof(png_byte) * 4 * width);
for (x = 0; x < width; x++) {
char pixel = data[width * y + x];
row_pointers[y][x * 4 + 0] = pixel;
row_pointers[y][x * 4 + 1] = pixel;
row_pointers[y][x * 4 + 2] = pixel;
row_pointers[y][x * 4 + 3] = 255;
}
}
{
static int a = 0;
char buf[128];
snprintf(buf, sizeof(buf), "%s_%02d.png", prefix, ++a);
savePNGImage(row_pointers, width, height, 8, PNG_COLOR_TYPE_RGBA, buf);
}
for (y = 0; y < height; y++) {
free(row_pointers[y]);
}
free(row_pointers);
}
#endif
/* ************ Planar tracker ************ */
/* TrackRegion */
int libmv_trackRegion(const libmv_TrackRegionOptions *options,
const float *image1, int image1_width, int image1_height,
const float *image2, int image2_width, int image2_height,
const double *x1, const double *y1,
libmv_TrackRegionResult *result,
double *x2, double *y2)
{
double xx1[5], yy1[5];
double xx2[5], yy2[5];
bool tracking_result = false;
/* Convert to doubles for the libmv api. The four corners and the center. */
for (int i = 0; i < 5; ++i) {
xx1[i] = x1[i];
yy1[i] = y1[i];
xx2[i] = x2[i];
yy2[i] = y2[i];
}
libmv::TrackRegionOptions track_region_options;
libmv::FloatImage image1_mask;
switch (options->motion_model) {
#define LIBMV_CONVERT(the_model) \
case libmv::TrackRegionOptions::the_model: \
track_region_options.mode = libmv::TrackRegionOptions::the_model; \
break;
LIBMV_CONVERT(TRANSLATION)
LIBMV_CONVERT(TRANSLATION_ROTATION)
LIBMV_CONVERT(TRANSLATION_SCALE)
LIBMV_CONVERT(TRANSLATION_ROTATION_SCALE)
LIBMV_CONVERT(AFFINE)
LIBMV_CONVERT(HOMOGRAPHY)
#undef LIBMV_CONVERT
}
track_region_options.minimum_correlation = options->minimum_correlation;
track_region_options.max_iterations = options->num_iterations;
track_region_options.sigma = options->sigma;
track_region_options.num_extra_points = 1;
track_region_options.image1_mask = NULL;
track_region_options.use_brute_initialization = options->use_brute;
track_region_options.use_normalized_intensities = options->use_normalization;
if (options->image1_mask) {
floatBufToImage(options->image1_mask, image1_width, image1_height, 1, &image1_mask);
track_region_options.image1_mask = &image1_mask;
}
/* Convert from raw float buffers to libmv's FloatImage. */
libmv::FloatImage old_patch, new_patch;
floatBufToImage(image1, image1_width, image1_height, 1, &old_patch);
floatBufToImage(image2, image2_width, image2_height, 1, &new_patch);
libmv::TrackRegionResult track_region_result;
libmv::TrackRegion(old_patch, new_patch, xx1, yy1, track_region_options, xx2, yy2, &track_region_result);
/* Convert to floats for the blender api. */
for (int i = 0; i < 5; ++i) {
x2[i] = xx2[i];
y2[i] = yy2[i];
}
/* TODO(keir): Update the termination string with failure details. */
if (track_region_result.termination == libmv::TrackRegionResult::PARAMETER_TOLERANCE ||
track_region_result.termination == libmv::TrackRegionResult::FUNCTION_TOLERANCE ||
track_region_result.termination == libmv::TrackRegionResult::GRADIENT_TOLERANCE ||
track_region_result.termination == libmv::TrackRegionResult::NO_CONVERGENCE)
{
tracking_result = true;
}
#if defined(DUMP_FAILURE) || defined(DUMP_ALWAYS)
#if defined(DUMP_ALWAYS)
{
#else
if (!tracking_result) {
#endif
saveImage("old_patch", old_patch, x1[4], y1[4]);
saveImage("new_patch", new_patch, x2[4], y2[4]);
if (options->image1_mask)
saveImage("mask", image1_mask, x2[4], y2[4]);
}
#endif
return tracking_result;
}
void libmv_samplePlanarPatch(const float *image, int width, int height,
int channels, const double *xs, const double *ys,
int num_samples_x, int num_samples_y,
const float *mask, float *patch,
double *warped_position_x, double *warped_position_y)
{
libmv::FloatImage libmv_image, libmv_patch, libmv_mask;
libmv::FloatImage *libmv_mask_for_sample = NULL;
floatBufToImage(image, width, height, channels, &libmv_image);
if (mask) {
floatBufToImage(mask, width, height, 1, &libmv_mask);
libmv_mask_for_sample = &libmv_mask;
}
libmv::SamplePlanarPatch(libmv_image, xs, ys, num_samples_x, num_samples_y,
libmv_mask_for_sample, &libmv_patch,
warped_position_x, warped_position_y);
imageToFloatBuf(&libmv_patch, channels, patch);
}
/* ************ Tracks ************ */
struct libmv_Tracks *libmv_tracksNew(void)
{
libmv::Tracks *libmv_tracks = new libmv::Tracks();
return (struct libmv_Tracks *)libmv_tracks;
}
void libmv_tracksDestroy(struct libmv_Tracks *libmv_tracks)
{
delete (libmv::Tracks*) libmv_tracks;
}
void libmv_tracksInsert(struct libmv_Tracks *libmv_tracks, int image, int track, double x, double y)
{
((libmv::Tracks*) libmv_tracks)->Insert(image, track, x, y);
}
/* ************ Reconstruction ************ */
class ReconstructUpdateCallback : public libmv::ProgressUpdateCallback {
public:
ReconstructUpdateCallback(reconstruct_progress_update_cb progress_update_callback, void *callback_customdata)
{
progress_update_callback_ = progress_update_callback;
callback_customdata_ = callback_customdata;
}
void invoke(double progress, const char *message)
{
if (progress_update_callback_) {
progress_update_callback_(callback_customdata_, progress, message);
}
}
protected:
reconstruct_progress_update_cb progress_update_callback_;
void *callback_customdata_;
};
static void libmv_solveRefineIntrinsics(const libmv::Tracks &tracks,
const int refine_intrinsics,
const int bundle_constraints,
reconstruct_progress_update_cb progress_update_callback,
void *callback_customdata,
libmv::EuclideanReconstruction *reconstruction,
libmv::CameraIntrinsics *intrinsics)
{
/* only a few combinations are supported but trust the caller */
int bundle_intrinsics = 0;
if (refine_intrinsics & LIBMV_REFINE_FOCAL_LENGTH) {
bundle_intrinsics |= libmv::BUNDLE_FOCAL_LENGTH;
}
if (refine_intrinsics & LIBMV_REFINE_PRINCIPAL_POINT) {
bundle_intrinsics |= libmv::BUNDLE_PRINCIPAL_POINT;
}
if (refine_intrinsics & LIBMV_REFINE_RADIAL_DISTORTION_K1) {
bundle_intrinsics |= libmv::BUNDLE_RADIAL_K1;
}
if (refine_intrinsics & LIBMV_REFINE_RADIAL_DISTORTION_K2) {
bundle_intrinsics |= libmv::BUNDLE_RADIAL_K2;
}
progress_update_callback(callback_customdata, 1.0, "Refining solution");
libmv::EuclideanBundleCommonIntrinsics(tracks,
bundle_intrinsics,
bundle_constraints,
reconstruction,
intrinsics);
}
static void cameraIntrinsicsFromOptions(const libmv_CameraIntrinsicsOptions *camera_intrinsics_options,
libmv::CameraIntrinsics *camera_intrinsics)
{
camera_intrinsics->SetFocalLength(camera_intrinsics_options->focal_length,
camera_intrinsics_options->focal_length);
camera_intrinsics->SetPrincipalPoint(camera_intrinsics_options->principal_point_x,
camera_intrinsics_options->principal_point_y);
camera_intrinsics->SetRadialDistortion(camera_intrinsics_options->k1,
camera_intrinsics_options->k2,
camera_intrinsics_options->k3);
camera_intrinsics->SetImageSize(camera_intrinsics_options->image_width,
camera_intrinsics_options->image_height);
}
static libmv::Tracks getNormalizedTracks(const libmv::Tracks &tracks, const libmv::CameraIntrinsics &camera_intrinsics)
{
libmv::vector<libmv::Marker> markers = tracks.AllMarkers();
for (int i = 0; i < markers.size(); ++i) {
camera_intrinsics.InvertIntrinsics(markers[i].x, markers[i].y,
&(markers[i].x), &(markers[i].y));
}
return libmv::Tracks(markers);
}
static void finishReconstruction(const libmv::Tracks &tracks, const libmv::CameraIntrinsics &camera_intrinsics,
struct libmv_Reconstruction *libmv_reconstruction,
reconstruct_progress_update_cb progress_update_callback,
void *callback_customdata)
{
libmv::EuclideanReconstruction &reconstruction = libmv_reconstruction->reconstruction;
/* reprojection error calculation */
progress_update_callback(callback_customdata, 1.0, "Finishing solution");
libmv_reconstruction->tracks = tracks;
libmv_reconstruction->error = libmv::EuclideanReprojectionError(tracks, reconstruction, camera_intrinsics);
}
static bool selectTwoKeyframesBasedOnGRICAndVariance(
libmv::Tracks &tracks,
libmv::Tracks &normalized_tracks,
libmv::CameraIntrinsics &camera_intrinsics,
libmv::ReconstructionOptions &reconstruction_options,
int &keyframe1,
int &keyframe2)
{
libmv::vector<int> keyframes;
/* Get list of all keyframe candidates first. */
SelectkeyframesBasedOnGRICAndVariance(normalized_tracks,
camera_intrinsics,
keyframes);
if (keyframes.size() < 2) {
LG << "Not enough keyframes detected by GRIC";
return false;
}
else if (keyframes.size() == 2) {
keyframe1 = keyframes[0];
keyframe2 = keyframes[1];
return true;
}
/* Now choose two keyframes with minimal reprojection error after initial
* reconstruction choose keyframes with the least reprojection error after
* solving from two candidate keyframes.
*
* In fact, currently libmv returns single pair only, so this code will
* not actually run. But in the future this could change, so let's stay
* prepared.
*/
int previous_keyframe = keyframes[0];
double best_error = std::numeric_limits<double>::max();
for (int i = 1; i < keyframes.size(); i++) {
libmv::EuclideanReconstruction reconstruction;
int current_keyframe = keyframes[i];
libmv::vector<libmv::Marker> keyframe_markers =
normalized_tracks.MarkersForTracksInBothImages(previous_keyframe,
current_keyframe);
libmv::Tracks keyframe_tracks(keyframe_markers);
/* get a solution from two keyframes only */
libmv::EuclideanReconstructTwoFrames(keyframe_markers, &reconstruction);
libmv::EuclideanBundle(keyframe_tracks, &reconstruction);
libmv::EuclideanCompleteReconstruction(reconstruction_options,
keyframe_tracks,
&reconstruction, NULL);
double current_error =
libmv::EuclideanReprojectionError(tracks,
reconstruction,
camera_intrinsics);
LG << "Error between " << previous_keyframe
<< " and " << current_keyframe
<< ": " << current_error;
if (current_error < best_error) {
best_error = current_error;
keyframe1 = previous_keyframe;
keyframe2 = current_keyframe;
}
previous_keyframe = current_keyframe;
}
return true;
}
struct libmv_Reconstruction *libmv_solveReconstruction(const struct libmv_Tracks *libmv_tracks,
const libmv_CameraIntrinsicsOptions *libmv_camera_intrinsics_options,
libmv_ReconstructionOptions *libmv_reconstruction_options,
reconstruct_progress_update_cb progress_update_callback,
void *callback_customdata)
{
struct libmv_Reconstruction *libmv_reconstruction = new libmv_Reconstruction();
libmv::Tracks &tracks = *((libmv::Tracks *) libmv_tracks);
libmv::EuclideanReconstruction &reconstruction = libmv_reconstruction->reconstruction;
libmv::CameraIntrinsics &camera_intrinsics = libmv_reconstruction->intrinsics;
ReconstructUpdateCallback update_callback =
ReconstructUpdateCallback(progress_update_callback, callback_customdata);
/* Retrieve reconstruction options from C-API to libmv API */
cameraIntrinsicsFromOptions(libmv_camera_intrinsics_options, &camera_intrinsics);
libmv::ReconstructionOptions reconstruction_options;
reconstruction_options.success_threshold = libmv_reconstruction_options->success_threshold;
reconstruction_options.use_fallback_reconstruction = libmv_reconstruction_options->use_fallback_reconstruction;
/* Invert the camera intrinsics */
libmv::Tracks normalized_tracks = getNormalizedTracks(tracks, camera_intrinsics);
/* keyframe selection */
int keyframe1 = libmv_reconstruction_options->keyframe1,
keyframe2 = libmv_reconstruction_options->keyframe2;
if (libmv_reconstruction_options->select_keyframes) {
LG << "Using automatic keyframe selection";
update_callback.invoke(0, "Selecting keyframes");
selectTwoKeyframesBasedOnGRICAndVariance(tracks,
normalized_tracks,
camera_intrinsics,
reconstruction_options,
keyframe1,
keyframe2);
/* so keyframes in the interface would be updated */
libmv_reconstruction_options->keyframe1 = keyframe1;
libmv_reconstruction_options->keyframe2 = keyframe2;
}
/* actual reconstruction */
LG << "frames to init from: " << keyframe1 << " " << keyframe2;
libmv::vector<libmv::Marker> keyframe_markers =
normalized_tracks.MarkersForTracksInBothImages(keyframe1, keyframe2);
LG << "number of markers for init: " << keyframe_markers.size();
update_callback.invoke(0, "Initial reconstruction");
libmv::EuclideanReconstructTwoFrames(keyframe_markers, &reconstruction);
libmv::EuclideanBundle(normalized_tracks, &reconstruction);
libmv::EuclideanCompleteReconstruction(reconstruction_options, normalized_tracks,
&reconstruction, &update_callback);
/* refinement */
if (libmv_reconstruction_options->refine_intrinsics) {
libmv_solveRefineIntrinsics(tracks,
libmv_reconstruction_options->refine_intrinsics,
libmv::BUNDLE_NO_CONSTRAINTS,
progress_update_callback,
callback_customdata,
&reconstruction,
&camera_intrinsics);
}
/* set reconstruction scale to unity */
libmv::EuclideanScaleToUnity(&reconstruction);
/* finish reconstruction */
finishReconstruction(tracks, camera_intrinsics, libmv_reconstruction,
progress_update_callback, callback_customdata);
return (struct libmv_Reconstruction *)libmv_reconstruction;
}
struct libmv_Reconstruction *libmv_solveModal(const struct libmv_Tracks *libmv_tracks,
const libmv_CameraIntrinsicsOptions *libmv_camera_intrinsics_options,
const libmv_ReconstructionOptions *libmv_reconstruction_options,
reconstruct_progress_update_cb progress_update_callback,
void *callback_customdata)
{
struct libmv_Reconstruction *libmv_reconstruction = new libmv_Reconstruction();
libmv::Tracks &tracks = *((libmv::Tracks *) libmv_tracks);
libmv::EuclideanReconstruction &reconstruction = libmv_reconstruction->reconstruction;
libmv::CameraIntrinsics &camera_intrinsics = libmv_reconstruction->intrinsics;
ReconstructUpdateCallback update_callback =
ReconstructUpdateCallback(progress_update_callback, callback_customdata);
cameraIntrinsicsFromOptions(libmv_camera_intrinsics_options, &camera_intrinsics);
/* Invert the camera intrinsics. */
libmv::Tracks normalized_tracks = getNormalizedTracks(tracks, camera_intrinsics);
/* Actual reconstruction. */
libmv::ModalSolver(normalized_tracks, &reconstruction, &update_callback);
libmv::CameraIntrinsics empty_intrinsics;
libmv::EuclideanBundleCommonIntrinsics(normalized_tracks,
libmv::BUNDLE_NO_INTRINSICS,
libmv::BUNDLE_NO_TRANSLATION,
&reconstruction,
&empty_intrinsics);
/* Refinement. */
if (libmv_reconstruction_options->refine_intrinsics) {
libmv_solveRefineIntrinsics(tracks,
libmv_reconstruction_options->refine_intrinsics,
libmv::BUNDLE_NO_TRANSLATION,
progress_update_callback, callback_customdata,
&reconstruction,
&camera_intrinsics);
}
/* Finish reconstruction. */
finishReconstruction(tracks, camera_intrinsics, libmv_reconstruction,
progress_update_callback, callback_customdata);
return (struct libmv_Reconstruction *)libmv_reconstruction;
}
void libmv_reconstructionDestroy(struct libmv_Reconstruction *libmv_reconstruction)
{
delete libmv_reconstruction;
}
int libmv_reprojectionPointForTrack(const struct libmv_Reconstruction *libmv_reconstruction, int track, double pos[3])
{
const libmv::EuclideanReconstruction *reconstruction = &libmv_reconstruction->reconstruction;
const libmv::EuclideanPoint *point = reconstruction->PointForTrack(track);
if (point) {
pos[0] = point->X[0];
pos[1] = point->X[2];
pos[2] = point->X[1];
return 1;
}
return 0;
}
static libmv::Marker ProjectMarker(const libmv::EuclideanPoint &point,
const libmv::EuclideanCamera &camera,
const libmv::CameraIntrinsics &intrinsics)
{
libmv::Vec3 projected = camera.R * point.X + camera.t;
projected /= projected(2);
libmv::Marker reprojected_marker;
intrinsics.ApplyIntrinsics(projected(0), projected(1), &reprojected_marker.x, &reprojected_marker.y);
reprojected_marker.image = camera.image;
reprojected_marker.track = point.track;
return reprojected_marker;
}
double libmv_reprojectionErrorForTrack(const struct libmv_Reconstruction *libmv_reconstruction, int track)
{
const libmv::EuclideanReconstruction *reconstruction = &libmv_reconstruction->reconstruction;
const libmv::CameraIntrinsics *intrinsics = &libmv_reconstruction->intrinsics;
libmv::vector<libmv::Marker> markers = libmv_reconstruction->tracks.MarkersForTrack(track);
int num_reprojected = 0;
double total_error = 0.0;
for (int i = 0; i < markers.size(); ++i) {
const libmv::EuclideanCamera *camera = reconstruction->CameraForImage(markers[i].image);
const libmv::EuclideanPoint *point = reconstruction->PointForTrack(markers[i].track);
if (!camera || !point) {
continue;
}
num_reprojected++;
libmv::Marker reprojected_marker = ProjectMarker(*point, *camera, *intrinsics);
double ex = reprojected_marker.x - markers[i].x;
double ey = reprojected_marker.y - markers[i].y;
total_error += sqrt(ex * ex + ey * ey);
}
return total_error / num_reprojected;
}
double libmv_reprojectionErrorForImage(const struct libmv_Reconstruction *libmv_reconstruction, int image)
{
const libmv::EuclideanReconstruction *reconstruction = &libmv_reconstruction->reconstruction;
const libmv::CameraIntrinsics *intrinsics = &libmv_reconstruction->intrinsics;
libmv::vector<libmv::Marker> markers = libmv_reconstruction->tracks.MarkersInImage(image);
const libmv::EuclideanCamera *camera = reconstruction->CameraForImage(image);
int num_reprojected = 0;
double total_error = 0.0;
if (!camera)
return 0;
for (int i = 0; i < markers.size(); ++i) {
const libmv::EuclideanPoint *point = reconstruction->PointForTrack(markers[i].track);
if (!point) {
continue;
}
num_reprojected++;
libmv::Marker reprojected_marker = ProjectMarker(*point, *camera, *intrinsics);
double ex = reprojected_marker.x - markers[i].x;
double ey = reprojected_marker.y - markers[i].y;
total_error += sqrt(ex * ex + ey * ey);
}
return total_error / num_reprojected;
}
int libmv_reprojectionCameraForImage(const struct libmv_Reconstruction *libmv_reconstruction,
int image, double mat[4][4])
{
const libmv::EuclideanReconstruction *reconstruction = &libmv_reconstruction->reconstruction;
const libmv::EuclideanCamera *camera = reconstruction->CameraForImage(image);
if (camera) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 3; ++k) {
int l = k;
if (k == 1) l = 2;
else if (k == 2) l = 1;
if (j == 2) mat[j][l] = -camera->R(j,k);
else mat[j][l] = camera->R(j,k);
}
mat[j][3] = 0.0;
}
libmv::Vec3 optical_center = -camera->R.transpose() * camera->t;
mat[3][0] = optical_center(0);
mat[3][1] = optical_center(2);
mat[3][2] = optical_center(1);
mat[3][3] = 1.0;
return 1;
}
return 0;
}
double libmv_reprojectionError(const struct libmv_Reconstruction *libmv_reconstruction)
{
return libmv_reconstruction->error;
}
struct libmv_CameraIntrinsics *libmv_reconstructionExtractIntrinsics(struct libmv_Reconstruction *libmv_reconstruction)
{
return (struct libmv_CameraIntrinsics *)&libmv_reconstruction->intrinsics;
}
/* ************ Feature detector ************ */
struct libmv_Features *libmv_detectFeaturesFAST(const unsigned char *data,
int width, int height, int stride,
int margin, int min_trackness, int min_distance)
{
libmv::Feature *features = NULL;
std::vector<libmv::Feature> v;
struct libmv_Features *libmv_features = new libmv_Features();
int i = 0, count;
if (margin) {
data += margin * stride+margin;
width -= 2 * margin;
height -= 2 * margin;
}
v = libmv::DetectFAST(data, width, height, stride, min_trackness, min_distance);
count = v.size();
if (count) {
features = new libmv::Feature[count];
for(std::vector<libmv::Feature>::iterator it = v.begin(); it != v.end(); it++) {
features[i++] = *it;
}
}
libmv_features->features = features;
libmv_features->count = count;
libmv_features->margin = margin;
return (struct libmv_Features *)libmv_features;
}
struct libmv_Features *libmv_detectFeaturesMORAVEC(const unsigned char *data,
int width, int height, int stride,
int margin, int count, int min_distance)
{
libmv::Feature *features = NULL;
struct libmv_Features *libmv_features = new libmv_Features;
if (count) {
if (margin) {
data += margin * stride+margin;
width -= 2 * margin;
height -= 2 * margin;
}
features = new libmv::Feature[count];
libmv::DetectMORAVEC(data, stride, width, height, features, &count, min_distance, NULL);
}
libmv_features->count = count;
libmv_features->margin = margin;
libmv_features->features = features;
return libmv_features;
}
void libmv_featuresDestroy(struct libmv_Features *libmv_features)
{
if (libmv_features->features)
delete [] libmv_features->features;
delete libmv_features;
}
int libmv_countFeatures(const struct libmv_Features *libmv_features)
{
return libmv_features->count;
}
void libmv_getFeature(const struct libmv_Features *libmv_features, int number, double *x, double *y, double *score, double *size)
{
libmv::Feature feature = libmv_features->features[number];
*x = feature.x + libmv_features->margin;
*y = feature.y + libmv_features->margin;
*score = feature.score;
*size = feature.size;
}
/* ************ Camera intrinsics ************ */
struct libmv_CameraIntrinsics *libmv_cameraIntrinsicsNewEmpty(void)
{
libmv::CameraIntrinsics *camera_intrinsics = new libmv::CameraIntrinsics();
return (struct libmv_CameraIntrinsics *) camera_intrinsics;
}
struct libmv_CameraIntrinsics *libmv_cameraIntrinsicsNew(const libmv_CameraIntrinsicsOptions *libmv_camera_intrinsics_options)
{
libmv::CameraIntrinsics *camera_intrinsics = new libmv::CameraIntrinsics();
cameraIntrinsicsFromOptions(libmv_camera_intrinsics_options, camera_intrinsics);
return (struct libmv_CameraIntrinsics *) camera_intrinsics;
}
struct libmv_CameraIntrinsics *libmv_cameraIntrinsicsCopy(const libmv_CameraIntrinsics *libmvIntrinsics)
{
libmv::CameraIntrinsics *orig_intrinsics = (libmv::CameraIntrinsics *) libmvIntrinsics;
libmv::CameraIntrinsics *new_intrinsics = new libmv::CameraIntrinsics(*orig_intrinsics);
return (struct libmv_CameraIntrinsics *) new_intrinsics;
}
void libmv_cameraIntrinsicsDestroy(struct libmv_CameraIntrinsics *libmvIntrinsics)
{
libmv::CameraIntrinsics *intrinsics = (libmv::CameraIntrinsics *) libmvIntrinsics;
delete intrinsics;
}
void libmv_cameraIntrinsicsUpdate(const libmv_CameraIntrinsicsOptions *libmv_camera_intrinsics_options,
struct libmv_CameraIntrinsics *libmv_intrinsics)
{
libmv::CameraIntrinsics *camera_intrinsics = (libmv::CameraIntrinsics *) libmv_intrinsics;
double focal_length = libmv_camera_intrinsics_options->focal_length;
double principal_x = libmv_camera_intrinsics_options->principal_point_x;
double principal_y = libmv_camera_intrinsics_options->principal_point_y;
double k1 = libmv_camera_intrinsics_options->k1;
double k2 = libmv_camera_intrinsics_options->k2;
double k3 = libmv_camera_intrinsics_options->k3;
int image_width = libmv_camera_intrinsics_options->image_width;
int image_height = libmv_camera_intrinsics_options->image_height;
/* try avoid unnecessary updates so pre-computed distortion grids are not freed */
if (camera_intrinsics->focal_length() != focal_length)
camera_intrinsics->SetFocalLength(focal_length, focal_length);
if (camera_intrinsics->principal_point_x() != principal_x ||
camera_intrinsics->principal_point_y() != principal_y)
{
camera_intrinsics->SetPrincipalPoint(principal_x, principal_y);
}
if (camera_intrinsics->k1() != k1 ||
camera_intrinsics->k2() != k2 ||
camera_intrinsics->k3() != k3)
{
camera_intrinsics->SetRadialDistortion(k1, k2, k3);
}
if (camera_intrinsics->image_width() != image_width ||
camera_intrinsics->image_height() != image_height)
{
camera_intrinsics->SetImageSize(image_width, image_height);
}
}
void libmv_cameraIntrinsicsSetThreads(struct libmv_CameraIntrinsics *libmv_intrinsics, int threads)
{
libmv::CameraIntrinsics *camera_intrinsics = (libmv::CameraIntrinsics *) libmv_intrinsics;
camera_intrinsics->SetThreads(threads);
}
void libmv_cameraIntrinsicsExtract(const struct libmv_CameraIntrinsics *libmv_intrinsics, double *focal_length,
double *principal_x, double *principal_y, double *k1, double *k2, double *k3,
int *width, int *height)
{
libmv::CameraIntrinsics *camera_intrinsics = (libmv::CameraIntrinsics *) libmv_intrinsics;
*focal_length = camera_intrinsics->focal_length();
*principal_x = camera_intrinsics->principal_point_x();
*principal_y = camera_intrinsics->principal_point_y();
*k1 = camera_intrinsics->k1();
*k2 = camera_intrinsics->k2();
*k3 = camera_intrinsics->k3();
}
void libmv_cameraIntrinsicsUndistortByte(const struct libmv_CameraIntrinsics *libmv_intrinsics,
unsigned char *src, unsigned char *dst, int width, int height,
float overscan, int channels)
{
libmv::CameraIntrinsics *camera_intrinsics = (libmv::CameraIntrinsics *) libmv_intrinsics;
camera_intrinsics->Undistort(src, dst, width, height, overscan, channels);
}
void libmv_cameraIntrinsicsUndistortFloat(const struct libmv_CameraIntrinsics *libmvIntrinsics,
float *src, float *dst, int width, int height,
float overscan, int channels)
{
libmv::CameraIntrinsics *intrinsics = (libmv::CameraIntrinsics *) libmvIntrinsics;
intrinsics->Undistort(src, dst, width, height, overscan, channels);
}
void libmv_cameraIntrinsicsDistortByte(const struct libmv_CameraIntrinsics *libmvIntrinsics,
unsigned char *src, unsigned char *dst, int width, int height,
float overscan, int channels)
{
libmv::CameraIntrinsics *intrinsics = (libmv::CameraIntrinsics *) libmvIntrinsics;
intrinsics->Distort(src, dst, width, height, overscan, channels);
}
void libmv_cameraIntrinsicsDistortFloat(const struct libmv_CameraIntrinsics *libmvIntrinsics,
float *src, float *dst, int width, int height,
float overscan, int channels)
{
libmv::CameraIntrinsics *intrinsics = (libmv::CameraIntrinsics *) libmvIntrinsics;
intrinsics->Distort(src, dst, width, height, overscan, channels);
}
void libmv_cameraIntrinsicsApply(const libmv_CameraIntrinsicsOptions *libmv_camera_intrinsics_options,
double x, double y, double *x1, double *y1)
{
libmv::CameraIntrinsics camera_intrinsics;
cameraIntrinsicsFromOptions(libmv_camera_intrinsics_options, &camera_intrinsics);
if (libmv_camera_intrinsics_options->focal_length) {
/* do a lens undistortion if focal length is non-zero only */
camera_intrinsics.ApplyIntrinsics(x, y, x1, y1);
}
}
void libmv_cameraIntrinsicsInvert(const libmv_CameraIntrinsicsOptions *libmv_camera_intrinsics_options,
double x, double y, double *x1, double *y1)
{
libmv::CameraIntrinsics camera_intrinsics;
cameraIntrinsicsFromOptions(libmv_camera_intrinsics_options, &camera_intrinsics);
if (libmv_camera_intrinsics_options->focal_length) {
/* do a lens distortion if focal length is non-zero only */
camera_intrinsics.InvertIntrinsics(x, y, x1, y1);
}
}
void libmv_homography2DFromCorrespondencesLinear(double (*x1)[2], double (*x2)[2], int num_points,
double H[3][3], double expected_precision)
{
libmv::Mat x1_mat, x2_mat;
libmv::Mat3 H_mat;
x1_mat.resize(2, num_points);
x2_mat.resize(2, num_points);
for (int i = 0; i < num_points; i++) {
x1_mat.col(i) = libmv::Vec2(x1[i][0], x1[i][1]);
x2_mat.col(i) = libmv::Vec2(x2[i][0], x2[i][1]);
}
LG << "x1: " << x1_mat;
LG << "x2: " << x2_mat;
libmv::Homography2DFromCorrespondencesLinear(x1_mat, x2_mat, &H_mat, expected_precision);
LG << "H: " << H_mat;
memcpy(H, H_mat.data(), 9 * sizeof(double));
}
#endif