blender/intern/cycles/device/device_cpu.cpp
Sergey Sharybin 3b88a29abf Cycles: progressive refine option
Just makes progressive refine :)

This means the whole image would be refined gradually using as much
threads as it's set in performance settings. Having enough tiles is
required to have this option working as it's expected.

Technically it's implemented by repeatedly computing next sample for
all the tiles before switching to next sample.

This works around 7-12% slower than regular tile-based rendering, so
use this option only if you really need it.

This commit also fixes progressive update of image when Save Buffers
option is enabled.

And one more thing this commit fixes is handling display buffer with
Save Buffers option enabled. If this option is enabled image buffer
wouldn't have neither byte nor float buffer until image is fully
rendered which could backfire in missing image while rendering in
cases color management cache became full.

This issue solved by allocating byte buffer for image buffer from
tile update callback.

Patch was reviewed by Brecht. He also made some minor edits to
original version to patch. Thanks, man!
2012-10-13 12:38:32 +00:00

307 lines
6.7 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <stdlib.h>
#include <string.h>
#include "device.h"
#include "device_intern.h"
#include "kernel.h"
#include "kernel_types.h"
#include "osl_shader.h"
#include "buffers.h"
#include "util_debug.h"
#include "util_foreach.h"
#include "util_function.h"
#include "util_opengl.h"
#include "util_progress.h"
#include "util_system.h"
#include "util_thread.h"
CCL_NAMESPACE_BEGIN
class CPUDevice : public Device
{
public:
TaskPool task_pool;
KernelGlobals *kg;
CPUDevice(int threads_num)
{
kg = kernel_globals_create();
/* do now to avoid thread issues */
system_cpu_support_optimized();
}
~CPUDevice()
{
task_pool.stop();
kernel_globals_free(kg);
}
bool support_advanced_shading()
{
return true;
}
void mem_alloc(device_memory& mem, MemoryType type)
{
mem.device_pointer = mem.data_pointer;
}
void mem_copy_to(device_memory& mem)
{
/* no-op */
}
void mem_copy_from(device_memory& mem, int y, int w, int h, int elem)
{
/* no-op */
}
void mem_zero(device_memory& mem)
{
memset((void*)mem.device_pointer, 0, mem.memory_size());
}
void mem_free(device_memory& mem)
{
mem.device_pointer = 0;
}
void const_copy_to(const char *name, void *host, size_t size)
{
kernel_const_copy(kg, name, host, size);
}
void tex_alloc(const char *name, device_memory& mem, bool interpolation, bool periodic)
{
kernel_tex_copy(kg, name, mem.data_pointer, mem.data_width, mem.data_height);
mem.device_pointer = mem.data_pointer;
}
void tex_free(device_memory& mem)
{
mem.device_pointer = 0;
}
void *osl_memory()
{
#ifdef WITH_OSL
return kernel_osl_memory(kg);
#else
return NULL;
#endif
}
void thread_run(DeviceTask *task)
{
if(task->type == DeviceTask::PATH_TRACE)
thread_path_trace(*task);
else if(task->type == DeviceTask::TONEMAP)
thread_tonemap(*task);
else if(task->type == DeviceTask::SHADER)
thread_shader(*task);
}
class CPUDeviceTask : public DeviceTask {
public:
CPUDeviceTask(CPUDevice *device, DeviceTask& task)
: DeviceTask(task)
{
run = function_bind(&CPUDevice::thread_run, device, this);
}
};
void thread_path_trace(DeviceTask& task)
{
if(task_pool.cancelled()) {
if(task.need_finish_queue == false)
return;
}
#ifdef WITH_OSL
if(kernel_osl_use(kg))
OSLShader::thread_init(kg);
#endif
RenderTile tile;
while(task.acquire_tile(this, tile)) {
float *render_buffer = (float*)tile.buffer;
uint *rng_state = (uint*)tile.rng_state;
int start_sample = tile.start_sample;
int end_sample = tile.start_sample + tile.num_samples;
#ifdef WITH_OPTIMIZED_KERNEL
if(system_cpu_support_optimized()) {
for(int sample = start_sample; sample < end_sample; sample++) {
if (task.get_cancel() || task_pool.cancelled()) {
if(task.need_finish_queue == false)
break;
}
for(int y = tile.y; y < tile.y + tile.h; y++) {
for(int x = tile.x; x < tile.x + tile.w; x++) {
kernel_cpu_optimized_path_trace(kg, render_buffer, rng_state,
sample, x, y, tile.offset, tile.stride);
}
}
tile.sample = sample + 1;
task.update_progress(tile);
}
}
else
#endif
{
for(int sample = start_sample; sample < end_sample; sample++) {
if (task.get_cancel() || task_pool.cancelled()) {
if(task.need_finish_queue == false)
break;
}
for(int y = tile.y; y < tile.y + tile.h; y++) {
for(int x = tile.x; x < tile.x + tile.w; x++) {
kernel_cpu_path_trace(kg, render_buffer, rng_state,
sample, x, y, tile.offset, tile.stride);
}
}
tile.sample = sample + 1;
task.update_progress(tile);
}
}
task.release_tile(tile);
if(task_pool.cancelled()) {
if(task.need_finish_queue == false)
break;
}
}
#ifdef WITH_OSL
if(kernel_osl_use(kg))
OSLShader::thread_free(kg);
#endif
}
void thread_tonemap(DeviceTask& task)
{
#ifdef WITH_OPTIMIZED_KERNEL
if(system_cpu_support_optimized()) {
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
kernel_cpu_optimized_tonemap(kg, (uchar4*)task.rgba, (float*)task.buffer,
task.sample, task.resolution, x, y, task.offset, task.stride);
}
else
#endif
{
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
kernel_cpu_tonemap(kg, (uchar4*)task.rgba, (float*)task.buffer,
task.sample, task.resolution, x, y, task.offset, task.stride);
}
}
void thread_shader(DeviceTask& task)
{
#ifdef WITH_OSL
if(kernel_osl_use(kg))
OSLShader::thread_init(kg);
#endif
#ifdef WITH_OPTIMIZED_KERNEL
if(system_cpu_support_optimized()) {
for(int x = task.shader_x; x < task.shader_x + task.shader_w; x++) {
kernel_cpu_optimized_shader(kg, (uint4*)task.shader_input, (float4*)task.shader_output, task.shader_eval_type, x);
if(task_pool.cancelled())
break;
}
}
else
#endif
{
for(int x = task.shader_x; x < task.shader_x + task.shader_w; x++) {
kernel_cpu_shader(kg, (uint4*)task.shader_input, (float4*)task.shader_output, task.shader_eval_type, x);
if(task_pool.cancelled())
break;
}
}
#ifdef WITH_OSL
if(kernel_osl_use(kg))
OSLShader::thread_free(kg);
#endif
}
void task_add(DeviceTask& task)
{
/* split task into smaller ones, more than number of threads for uneven
* workloads where some parts of the image render slower than others */
list<DeviceTask> tasks;
task.split(tasks, TaskScheduler::num_threads()+1);
foreach(DeviceTask& task, tasks)
task_pool.push(new CPUDeviceTask(this, task));
}
void task_wait()
{
task_pool.wait_work();
}
void task_cancel()
{
task_pool.cancel();
}
};
Device *device_cpu_create(DeviceInfo& info, int threads)
{
return new CPUDevice(threads);
}
void device_cpu_info(vector<DeviceInfo>& devices)
{
DeviceInfo info;
info.type = DEVICE_CPU;
info.description = system_cpu_brand_string();
info.id = "CPU";
info.num = 0;
info.advanced_shading = true;
info.pack_images = false;
devices.insert(devices.begin(), info);
}
CCL_NAMESPACE_END