blender/intern/cycles/render/mesh.cpp
Sergey Sharybin 828abaf11c Cycles: Split BVH nodes storage into inner and leaf nodes
This way we can get rid of inefficient memory usage caused by BVH boundbox
part being unused by leaf nodes but still being allocated for them. Doing
such split allows to save 6 of float4 values for QBVH per leaf node and 3
of float4 values for regular BVH per leaf node.

This translates into following memory save using 01.01.01.G rendered
without hair:

                   Device memory size   Device memory peak   Global memory peak
Before the patch:  4957                 5051                 7668
With the patch:    4467                 4562                 7332

The measurements are done against current master. Still need to run speed tests
and it's hard to predict if it's faster or not: on the one hand leaf nodes are
now much more coherent in cache, on the other hand they're not so much coherent
with regular nodes anymore.

Reviewers: brecht, juicyfruit

Subscribers: venomgfx, eyecandy

Differential Revision: https://developer.blender.org/D1236
2015-04-20 17:29:51 +05:00

1404 lines
38 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bvh.h"
#include "bvh_build.h"
#include "camera.h"
#include "curves.h"
#include "device.h"
#include "graph.h"
#include "shader.h"
#include "light.h"
#include "mesh.h"
#include "nodes.h"
#include "object.h"
#include "scene.h"
#include "osl_globals.h"
#include "util_cache.h"
#include "util_foreach.h"
#include "util_logging.h"
#include "util_progress.h"
#include "util_set.h"
CCL_NAMESPACE_BEGIN
/* Triangle */
void Mesh::Triangle::bounds_grow(const float3 *verts, BoundBox& bounds) const
{
bounds.grow(verts[v[0]]);
bounds.grow(verts[v[1]]);
bounds.grow(verts[v[2]]);
}
/* Curve */
void Mesh::Curve::bounds_grow(const int k, const float4 *curve_keys, BoundBox& bounds) const
{
float3 P[4];
P[0] = float4_to_float3(curve_keys[max(first_key + k - 1,first_key)]);
P[1] = float4_to_float3(curve_keys[first_key + k]);
P[2] = float4_to_float3(curve_keys[first_key + k + 1]);
P[3] = float4_to_float3(curve_keys[min(first_key + k + 2, first_key + num_keys - 1)]);
float3 lower;
float3 upper;
curvebounds(&lower.x, &upper.x, P, 0);
curvebounds(&lower.y, &upper.y, P, 1);
curvebounds(&lower.z, &upper.z, P, 2);
float mr = max(curve_keys[first_key + k].w, curve_keys[first_key + k + 1].w);
bounds.grow(lower, mr);
bounds.grow(upper, mr);
}
/* Mesh */
Mesh::Mesh()
{
need_update = true;
need_update_rebuild = false;
transform_applied = false;
transform_negative_scaled = false;
transform_normal = transform_identity();
displacement_method = DISPLACE_BUMP;
bounds = BoundBox::empty;
motion_steps = 3;
use_motion_blur = false;
bvh = NULL;
tri_offset = 0;
vert_offset = 0;
curve_offset = 0;
curvekey_offset = 0;
attributes.triangle_mesh = this;
curve_attributes.curve_mesh = this;
has_volume = false;
}
Mesh::~Mesh()
{
delete bvh;
}
void Mesh::reserve(int numverts, int numtris, int numcurves, int numcurvekeys)
{
/* reserve space to add verts and triangles later */
verts.resize(numverts);
triangles.resize(numtris);
shader.resize(numtris);
smooth.resize(numtris);
curve_keys.resize(numcurvekeys);
curves.resize(numcurves);
attributes.reserve();
curve_attributes.reserve();
}
void Mesh::clear()
{
/* clear all verts and triangles */
verts.clear();
triangles.clear();
shader.clear();
smooth.clear();
curve_keys.clear();
curves.clear();
attributes.clear();
curve_attributes.clear();
used_shaders.clear();
transform_applied = false;
transform_negative_scaled = false;
transform_normal = transform_identity();
geometry_flags = GEOMETRY_NONE;
}
int Mesh::split_vertex(int vertex)
{
/* copy vertex location and vertex attributes */
verts.push_back(verts[vertex]);
foreach(Attribute& attr, attributes.attributes) {
if(attr.element == ATTR_ELEMENT_VERTEX) {
vector<char> tmp(attr.data_sizeof());
memcpy(&tmp[0], attr.data() + tmp.size()*vertex, tmp.size());
attr.add(&tmp[0]);
}
}
return verts.size() - 1;
}
void Mesh::set_triangle(int i, int v0, int v1, int v2, int shader_, bool smooth_)
{
Triangle tri;
tri.v[0] = v0;
tri.v[1] = v1;
tri.v[2] = v2;
triangles[i] = tri;
shader[i] = shader_;
smooth[i] = smooth_;
}
void Mesh::add_triangle(int v0, int v1, int v2, int shader_, bool smooth_)
{
Triangle tri;
tri.v[0] = v0;
tri.v[1] = v1;
tri.v[2] = v2;
triangles.push_back(tri);
shader.push_back(shader_);
smooth.push_back(smooth_);
}
void Mesh::add_curve_key(float3 co, float radius)
{
float4 key = float3_to_float4(co);
key.w = radius;
curve_keys.push_back(key);
}
void Mesh::add_curve(int first_key, int num_keys, int shader)
{
Curve curve;
curve.first_key = first_key;
curve.num_keys = num_keys;
curve.shader = shader;
curves.push_back(curve);
}
void Mesh::compute_bounds()
{
BoundBox bnds = BoundBox::empty;
size_t verts_size = verts.size();
size_t curve_keys_size = curve_keys.size();
if(verts_size + curve_keys_size > 0) {
for(size_t i = 0; i < verts_size; i++)
bnds.grow(verts[i]);
for(size_t i = 0; i < curve_keys_size; i++)
bnds.grow(float4_to_float3(curve_keys[i]), curve_keys[i].w);
Attribute *attr = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if(use_motion_blur && attr) {
size_t steps_size = verts.size() * (motion_steps - 1);
float3 *vert_steps = attr->data_float3();
for(size_t i = 0; i < steps_size; i++)
bnds.grow(vert_steps[i]);
}
Attribute *curve_attr = curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if(use_motion_blur && curve_attr) {
size_t steps_size = curve_keys.size() * (motion_steps - 1);
float3 *key_steps = curve_attr->data_float3();
for(size_t i = 0; i < steps_size; i++)
bnds.grow(key_steps[i]);
}
if(!bnds.valid()) {
bnds = BoundBox::empty;
/* skip nan or inf coordinates */
for(size_t i = 0; i < verts_size; i++)
bnds.grow_safe(verts[i]);
for(size_t i = 0; i < curve_keys_size; i++)
bnds.grow_safe(float4_to_float3(curve_keys[i]), curve_keys[i].w);
if(use_motion_blur && attr) {
size_t steps_size = verts.size() * (motion_steps - 1);
float3 *vert_steps = attr->data_float3();
for(size_t i = 0; i < steps_size; i++)
bnds.grow_safe(vert_steps[i]);
}
if(use_motion_blur && curve_attr) {
size_t steps_size = curve_keys.size() * (motion_steps - 1);
float3 *key_steps = curve_attr->data_float3();
for(size_t i = 0; i < steps_size; i++)
bnds.grow_safe(key_steps[i]);
}
}
}
if(!bnds.valid()) {
/* empty mesh */
bnds.grow(make_float3(0.0f, 0.0f, 0.0f));
}
bounds = bnds;
}
static float3 compute_face_normal(const Mesh::Triangle& t, float3 *verts)
{
float3 v0 = verts[t.v[0]];
float3 v1 = verts[t.v[1]];
float3 v2 = verts[t.v[2]];
float3 norm = cross(v1 - v0, v2 - v0);
float normlen = len(norm);
if(normlen == 0.0f)
return make_float3(0.0f, 0.0f, 0.0f);
return norm / normlen;
}
void Mesh::add_face_normals()
{
/* don't compute if already there */
if(attributes.find(ATTR_STD_FACE_NORMAL))
return;
/* get attributes */
Attribute *attr_fN = attributes.add(ATTR_STD_FACE_NORMAL);
float3 *fN = attr_fN->data_float3();
/* compute face normals */
size_t triangles_size = triangles.size();
bool flip = transform_negative_scaled;
if(triangles_size) {
float3 *verts_ptr = &verts[0];
Triangle *triangles_ptr = &triangles[0];
for(size_t i = 0; i < triangles_size; i++) {
fN[i] = compute_face_normal(triangles_ptr[i], verts_ptr);
if(flip)
fN[i] = -fN[i];
}
}
/* expected to be in local space */
if(transform_applied) {
Transform ntfm = transform_inverse(transform_normal);
for(size_t i = 0; i < triangles_size; i++)
fN[i] = normalize(transform_direction(&ntfm, fN[i]));
}
}
void Mesh::add_vertex_normals()
{
bool flip = transform_negative_scaled;
size_t verts_size = verts.size();
size_t triangles_size = triangles.size();
/* static vertex normals */
if(!attributes.find(ATTR_STD_VERTEX_NORMAL)) {
/* get attributes */
Attribute *attr_fN = attributes.find(ATTR_STD_FACE_NORMAL);
Attribute *attr_vN = attributes.add(ATTR_STD_VERTEX_NORMAL);
float3 *fN = attr_fN->data_float3();
float3 *vN = attr_vN->data_float3();
/* compute vertex normals */
memset(vN, 0, verts.size()*sizeof(float3));
if(triangles_size) {
Triangle *triangles_ptr = &triangles[0];
for(size_t i = 0; i < triangles_size; i++)
for(size_t j = 0; j < 3; j++)
vN[triangles_ptr[i].v[j]] += fN[i];
}
for(size_t i = 0; i < verts_size; i++) {
vN[i] = normalize(vN[i]);
if(flip)
vN[i] = -vN[i];
}
}
/* motion vertex normals */
Attribute *attr_mP = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
Attribute *attr_mN = attributes.find(ATTR_STD_MOTION_VERTEX_NORMAL);
if(has_motion_blur() && attr_mP && !attr_mN) {
/* create attribute */
attr_mN = attributes.add(ATTR_STD_MOTION_VERTEX_NORMAL);
for(int step = 0; step < motion_steps - 1; step++) {
float3 *mP = attr_mP->data_float3() + step*verts.size();
float3 *mN = attr_mN->data_float3() + step*verts.size();
/* compute */
memset(mN, 0, verts.size()*sizeof(float3));
if(triangles_size) {
Triangle *triangles_ptr = &triangles[0];
for(size_t i = 0; i < triangles_size; i++) {
for(size_t j = 0; j < 3; j++) {
float3 fN = compute_face_normal(triangles_ptr[i], mP);
mN[triangles_ptr[i].v[j]] += fN;
}
}
}
for(size_t i = 0; i < verts_size; i++) {
mN[i] = normalize(mN[i]);
if(flip)
mN[i] = -mN[i];
}
}
}
}
void Mesh::pack_normals(Scene *scene, uint *tri_shader, float4 *vnormal)
{
Attribute *attr_vN = attributes.find(ATTR_STD_VERTEX_NORMAL);
float3 *vN = attr_vN->data_float3();
uint shader_id = 0;
uint last_shader = -1;
bool last_smooth = false;
size_t triangles_size = triangles.size();
uint *shader_ptr = (shader.size())? &shader[0]: NULL;
bool do_transform = transform_applied;
Transform ntfm = transform_normal;
/* save shader */
for(size_t i = 0; i < triangles_size; i++) {
if(shader_ptr[i] != last_shader || last_smooth != smooth[i]) {
last_shader = shader_ptr[i];
last_smooth = smooth[i];
shader_id = scene->shader_manager->get_shader_id(last_shader, this, last_smooth);
}
tri_shader[i] = shader_id;
}
size_t verts_size = verts.size();
for(size_t i = 0; i < verts_size; i++) {
float3 vNi = vN[i];
if(do_transform)
vNi = normalize(transform_direction(&ntfm, vNi));
vnormal[i] = make_float4(vNi.x, vNi.y, vNi.z, 0.0f);
}
}
void Mesh::pack_verts(float4 *tri_verts, float4 *tri_vindex, size_t vert_offset)
{
size_t verts_size = verts.size();
if(verts_size) {
float3 *verts_ptr = &verts[0];
for(size_t i = 0; i < verts_size; i++) {
float3 p = verts_ptr[i];
tri_verts[i] = make_float4(p.x, p.y, p.z, 0.0f);
}
}
size_t triangles_size = triangles.size();
if(triangles_size) {
Triangle *triangles_ptr = &triangles[0];
for(size_t i = 0; i < triangles_size; i++) {
Triangle t = triangles_ptr[i];
tri_vindex[i] = make_float4(
__int_as_float(t.v[0] + vert_offset),
__int_as_float(t.v[1] + vert_offset),
__int_as_float(t.v[2] + vert_offset),
0);
}
}
}
void Mesh::pack_curves(Scene *scene, float4 *curve_key_co, float4 *curve_data, size_t curvekey_offset)
{
size_t curve_keys_size = curve_keys.size();
float4 *keys_ptr = NULL;
/* pack curve keys */
if(curve_keys_size) {
keys_ptr = &curve_keys[0];
for(size_t i = 0; i < curve_keys_size; i++)
curve_key_co[i] = keys_ptr[i];
}
/* pack curve segments */
size_t curve_num = curves.size();
if(curve_num) {
Curve *curve_ptr = &curves[0];
int shader_id = 0;
for(size_t i = 0; i < curve_num; i++) {
Curve curve = curve_ptr[i];
shader_id = scene->shader_manager->get_shader_id(curve.shader, this, false);
curve_data[i] = make_float4(
__int_as_float(curve.first_key + curvekey_offset),
__int_as_float(curve.num_keys),
__int_as_float(shader_id),
0.0f);
}
}
}
void Mesh::compute_bvh(SceneParams *params, Progress *progress, int n, int total)
{
if(progress->get_cancel())
return;
compute_bounds();
if(!transform_applied) {
string msg = "Updating Mesh BVH ";
if(name == "")
msg += string_printf("%u/%u", (uint)(n+1), (uint)total);
else
msg += string_printf("%s %u/%u", name.c_str(), (uint)(n+1), (uint)total);
Object object;
object.mesh = this;
vector<Object*> objects;
objects.push_back(&object);
if(bvh && !need_update_rebuild) {
progress->set_status(msg, "Refitting BVH");
bvh->objects = objects;
bvh->refit(*progress);
}
else {
progress->set_status(msg, "Building BVH");
BVHParams bparams;
bparams.use_cache = params->use_bvh_cache;
bparams.use_spatial_split = params->use_bvh_spatial_split;
bparams.use_qbvh = params->use_qbvh;
delete bvh;
bvh = BVH::create(bparams, objects);
bvh->build(*progress);
}
}
need_update = false;
need_update_rebuild = false;
}
void Mesh::tag_update(Scene *scene, bool rebuild)
{
need_update = true;
if(rebuild) {
need_update_rebuild = true;
scene->light_manager->need_update = true;
}
else {
foreach(uint sindex, used_shaders)
if(scene->shaders[sindex]->has_surface_emission)
scene->light_manager->need_update = true;
}
scene->mesh_manager->need_update = true;
scene->object_manager->need_update = true;
}
bool Mesh::has_motion_blur() const
{
return (use_motion_blur &&
(attributes.find(ATTR_STD_MOTION_VERTEX_POSITION) ||
curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION)));
}
/* Mesh Manager */
MeshManager::MeshManager()
{
bvh = NULL;
need_update = true;
need_flags_update = true;
}
MeshManager::~MeshManager()
{
delete bvh;
}
void MeshManager::update_osl_attributes(Device *device, Scene *scene, vector<AttributeRequestSet>& mesh_attributes)
{
#ifdef WITH_OSL
/* for OSL, a hash map is used to lookup the attribute by name. */
OSLGlobals *og = (OSLGlobals*)device->osl_memory();
og->object_name_map.clear();
og->attribute_map.clear();
og->object_names.clear();
og->attribute_map.resize(scene->objects.size()*ATTR_PRIM_TYPES);
for(size_t i = 0; i < scene->objects.size(); i++) {
/* set object name to object index map */
Object *object = scene->objects[i];
og->object_name_map[object->name] = i;
og->object_names.push_back(object->name);
/* set object attributes */
foreach(ParamValue& attr, object->attributes) {
OSLGlobals::Attribute osl_attr;
osl_attr.type = attr.type();
osl_attr.elem = ATTR_ELEMENT_OBJECT;
osl_attr.value = attr;
osl_attr.offset = 0;
og->attribute_map[i*ATTR_PRIM_TYPES][attr.name()] = osl_attr;
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][attr.name()] = osl_attr;
}
/* find mesh attributes */
size_t j;
for(j = 0; j < scene->meshes.size(); j++)
if(scene->meshes[j] == object->mesh)
break;
AttributeRequestSet& attributes = mesh_attributes[j];
/* set object attributes */
foreach(AttributeRequest& req, attributes.requests) {
OSLGlobals::Attribute osl_attr;
if(req.triangle_element != ATTR_ELEMENT_NONE) {
osl_attr.elem = req.triangle_element;
osl_attr.offset = req.triangle_offset;
if(req.triangle_type == TypeDesc::TypeFloat)
osl_attr.type = TypeDesc::TypeFloat;
else if(req.triangle_type == TypeDesc::TypeMatrix)
osl_attr.type = TypeDesc::TypeMatrix;
else
osl_attr.type = TypeDesc::TypeColor;
if(req.std != ATTR_STD_NONE) {
/* if standard attribute, add lookup by geom: name convention */
ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
og->attribute_map[i*ATTR_PRIM_TYPES][stdname] = osl_attr;
}
else if(req.name != ustring()) {
/* add lookup by mesh attribute name */
og->attribute_map[i*ATTR_PRIM_TYPES][req.name] = osl_attr;
}
}
if(req.curve_element != ATTR_ELEMENT_NONE) {
osl_attr.elem = req.curve_element;
osl_attr.offset = req.curve_offset;
if(req.curve_type == TypeDesc::TypeFloat)
osl_attr.type = TypeDesc::TypeFloat;
else if(req.curve_type == TypeDesc::TypeMatrix)
osl_attr.type = TypeDesc::TypeMatrix;
else
osl_attr.type = TypeDesc::TypeColor;
if(req.std != ATTR_STD_NONE) {
/* if standard attribute, add lookup by geom: name convention */
ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][stdname] = osl_attr;
}
else if(req.name != ustring()) {
/* add lookup by mesh attribute name */
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][req.name] = osl_attr;
}
}
}
}
#else
(void)device;
(void)scene;
(void)mesh_attributes;
#endif
}
void MeshManager::update_svm_attributes(Device *device, DeviceScene *dscene, Scene *scene, vector<AttributeRequestSet>& mesh_attributes)
{
/* for SVM, the attributes_map table is used to lookup the offset of an
* attribute, based on a unique shader attribute id. */
/* compute array stride */
int attr_map_stride = 0;
for(size_t i = 0; i < scene->meshes.size(); i++)
attr_map_stride = max(attr_map_stride, (mesh_attributes[i].size() + 1)*ATTR_PRIM_TYPES);
if(attr_map_stride == 0)
return;
/* create attribute map */
uint4 *attr_map = dscene->attributes_map.resize(attr_map_stride*scene->objects.size());
memset(attr_map, 0, dscene->attributes_map.size()*sizeof(uint));
for(size_t i = 0; i < scene->objects.size(); i++) {
Object *object = scene->objects[i];
Mesh *mesh = object->mesh;
/* find mesh attributes */
size_t j;
for(j = 0; j < scene->meshes.size(); j++)
if(scene->meshes[j] == mesh)
break;
AttributeRequestSet& attributes = mesh_attributes[j];
/* set object attributes */
int index = i*attr_map_stride;
foreach(AttributeRequest& req, attributes.requests) {
uint id;
if(req.std == ATTR_STD_NONE)
id = scene->shader_manager->get_attribute_id(req.name);
else
id = scene->shader_manager->get_attribute_id(req.std);
if(mesh->triangles.size()) {
attr_map[index].x = id;
attr_map[index].y = req.triangle_element;
attr_map[index].z = as_uint(req.triangle_offset);
if(req.triangle_type == TypeDesc::TypeFloat)
attr_map[index].w = NODE_ATTR_FLOAT;
else if(req.triangle_type == TypeDesc::TypeMatrix)
attr_map[index].w = NODE_ATTR_MATRIX;
else
attr_map[index].w = NODE_ATTR_FLOAT3;
}
index++;
if(mesh->curves.size()) {
attr_map[index].x = id;
attr_map[index].y = req.curve_element;
attr_map[index].z = as_uint(req.curve_offset);
if(req.curve_type == TypeDesc::TypeFloat)
attr_map[index].w = NODE_ATTR_FLOAT;
else if(req.curve_type == TypeDesc::TypeMatrix)
attr_map[index].w = NODE_ATTR_MATRIX;
else
attr_map[index].w = NODE_ATTR_FLOAT3;
}
index++;
}
/* terminator */
attr_map[index].x = ATTR_STD_NONE;
attr_map[index].y = 0;
attr_map[index].z = 0;
attr_map[index].w = 0;
index++;
attr_map[index].x = ATTR_STD_NONE;
attr_map[index].y = 0;
attr_map[index].z = 0;
attr_map[index].w = 0;
index++;
}
/* copy to device */
dscene->data.bvh.attributes_map_stride = attr_map_stride;
device->tex_alloc("__attributes_map", dscene->attributes_map);
}
static void update_attribute_element_size(Mesh *mesh,
Attribute *mattr,
size_t *attr_float_size,
size_t *attr_float3_size,
size_t *attr_uchar4_size)
{
if(mattr) {
size_t size = mattr->element_size(
mesh->verts.size(),
mesh->triangles.size(),
mesh->motion_steps,
mesh->curves.size(),
mesh->curve_keys.size());
if(mattr->element == ATTR_ELEMENT_VOXEL) {
/* pass */
}
else if(mattr->element == ATTR_ELEMENT_CORNER_BYTE) {
*attr_uchar4_size += size;
}
else if(mattr->type == TypeDesc::TypeFloat) {
*attr_float_size += size;
}
else if(mattr->type == TypeDesc::TypeMatrix) {
*attr_float3_size += size * 4;
}
else {
*attr_float3_size += size;
}
}
}
static void update_attribute_element_offset(Mesh *mesh,
vector<float>& attr_float,
size_t& attr_float_offset,
vector<float4>& attr_float3,
size_t& attr_float3_offset,
vector<uchar4>& attr_uchar4,
size_t& attr_uchar4_offset,
Attribute *mattr,
TypeDesc& type,
int& offset,
AttributeElement& element)
{
if(mattr) {
/* store element and type */
element = mattr->element;
type = mattr->type;
/* store attribute data in arrays */
size_t size = mattr->element_size(
mesh->verts.size(),
mesh->triangles.size(),
mesh->motion_steps,
mesh->curves.size(),
mesh->curve_keys.size());
if(mattr->element == ATTR_ELEMENT_VOXEL) {
/* store slot in offset value */
VoxelAttribute *voxel_data = mattr->data_voxel();
offset = voxel_data->slot;
}
else if(mattr->element == ATTR_ELEMENT_CORNER_BYTE) {
uchar4 *data = mattr->data_uchar4();
offset = attr_uchar4_offset;
assert(attr_uchar4.capacity() >= offset + size);
for(size_t k = 0; k < size; k++) {
attr_uchar4[offset+k] = data[k];
}
attr_uchar4_offset += size;
}
else if(mattr->type == TypeDesc::TypeFloat) {
float *data = mattr->data_float();
offset = attr_float_offset;
assert(attr_float.capacity() >= offset + size);
for(size_t k = 0; k < size; k++) {
attr_float[offset+k] = data[k];
}
attr_float_offset += size;
}
else if(mattr->type == TypeDesc::TypeMatrix) {
Transform *tfm = mattr->data_transform();
offset = attr_float3_offset;
assert(attr_float3.capacity() >= offset + size * 4);
for(size_t k = 0; k < size*4; k++) {
attr_float3[offset+k] = (&tfm->x)[k];
}
attr_float3_offset += size * 4;
}
else {
float4 *data = mattr->data_float4();
offset = attr_float3_offset;
assert(attr_float3.capacity() >= offset + size);
for(size_t k = 0; k < size; k++) {
attr_float3[offset+k] = data[k];
}
attr_float3_offset += size;
}
/* mesh vertex/curve index is global, not per object, so we sneak
* a correction for that in here */
if(element == ATTR_ELEMENT_VERTEX)
offset -= mesh->vert_offset;
else if(element == ATTR_ELEMENT_VERTEX_MOTION)
offset -= mesh->vert_offset;
else if(element == ATTR_ELEMENT_FACE)
offset -= mesh->tri_offset;
else if(element == ATTR_ELEMENT_CORNER || element == ATTR_ELEMENT_CORNER_BYTE)
offset -= 3*mesh->tri_offset;
else if(element == ATTR_ELEMENT_CURVE)
offset -= mesh->curve_offset;
else if(element == ATTR_ELEMENT_CURVE_KEY)
offset -= mesh->curvekey_offset;
else if(element == ATTR_ELEMENT_CURVE_KEY_MOTION)
offset -= mesh->curvekey_offset;
}
else {
/* attribute not found */
element = ATTR_ELEMENT_NONE;
offset = 0;
}
}
void MeshManager::device_update_attributes(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
progress.set_status("Updating Mesh", "Computing attributes");
/* gather per mesh requested attributes. as meshes may have multiple
* shaders assigned, this merges the requested attributes that have
* been set per shader by the shader manager */
vector<AttributeRequestSet> mesh_attributes(scene->meshes.size());
for(size_t i = 0; i < scene->meshes.size(); i++) {
Mesh *mesh = scene->meshes[i];
scene->need_global_attributes(mesh_attributes[i]);
foreach(uint sindex, mesh->used_shaders) {
Shader *shader = scene->shaders[sindex];
mesh_attributes[i].add(shader->attributes);
}
}
/* mesh attribute are stored in a single array per data type. here we fill
* those arrays, and set the offset and element type to create attribute
* maps next */
/* Pre-allocate attributes to avoid arrays re-allocation which would
* take 2x of overall attribute memory usage.
*/
size_t attr_float_size = 0;
size_t attr_float3_size = 0;
size_t attr_uchar4_size = 0;
for(size_t i = 0; i < scene->meshes.size(); i++) {
Mesh *mesh = scene->meshes[i];
AttributeRequestSet& attributes = mesh_attributes[i];
foreach(AttributeRequest& req, attributes.requests) {
Attribute *triangle_mattr = mesh->attributes.find(req);
Attribute *curve_mattr = mesh->curve_attributes.find(req);
/* todo: get rid of this exception, it's only here for giving some
* working texture coordinate for subdivision as we can't preserve
* any attributes yet */
if(!triangle_mattr && req.std == ATTR_STD_GENERATED) {
triangle_mattr = mesh->attributes.add(ATTR_STD_GENERATED);
if(mesh->verts.size())
memcpy(triangle_mattr->data_float3(), &mesh->verts[0], sizeof(float3)*mesh->verts.size());
}
update_attribute_element_size(mesh,
triangle_mattr,
&attr_float_size,
&attr_float3_size,
&attr_uchar4_size);
update_attribute_element_size(mesh,
curve_mattr,
&attr_float_size,
&attr_float3_size,
&attr_uchar4_size);
}
}
vector<float> attr_float(attr_float_size);
vector<float4> attr_float3(attr_float3_size);
vector<uchar4> attr_uchar4(attr_uchar4_size);
size_t attr_float_offset = 0;
size_t attr_float3_offset = 0;
size_t attr_uchar4_offset = 0;
/* Fill in attributes. */
for(size_t i = 0; i < scene->meshes.size(); i++) {
Mesh *mesh = scene->meshes[i];
AttributeRequestSet& attributes = mesh_attributes[i];
/* todo: we now store std and name attributes from requests even if
* they actually refer to the same mesh attributes, optimize */
foreach(AttributeRequest& req, attributes.requests) {
Attribute *triangle_mattr = mesh->attributes.find(req);
Attribute *curve_mattr = mesh->curve_attributes.find(req);
update_attribute_element_offset(mesh,
attr_float, attr_float_offset,
attr_float3, attr_float3_offset,
attr_uchar4, attr_uchar4_offset,
triangle_mattr,
req.triangle_type,
req.triangle_offset,
req.triangle_element);
update_attribute_element_offset(mesh,
attr_float, attr_float_offset,
attr_float3, attr_float3_offset,
attr_uchar4, attr_uchar4_offset,
curve_mattr,
req.curve_type,
req.curve_offset,
req.curve_element);
if(progress.get_cancel()) return;
}
}
/* create attribute lookup maps */
if(scene->shader_manager->use_osl())
update_osl_attributes(device, scene, mesh_attributes);
update_svm_attributes(device, dscene, scene, mesh_attributes);
if(progress.get_cancel()) return;
/* copy to device */
progress.set_status("Updating Mesh", "Copying Attributes to device");
if(attr_float.size()) {
dscene->attributes_float.copy(&attr_float[0], attr_float.size());
device->tex_alloc("__attributes_float", dscene->attributes_float);
}
if(attr_float3.size()) {
dscene->attributes_float3.copy(&attr_float3[0], attr_float3.size());
device->tex_alloc("__attributes_float3", dscene->attributes_float3);
}
if(attr_uchar4.size()) {
dscene->attributes_uchar4.copy(&attr_uchar4[0], attr_uchar4.size());
device->tex_alloc("__attributes_uchar4", dscene->attributes_uchar4);
}
}
void MeshManager::device_update_mesh(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
/* count and update offsets */
size_t vert_size = 0;
size_t tri_size = 0;
size_t curve_key_size = 0;
size_t curve_size = 0;
foreach(Mesh *mesh, scene->meshes) {
mesh->vert_offset = vert_size;
mesh->tri_offset = tri_size;
mesh->curvekey_offset = curve_key_size;
mesh->curve_offset = curve_size;
vert_size += mesh->verts.size();
tri_size += mesh->triangles.size();
curve_key_size += mesh->curve_keys.size();
curve_size += mesh->curves.size();
}
if(tri_size != 0) {
/* normals */
progress.set_status("Updating Mesh", "Computing normals");
uint *tri_shader = dscene->tri_shader.resize(tri_size);
float4 *vnormal = dscene->tri_vnormal.resize(vert_size);
float4 *tri_verts = dscene->tri_verts.resize(vert_size);
float4 *tri_vindex = dscene->tri_vindex.resize(tri_size);
foreach(Mesh *mesh, scene->meshes) {
mesh->pack_normals(scene, &tri_shader[mesh->tri_offset], &vnormal[mesh->vert_offset]);
mesh->pack_verts(&tri_verts[mesh->vert_offset], &tri_vindex[mesh->tri_offset], mesh->vert_offset);
if(progress.get_cancel()) return;
}
/* vertex coordinates */
progress.set_status("Updating Mesh", "Copying Mesh to device");
device->tex_alloc("__tri_shader", dscene->tri_shader);
device->tex_alloc("__tri_vnormal", dscene->tri_vnormal);
device->tex_alloc("__tri_verts", dscene->tri_verts);
device->tex_alloc("__tri_vindex", dscene->tri_vindex);
}
if(curve_size != 0) {
progress.set_status("Updating Mesh", "Copying Strands to device");
float4 *curve_keys = dscene->curve_keys.resize(curve_key_size);
float4 *curves = dscene->curves.resize(curve_size);
foreach(Mesh *mesh, scene->meshes) {
mesh->pack_curves(scene, &curve_keys[mesh->curvekey_offset], &curves[mesh->curve_offset], mesh->curvekey_offset);
if(progress.get_cancel()) return;
}
device->tex_alloc("__curve_keys", dscene->curve_keys);
device->tex_alloc("__curves", dscene->curves);
}
}
void MeshManager::device_update_bvh(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
/* bvh build */
progress.set_status("Updating Scene BVH", "Building");
VLOG(1) << (scene->params.use_qbvh ? "Using QBVH optimization structure"
: "Using regular BVH optimization structure");
BVHParams bparams;
bparams.top_level = true;
bparams.use_qbvh = scene->params.use_qbvh;
bparams.use_spatial_split = scene->params.use_bvh_spatial_split;
bparams.use_cache = scene->params.use_bvh_cache;
delete bvh;
bvh = BVH::create(bparams, scene->objects);
bvh->build(progress);
if(progress.get_cancel()) return;
/* copy to device */
progress.set_status("Updating Scene BVH", "Copying BVH to device");
PackedBVH& pack = bvh->pack;
if(pack.nodes.size()) {
dscene->bvh_nodes.reference((float4*)&pack.nodes[0], pack.nodes.size());
device->tex_alloc("__bvh_nodes", dscene->bvh_nodes);
}
if(pack.leaf_nodes.size()) {
dscene->bvh_leaf_nodes.reference((float4*)&pack.leaf_nodes[0], pack.leaf_nodes.size());
device->tex_alloc("__bvh_leaf_nodes", dscene->bvh_leaf_nodes);
}
if(pack.object_node.size()) {
dscene->object_node.reference((uint*)&pack.object_node[0], pack.object_node.size());
device->tex_alloc("__object_node", dscene->object_node);
}
if(pack.tri_woop.size()) {
dscene->tri_woop.reference(&pack.tri_woop[0], pack.tri_woop.size());
device->tex_alloc("__tri_woop", dscene->tri_woop);
}
if(pack.prim_type.size()) {
dscene->prim_type.reference((uint*)&pack.prim_type[0], pack.prim_type.size());
device->tex_alloc("__prim_type", dscene->prim_type);
}
if(pack.prim_visibility.size()) {
dscene->prim_visibility.reference((uint*)&pack.prim_visibility[0], pack.prim_visibility.size());
device->tex_alloc("__prim_visibility", dscene->prim_visibility);
}
if(pack.prim_index.size()) {
dscene->prim_index.reference((uint*)&pack.prim_index[0], pack.prim_index.size());
device->tex_alloc("__prim_index", dscene->prim_index);
}
if(pack.prim_object.size()) {
dscene->prim_object.reference((uint*)&pack.prim_object[0], pack.prim_object.size());
device->tex_alloc("__prim_object", dscene->prim_object);
}
dscene->data.bvh.root = pack.root_index;
dscene->data.bvh.use_qbvh = scene->params.use_qbvh;
}
void MeshManager::device_update_flags(Device * /*device*/,
DeviceScene * /*dscene*/,
Scene * scene,
Progress& /*progress*/)
{
if(!need_update && !need_flags_update) {
return;
}
/* update flags */
foreach(Mesh *mesh, scene->meshes) {
mesh->has_volume = false;
foreach(uint shader, mesh->used_shaders) {
if(scene->shaders[shader]->has_volume) {
mesh->has_volume = true;
}
}
}
need_flags_update = false;
}
void MeshManager::device_update_displacement_images(Device *device,
DeviceScene *dscene,
Scene *scene,
Progress& progress)
{
progress.set_status("Updating Displacement Images");
TaskPool pool;
ImageManager *image_manager = scene->image_manager;
set<int> bump_images;
foreach(Mesh *mesh, scene->meshes) {
if(mesh->need_update) {
foreach(uint shader_index, mesh->used_shaders) {
Shader *shader = scene->shaders[shader_index];
if(shader->graph_bump == NULL) {
continue;
}
foreach(ShaderNode* node, shader->graph_bump->nodes) {
if(node->special_type != SHADER_SPECIAL_TYPE_IMAGE_SLOT) {
continue;
}
if(device->info.pack_images) {
/* If device requires packed images we need to update all
* images now, even if they're not used for displacement.
*/
image_manager->device_update(device,
dscene,
progress);
return;
}
ImageSlotNode *image_node = static_cast<ImageSlotNode*>(node);
int slot = image_node->slot;
if(slot != -1) {
bump_images.insert(slot);
}
}
}
}
}
foreach(int slot, bump_images) {
pool.push(function_bind(&ImageManager::device_update_slot,
image_manager,
device,
dscene,
slot,
&progress));
}
pool.wait_work();
}
void MeshManager::device_update(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
VLOG(1) << "Total " << scene->meshes.size() << " meshes.";
if(!need_update)
return;
/* update normals */
foreach(Mesh *mesh, scene->meshes) {
foreach(uint shader, mesh->used_shaders) {
if(scene->shaders[shader]->need_update_attributes)
mesh->need_update = true;
}
if(mesh->need_update) {
mesh->add_face_normals();
mesh->add_vertex_normals();
if(progress.get_cancel()) return;
}
}
/* Update images needed for true displacement. */
bool need_displacement_images = false;
foreach(Mesh *mesh, scene->meshes) {
if(mesh->need_update &&
mesh->displacement_method != Mesh::DISPLACE_BUMP)
{
need_displacement_images = true;
break;
}
}
if(need_displacement_images) {
VLOG(1) << "Updating images used for true displacement.";
device_update_displacement_images(device, dscene, scene, progress);
}
/* device update */
device_free(device, dscene);
device_update_mesh(device, dscene, scene, progress);
if(progress.get_cancel()) return;
device_update_attributes(device, dscene, scene, progress);
if(progress.get_cancel()) return;
/* update displacement */
bool displacement_done = false;
foreach(Mesh *mesh, scene->meshes)
if(mesh->need_update && displace(device, dscene, scene, mesh, progress))
displacement_done = true;
/* todo: properly handle cancel halfway displacement */
if(progress.get_cancel()) return;
/* device re-update after displacement */
if(displacement_done) {
device_free(device, dscene);
device_update_mesh(device, dscene, scene, progress);
if(progress.get_cancel()) return;
device_update_attributes(device, dscene, scene, progress);
if(progress.get_cancel()) return;
}
/* update bvh */
size_t i = 0, num_bvh = 0;
foreach(Mesh *mesh, scene->meshes)
if(mesh->need_update && !mesh->transform_applied)
num_bvh++;
TaskPool pool;
foreach(Mesh *mesh, scene->meshes) {
if(mesh->need_update) {
pool.push(function_bind(&Mesh::compute_bvh,
mesh,
&scene->params,
&progress,
i,
num_bvh));
if(!mesh->transform_applied) {
i++;
}
}
}
pool.wait_work();
foreach(Shader *shader, scene->shaders)
shader->need_update_attributes = false;
#ifdef __OBJECT_MOTION__
Scene::MotionType need_motion = scene->need_motion(device->info.advanced_shading);
bool motion_blur = need_motion == Scene::MOTION_BLUR;
#else
bool motion_blur = false;
#endif
/* update obejcts */
vector<Object *> volume_objects;
foreach(Object *object, scene->objects)
object->compute_bounds(motion_blur);
if(progress.get_cancel()) return;
device_update_bvh(device, dscene, scene, progress);
need_update = false;
}
void MeshManager::device_free(Device *device, DeviceScene *dscene)
{
device->tex_free(dscene->bvh_nodes);
device->tex_free(dscene->bvh_leaf_nodes);
device->tex_free(dscene->object_node);
device->tex_free(dscene->tri_woop);
device->tex_free(dscene->prim_type);
device->tex_free(dscene->prim_visibility);
device->tex_free(dscene->prim_index);
device->tex_free(dscene->prim_object);
device->tex_free(dscene->tri_shader);
device->tex_free(dscene->tri_vnormal);
device->tex_free(dscene->tri_vindex);
device->tex_free(dscene->tri_verts);
device->tex_free(dscene->curves);
device->tex_free(dscene->curve_keys);
device->tex_free(dscene->attributes_map);
device->tex_free(dscene->attributes_float);
device->tex_free(dscene->attributes_float3);
device->tex_free(dscene->attributes_uchar4);
dscene->bvh_nodes.clear();
dscene->object_node.clear();
dscene->tri_woop.clear();
dscene->prim_type.clear();
dscene->prim_visibility.clear();
dscene->prim_index.clear();
dscene->prim_object.clear();
dscene->tri_shader.clear();
dscene->tri_vnormal.clear();
dscene->tri_vindex.clear();
dscene->tri_verts.clear();
dscene->curves.clear();
dscene->curve_keys.clear();
dscene->attributes_map.clear();
dscene->attributes_float.clear();
dscene->attributes_float3.clear();
dscene->attributes_uchar4.clear();
#ifdef WITH_OSL
OSLGlobals *og = (OSLGlobals*)device->osl_memory();
if(og) {
og->object_name_map.clear();
og->attribute_map.clear();
og->object_names.clear();
}
#endif
}
void MeshManager::tag_update(Scene *scene)
{
need_update = true;
scene->object_manager->need_update = true;
}
bool Mesh::need_attribute(Scene *scene, AttributeStandard std)
{
if(std == ATTR_STD_NONE)
return false;
if(scene->need_global_attribute(std))
return true;
foreach(uint shader, used_shaders)
if(scene->shaders[shader]->attributes.find(std))
return true;
return false;
}
bool Mesh::need_attribute(Scene *scene, ustring name)
{
if(name == ustring())
return false;
foreach(uint shader, used_shaders)
if(scene->shaders[shader]->attributes.find(name))
return true;
return false;
}
CCL_NAMESPACE_END