blender/source/gameengine/Ketsji/KX_GameObject.cpp
Benoit Bolsee 949b6ca80f BGE bug #17688 fixed: Near Sensor Reset not working (for Gamekit)
Implementation of the PHY_IPhysicsController::SetMargin(),
GetMargin(), SetRadius() and GetRadius() for Bullet and Sumo
to allow resetting the Near sensor radius. For bullet use 
the new setUnscaledRadius() function to change sphere radius.

In pPreparation of a Fh constraint actuator:
- Add KX_IPhysicsController::GetRadius()
- Fix implementation of KX_BulletPhysicsController::GetVelocity()
  (velocity at a point in geometric coordinate)
- Don't try to set velocity on static object (Bullet will assert)
- Add KX_GameObject::GetVelocity() for C access to local velocity
2008-10-01 07:55:02 +00:00

1994 lines
48 KiB
C++

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
* Game object wrapper
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#if defined(_WIN64)
typedef unsigned __int64 uint_ptr;
#else
typedef unsigned long uint_ptr;
#endif
#ifdef WIN32
// This warning tells us about truncation of __long__ stl-generated names.
// It can occasionally cause DevStudio to have internal compiler warnings.
#pragma warning( disable : 4786 )
#endif
#define KX_INERTIA_INFINITE 10000
#include "RAS_IPolygonMaterial.h"
#include "KX_BlenderMaterial.h"
#include "KX_GameObject.h"
#include "RAS_MeshObject.h"
#include "KX_MeshProxy.h"
#include "KX_PolyProxy.h"
#include <stdio.h> // printf
#include "SG_Controller.h"
#include "KX_IPhysicsController.h"
#include "SG_Node.h"
#include "SG_Controller.h"
#include "KX_ClientObjectInfo.h"
#include "RAS_BucketManager.h"
#include "KX_RayCast.h"
#include "KX_PythonInit.h"
#include "KX_PyMath.h"
#include "SCA_IActuator.h"
#include "SCA_ISensor.h"
#include "PyObjectPlus.h" /* python stuff */
// This file defines relationships between parents and children
// in the game engine.
#include "KX_SG_NodeRelationships.h"
KX_GameObject::KX_GameObject(
void* sgReplicationInfo,
SG_Callbacks callbacks,
PyTypeObject* T
) :
SCA_IObject(T),
m_bDyna(false),
m_layer(0),
m_pBlenderObject(NULL),
m_pBlenderGroupObject(NULL),
m_bSuspendDynamics(false),
m_bUseObjectColor(false),
m_bIsNegativeScaling(false),
m_bVisible(true),
m_bCulled(true),
m_pPhysicsController1(NULL),
m_pPhysicsEnvironment(NULL),
m_xray(false),
m_pHitObject(NULL),
m_isDeformable(false)
{
m_ignore_activity_culling = false;
m_pClient_info = new KX_ClientObjectInfo(this, KX_ClientObjectInfo::ACTOR);
m_pSGNode = new SG_Node(this,sgReplicationInfo,callbacks);
// define the relationship between this node and it's parent.
KX_NormalParentRelation * parent_relation =
KX_NormalParentRelation::New();
m_pSGNode->SetParentRelation(parent_relation);
};
KX_GameObject::~KX_GameObject()
{
RemoveMeshes();
// is this delete somewhere ?
//if (m_sumoObj)
// delete m_sumoObj;
delete m_pClient_info;
//if (m_pSGNode)
// delete m_pSGNode;
if (m_pSGNode)
{
// must go through controllers and make sure they will not use us anymore
// This is important for KX_BulletPhysicsControllers that unregister themselves
// from the object when they are deleted.
SGControllerList::iterator contit;
SGControllerList& controllers = m_pSGNode->GetSGControllerList();
for (contit = controllers.begin();contit!=controllers.end();++contit)
{
(*contit)->ClearObject();
}
m_pSGNode->SetSGClientObject(NULL);
}
}
CValue* KX_GameObject:: Calc(VALUE_OPERATOR op, CValue *val)
{
return NULL;
}
CValue* KX_GameObject::CalcFinal(VALUE_DATA_TYPE dtype, VALUE_OPERATOR op, CValue *val)
{
return NULL;
}
const STR_String & KX_GameObject::GetText()
{
return m_text;
}
float KX_GameObject::GetNumber()
{
return 0;
}
STR_String KX_GameObject::GetName()
{
return m_name;
}
void KX_GameObject::SetName(STR_String name)
{
m_name = name;
}; // Set the name of the value
void KX_GameObject::ReplicaSetName(STR_String name)
{
}
KX_IPhysicsController* KX_GameObject::GetPhysicsController()
{
return m_pPhysicsController1;
}
KX_GameObject* KX_GameObject::GetParent()
{
KX_GameObject* result = NULL;
SG_Node* node = m_pSGNode;
while (node && !result)
{
node = node->GetSGParent();
if (node)
result = (KX_GameObject*)node->GetSGClientObject();
}
if (result)
result->AddRef();
return result;
}
void KX_GameObject::SetParent(KX_Scene *scene, KX_GameObject* obj)
{
if (obj && GetSGNode()->GetSGParent() != obj->GetSGNode())
{
// Make sure the objects have some scale
MT_Vector3 scale1 = NodeGetWorldScaling();
MT_Vector3 scale2 = obj->NodeGetWorldScaling();
if (fabs(scale2[0]) < FLT_EPSILON ||
fabs(scale2[1]) < FLT_EPSILON ||
fabs(scale2[2]) < FLT_EPSILON ||
fabs(scale1[0]) < FLT_EPSILON ||
fabs(scale1[1]) < FLT_EPSILON ||
fabs(scale1[2]) < FLT_EPSILON) { return; }
// Remove us from our old parent and set our new parent
RemoveParent(scene);
obj->GetSGNode()->AddChild(GetSGNode());
if (m_pPhysicsController1)
{
m_pPhysicsController1->SuspendDynamics(true);
}
// Set us to our new scale, position, and orientation
scale2[0] = 1.0/scale2[0];
scale2[1] = 1.0/scale2[1];
scale2[2] = 1.0/scale2[2];
scale1 = scale1 * scale2;
MT_Matrix3x3 invori = obj->NodeGetWorldOrientation().inverse();
MT_Vector3 newpos = invori*(NodeGetWorldPosition()-obj->NodeGetWorldPosition())*scale2;
NodeSetLocalScale(scale1);
NodeSetLocalPosition(MT_Point3(newpos[0],newpos[1],newpos[2]));
NodeSetLocalOrientation(invori*NodeGetWorldOrientation());
NodeUpdateGS(0.f,true);
// object will now be a child, it must be removed from the parent list
CListValue* rootlist = scene->GetRootParentList();
if (rootlist->RemoveValue(this))
// the object was in parent list, decrement ref count as it's now removed
Release();
}
}
void KX_GameObject::RemoveParent(KX_Scene *scene)
{
if (GetSGNode()->GetSGParent())
{
// Set us to the right spot
GetSGNode()->SetLocalScale(GetSGNode()->GetWorldScaling());
GetSGNode()->SetLocalOrientation(GetSGNode()->GetWorldOrientation());
GetSGNode()->SetLocalPosition(GetSGNode()->GetWorldPosition());
// Remove us from our parent
GetSGNode()->DisconnectFromParent();
NodeUpdateGS(0.f,true);
// the object is now a root object, add it to the parentlist
CListValue* rootlist = scene->GetRootParentList();
if (!rootlist->SearchValue(this))
// object was not in root list, add it now and increment ref count
rootlist->Add(AddRef());
if (m_pPhysicsController1)
{
m_pPhysicsController1->RestoreDynamics();
}
}
}
void KX_GameObject::ProcessReplica(KX_GameObject* replica)
{
replica->m_pPhysicsController1 = NULL;
replica->m_pSGNode = NULL;
replica->m_pClient_info = new KX_ClientObjectInfo(*m_pClient_info);
replica->m_pClient_info->m_gameobject = replica;
replica->m_state = 0;
}
CValue* KX_GameObject::GetReplica()
{
KX_GameObject* replica = new KX_GameObject(*this);
// this will copy properties and so on...
CValue::AddDataToReplica(replica);
ProcessReplica(replica);
return replica;
}
void KX_GameObject::ApplyForce(const MT_Vector3& force,bool local)
{
if (m_pPhysicsController1)
m_pPhysicsController1->ApplyForce(force,local);
}
void KX_GameObject::ApplyTorque(const MT_Vector3& torque,bool local)
{
if (m_pPhysicsController1)
m_pPhysicsController1->ApplyTorque(torque,local);
}
void KX_GameObject::ApplyMovement(const MT_Vector3& dloc,bool local)
{
if (m_pPhysicsController1) // (IsDynamic())
{
m_pPhysicsController1->RelativeTranslate(dloc,local);
}
GetSGNode()->RelativeTranslate(dloc,GetSGNode()->GetSGParent(),local);
}
void KX_GameObject::ApplyRotation(const MT_Vector3& drot,bool local)
{
MT_Matrix3x3 rotmat(drot);
GetSGNode()->RelativeRotate(rotmat,local);
if (m_pPhysicsController1) { // (IsDynamic())
m_pPhysicsController1->RelativeRotate(rotmat,local);
}
}
/**
GetOpenGL Matrix, returns an OpenGL 'compatible' matrix
*/
double* KX_GameObject::GetOpenGLMatrix()
{
// todo: optimize and only update if necessary
double* fl = m_OpenGL_4x4Matrix.getPointer();
MT_Transform trans;
trans.setOrigin(GetSGNode()->GetWorldPosition());
trans.setBasis(GetSGNode()->GetWorldOrientation());
MT_Vector3 scaling = GetSGNode()->GetWorldScaling();
m_bIsNegativeScaling = ((scaling[0] < 0.0) ^ (scaling[1] < 0.0) ^ (scaling[2] < 0.0)) ? true : false;
trans.scale(scaling[0], scaling[1], scaling[2]);
trans.getValue(fl);
return fl;
}
void KX_GameObject::AddMeshUser()
{
for (size_t i=0;i<m_meshes.size();i++)
m_meshes[i]->AddMeshUser(this);
UpdateBuckets(false);
}
static void UpdateBuckets_recursive(SG_Node* node)
{
NodeList& children = node->GetSGChildren();
for (NodeList::iterator childit = children.begin();!(childit==children.end());++childit)
{
SG_Node* childnode = (*childit);
KX_GameObject *clientgameobj = static_cast<KX_GameObject*>( (*childit)->GetSGClientObject());
if (clientgameobj != NULL) // This is a GameObject
clientgameobj->UpdateBuckets(0);
// if the childobj is NULL then this may be an inverse parent link
// so a non recursive search should still look down this node.
UpdateBuckets_recursive(childnode);
}
}
void KX_GameObject::UpdateBuckets( bool recursive )
{
double* fl = GetOpenGLMatrix();
for (size_t i=0;i<m_meshes.size();i++)
m_meshes[i]->UpdateBuckets(this, fl, m_bUseObjectColor, m_objectColor, m_bVisible, m_bCulled);
if (recursive) {
UpdateBuckets_recursive(m_pSGNode);
}
}
void KX_GameObject::RemoveMeshes()
{
for (size_t i=0;i<m_meshes.size();i++)
m_meshes[i]->RemoveFromBuckets(this);
//note: meshes can be shared, and are deleted by KX_BlenderSceneConverter
m_meshes.clear();
}
void KX_GameObject::UpdateNonDynas()
{
if (m_pPhysicsController1)
{
m_pPhysicsController1->SetSumoTransform(true);
}
}
void KX_GameObject::UpdateTransform()
{
if (m_pPhysicsController1)
m_pPhysicsController1->SetSumoTransform(false);
}
void KX_GameObject::UpdateTransformFunc(SG_IObject* node, void* gameobj, void* scene)
{
((KX_GameObject*)gameobj)->UpdateTransform();
}
void KX_GameObject::SetDebugColor(unsigned int bgra)
{
for (size_t i=0;i<m_meshes.size();i++)
m_meshes[i]->DebugColor(bgra);
}
void KX_GameObject::ResetDebugColor()
{
SetDebugColor(0xff000000);
}
void KX_GameObject::InitIPO(bool ipo_as_force,
bool ipo_add,
bool ipo_local)
{
SGControllerList::iterator it = GetSGNode()->GetSGControllerList().begin();
while (it != GetSGNode()->GetSGControllerList().end()) {
(*it)->SetOption(SG_Controller::SG_CONTR_IPO_RESET, true);
(*it)->SetOption(SG_Controller::SG_CONTR_IPO_IPO_AS_FORCE, ipo_as_force);
(*it)->SetOption(SG_Controller::SG_CONTR_IPO_IPO_ADD, ipo_add);
(*it)->SetOption(SG_Controller::SG_CONTR_IPO_LOCAL, ipo_local);
it++;
}
}
void KX_GameObject::UpdateIPO(float curframetime,
bool recurse)
{
// just the 'normal' update procedure.
GetSGNode()->SetSimulatedTime(curframetime,recurse);
GetSGNode()->UpdateWorldData(curframetime);
UpdateTransform();
}
// IPO update
void
KX_GameObject::UpdateMaterialData(
dword matname_hash,
MT_Vector4 rgba,
MT_Vector3 specrgb,
MT_Scalar hard,
MT_Scalar spec,
MT_Scalar ref,
MT_Scalar emit,
MT_Scalar alpha
)
{
int mesh = 0;
if (((unsigned int)mesh < m_meshes.size()) && mesh >= 0) {
list<RAS_MeshMaterial>::iterator mit = m_meshes[mesh]->GetFirstMaterial();
for(; mit != m_meshes[mesh]->GetLastMaterial(); ++mit)
{
RAS_IPolyMaterial* poly = mit->m_bucket->GetPolyMaterial();
if(poly->GetFlag() & RAS_BLENDERMAT )
{
KX_BlenderMaterial *m = static_cast<KX_BlenderMaterial*>(poly);
if (matname_hash == NULL)
{
m->UpdateIPO(rgba, specrgb,hard,spec,ref,emit, alpha);
// if mesh has only one material attached to it then use original hack with no need to edit vertices (better performance)
SetObjectColor(rgba);
}
else
{
if (matname_hash == poly->GetMaterialNameHash())
{
m->UpdateIPO(rgba, specrgb,hard,spec,ref,emit, alpha);
m_meshes[mesh]->SetVertexColor(poly,rgba);
// no break here, because one blender material can be split into several game engine materials
// (e.g. one uvsphere material is split into one material at poles with ras_mode TRIANGLE and one material for the body
// if here was a break then would miss some vertices if material was split
}
}
}
}
}
}
bool
KX_GameObject::GetVisible(
void
)
{
return m_bVisible;
}
static void setVisible_recursive(SG_Node* node, bool v)
{
NodeList& children = node->GetSGChildren();
for (NodeList::iterator childit = children.begin();!(childit==children.end());++childit)
{
SG_Node* childnode = (*childit);
KX_GameObject *clientgameobj = static_cast<KX_GameObject*>( (*childit)->GetSGClientObject());
if (clientgameobj != NULL) // This is a GameObject
clientgameobj->SetVisible(v, 0);
// if the childobj is NULL then this may be an inverse parent link
// so a non recursive search should still look down this node.
setVisible_recursive(childnode, v);
}
}
void
KX_GameObject::SetVisible(
bool v,
bool recursive
)
{
m_bVisible = v;
if (recursive)
setVisible_recursive(m_pSGNode, v);
}
bool
KX_GameObject::GetCulled(
void
)
{
return m_bCulled;
}
void
KX_GameObject::SetCulled(
bool c
)
{
m_bCulled = c;
}
void
KX_GameObject::SetLayer(
int l
)
{
m_layer = l;
}
int
KX_GameObject::GetLayer(
void
)
{
return m_layer;
}
void KX_GameObject::addLinearVelocity(const MT_Vector3& lin_vel,bool local)
{
if (m_pPhysicsController1)
{
MT_Vector3 lv = local ? NodeGetWorldOrientation() * lin_vel : lin_vel;
m_pPhysicsController1->SetLinearVelocity(lv + m_pPhysicsController1->GetLinearVelocity(), 0);
}
}
void KX_GameObject::setLinearVelocity(const MT_Vector3& lin_vel,bool local)
{
if (m_pPhysicsController1)
m_pPhysicsController1->SetLinearVelocity(lin_vel,local);
}
void KX_GameObject::setAngularVelocity(const MT_Vector3& ang_vel,bool local)
{
if (m_pPhysicsController1)
m_pPhysicsController1->SetAngularVelocity(ang_vel,local);
}
void KX_GameObject::ResolveCombinedVelocities(
const MT_Vector3 & lin_vel,
const MT_Vector3 & ang_vel,
bool lin_vel_local,
bool ang_vel_local
){
if (m_pPhysicsController1)
{
MT_Vector3 lv = lin_vel_local ? NodeGetWorldOrientation() * lin_vel : lin_vel;
MT_Vector3 av = ang_vel_local ? NodeGetWorldOrientation() * ang_vel : ang_vel;
m_pPhysicsController1->resolveCombinedVelocities(
lv.x(),lv.y(),lv.z(),av.x(),av.y(),av.z());
}
}
void KX_GameObject::SetObjectColor(const MT_Vector4& rgbavec)
{
m_bUseObjectColor = true;
m_objectColor = rgbavec;
}
void KX_GameObject::AlignAxisToVect(const MT_Vector3& dir, int axis, float fac)
{
MT_Matrix3x3 orimat;
MT_Vector3 vect,ori,z,x,y;
MT_Scalar len;
vect = dir;
len = vect.length();
if (MT_fuzzyZero(len))
{
cout << "alignAxisToVect() Error: Null vector!\n";
return;
}
if (fac<=0.0) {
return;
}
// normalize
vect /= len;
orimat = GetSGNode()->GetWorldOrientation();
switch (axis)
{
case 0: //x axis
ori = MT_Vector3(orimat[0][2], orimat[1][2], orimat[2][2]); //pivot axis
if (MT_abs(vect.dot(ori)) > 1.0-3.0*MT_EPSILON) //is the vector paralell to the pivot?
ori = MT_Vector3(orimat[0][1], orimat[1][1], orimat[2][1]); //change the pivot!
if (fac == 1.0) {
x = vect;
} else {
x = (vect * fac) + ((orimat * MT_Vector3(1.0, 0.0, 0.0)) * (1-fac));
len = x.length();
if (MT_fuzzyZero(len)) x = vect;
else x /= len;
}
y = ori.cross(x);
z = x.cross(y);
break;
case 1: //y axis
ori = MT_Vector3(orimat[0][0], orimat[1][0], orimat[2][0]);
if (MT_abs(vect.dot(ori)) > 1.0-3.0*MT_EPSILON)
ori = MT_Vector3(orimat[0][2], orimat[1][2], orimat[2][2]);
if (fac == 1.0) {
y = vect;
} else {
y = (vect * fac) + ((orimat * MT_Vector3(0.0, 1.0, 0.0)) * (1-fac));
len = y.length();
if (MT_fuzzyZero(len)) y = vect;
else y /= len;
}
z = ori.cross(y);
x = y.cross(z);
break;
case 2: //z axis
ori = MT_Vector3(orimat[0][1], orimat[1][1], orimat[2][1]);
if (MT_abs(vect.dot(ori)) > 1.0-3.0*MT_EPSILON)
ori = MT_Vector3(orimat[0][0], orimat[1][0], orimat[2][0]);
if (fac == 1.0) {
z = vect;
} else {
z = (vect * fac) + ((orimat * MT_Vector3(0.0, 0.0, 1.0)) * (1-fac));
len = z.length();
if (MT_fuzzyZero(len)) z = vect;
else z /= len;
}
x = ori.cross(z);
y = z.cross(x);
break;
default: //wrong input?
cout << "alignAxisToVect(): Wrong axis '" << axis <<"'\n";
return;
}
x.normalize(); //normalize the vectors
y.normalize();
z.normalize();
orimat = MT_Matrix3x3( x[0],y[0],z[0],
x[1],y[1],z[1],
x[2],y[2],z[2]);
if (GetSGNode()->GetSGParent() != NULL)
{
// the object is a child, adapt its local orientation so that
// the global orientation is aligned as we want.
MT_Matrix3x3 invori = GetSGNode()->GetSGParent()->GetWorldOrientation().inverse();
NodeSetLocalOrientation(invori*orimat);
}
else
NodeSetLocalOrientation(orimat);
}
MT_Scalar KX_GameObject::GetMass()
{
if (m_pPhysicsController1)
{
return m_pPhysicsController1->GetMass();
}
return 0.0;
}
MT_Vector3 KX_GameObject::GetLinearVelocity(bool local)
{
MT_Vector3 velocity(0.0,0.0,0.0), locvel;
MT_Matrix3x3 ori;
if (m_pPhysicsController1)
{
velocity = m_pPhysicsController1->GetLinearVelocity();
if (local)
{
ori = GetSGNode()->GetWorldOrientation();
locvel = velocity * ori;
return locvel;
}
}
return velocity;
}
MT_Vector3 KX_GameObject::GetAngularVelocity(bool local)
{
MT_Vector3 velocity(0.0,0.0,0.0), locvel;
MT_Matrix3x3 ori;
if (m_pPhysicsController1)
{
velocity = m_pPhysicsController1->GetAngularVelocity();
if (local)
{
ori = GetSGNode()->GetWorldOrientation();
locvel = velocity * ori;
return locvel;
}
}
return velocity;
}
MT_Vector3 KX_GameObject::GetVelocity(const MT_Point3& point)
{
if (m_pPhysicsController1)
{
return m_pPhysicsController1->GetVelocity(point);
}
return MT_Vector3(0.0,0.0,0.0);
}
// scenegraph node stuff
void KX_GameObject::NodeSetLocalPosition(const MT_Point3& trans)
{
if (m_pPhysicsController1 && (!GetSGNode() || !GetSGNode()->GetSGParent()))
{
// don't update physic controller if the object is a child:
// 1) the transformation will not be right
// 2) in this case, the physic controller is necessarily a static object
// that is updated from the normal kinematic synchronization
m_pPhysicsController1->setPosition(trans);
}
if (GetSGNode())
GetSGNode()->SetLocalPosition(trans);
}
void KX_GameObject::NodeSetLocalOrientation(const MT_Matrix3x3& rot)
{
if (m_pPhysicsController1 && (!GetSGNode() || !GetSGNode()->GetSGParent()))
{
// see note above
m_pPhysicsController1->setOrientation(rot);
}
if (GetSGNode())
GetSGNode()->SetLocalOrientation(rot);
}
void KX_GameObject::NodeSetLocalScale(const MT_Vector3& scale)
{
if (m_pPhysicsController1 && (!GetSGNode() || !GetSGNode()->GetSGParent()))
{
// see note above
m_pPhysicsController1->setScaling(scale);
}
if (GetSGNode())
GetSGNode()->SetLocalScale(scale);
}
void KX_GameObject::NodeSetRelativeScale(const MT_Vector3& scale)
{
if (GetSGNode())
{
GetSGNode()->RelativeScale(scale);
if (m_pPhysicsController1 && (!GetSGNode()->GetSGParent()))
{
// see note above
// we can use the local scale: it's the same thing for a root object
// and the world scale is not yet updated
MT_Vector3 newscale = GetSGNode()->GetLocalScale();
m_pPhysicsController1->setScaling(newscale);
}
}
}
void KX_GameObject::NodeSetWorldPosition(const MT_Point3& trans)
{
SG_Node* parent = m_pSGNode->GetSGParent();
if (parent != NULL)
{
// Make sure the objects have some scale
MT_Vector3 scale = parent->GetWorldScaling();
if (fabs(scale[0]) < FLT_EPSILON ||
fabs(scale[1]) < FLT_EPSILON ||
fabs(scale[2]) < FLT_EPSILON)
{
return;
}
scale[0] = 1.0/scale[0];
scale[1] = 1.0/scale[1];
scale[2] = 1.0/scale[2];
MT_Matrix3x3 invori = parent->GetWorldOrientation().inverse();
MT_Vector3 newpos = invori*(trans-parent->GetWorldPosition())*scale;
NodeSetLocalPosition(MT_Point3(newpos[0],newpos[1],newpos[2]));
}
else
{
NodeSetLocalPosition(trans);
}
}
void KX_GameObject::NodeUpdateGS(double time,bool bInitiator)
{
if (GetSGNode())
GetSGNode()->UpdateWorldData(time);
}
const MT_Matrix3x3& KX_GameObject::NodeGetWorldOrientation() const
{
return GetSGNode()->GetWorldOrientation();
}
const MT_Vector3& KX_GameObject::NodeGetWorldScaling() const
{
return GetSGNode()->GetWorldScaling();
}
const MT_Point3& KX_GameObject::NodeGetWorldPosition() const
{
return GetSGNode()->GetWorldPosition();
}
/* Suspend/ resume: for the dynamic behaviour, there is a simple
* method. For the residual motion, there is not. I wonder what the
* correct solution is for Sumo. Remove from the motion-update tree?
*
* So far, only switch the physics and logic.
* */
void KX_GameObject::Resume(void)
{
if (m_suspended) {
SCA_IObject::Resume();
GetPhysicsController()->RestoreDynamics();
m_suspended = false;
}
}
void KX_GameObject::Suspend()
{
if ((!m_ignore_activity_culling)
&& (!m_suspended)) {
SCA_IObject::Suspend();
GetPhysicsController()->SuspendDynamics();
m_suspended = true;
}
}
/* ------- python stuff ---------------------------------------------------*/
PyMethodDef KX_GameObject::Methods[] = {
{"getPosition", (PyCFunction) KX_GameObject::sPyGetPosition, METH_NOARGS},
{"setPosition", (PyCFunction) KX_GameObject::sPySetPosition, METH_O},
{"setWorldPosition", (PyCFunction) KX_GameObject::sPySetWorldPosition, METH_O},
{"getLinearVelocity", (PyCFunction) KX_GameObject::sPyGetLinearVelocity, METH_VARARGS},
{"setLinearVelocity", (PyCFunction) KX_GameObject::sPySetLinearVelocity, METH_VARARGS},
{"getAngularVelocity", (PyCFunction) KX_GameObject::sPyGetAngularVelocity, METH_VARARGS},
{"setAngularVelocity", (PyCFunction) KX_GameObject::sPySetAngularVelocity, METH_VARARGS},
{"getVelocity", (PyCFunction) KX_GameObject::sPyGetVelocity, METH_VARARGS},
{"getMass", (PyCFunction) KX_GameObject::sPyGetMass, METH_NOARGS},
{"getReactionForce", (PyCFunction) KX_GameObject::sPyGetReactionForce, METH_NOARGS},
{"getOrientation", (PyCFunction) KX_GameObject::sPyGetOrientation, METH_NOARGS},
{"setOrientation", (PyCFunction) KX_GameObject::sPySetOrientation, METH_O},
{"getVisible",(PyCFunction) KX_GameObject::sPyGetVisible, METH_NOARGS},
{"setVisible",(PyCFunction) KX_GameObject::sPySetVisible, METH_VARARGS},
{"getState",(PyCFunction) KX_GameObject::sPyGetState, METH_NOARGS},
{"setState",(PyCFunction) KX_GameObject::sPySetState, METH_O},
{"alignAxisToVect",(PyCFunction) KX_GameObject::sPyAlignAxisToVect, METH_VARARGS},
{"getAxisVect",(PyCFunction) KX_GameObject::sPyGetAxisVect, METH_O},
{"suspendDynamics", (PyCFunction)KX_GameObject::sPySuspendDynamics,METH_NOARGS},
{"restoreDynamics", (PyCFunction)KX_GameObject::sPyRestoreDynamics,METH_NOARGS},
{"enableRigidBody", (PyCFunction)KX_GameObject::sPyEnableRigidBody,METH_NOARGS},
{"disableRigidBody", (PyCFunction)KX_GameObject::sPyDisableRigidBody,METH_NOARGS},
{"applyImpulse", (PyCFunction) KX_GameObject::sPyApplyImpulse, METH_VARARGS},
{"setCollisionMargin", (PyCFunction) KX_GameObject::sPySetCollisionMargin, METH_O},
{"getParent", (PyCFunction)KX_GameObject::sPyGetParent,METH_NOARGS},
{"setParent", (PyCFunction)KX_GameObject::sPySetParent,METH_O},
{"removeParent", (PyCFunction)KX_GameObject::sPyRemoveParent,METH_NOARGS},
{"getChildren", (PyCFunction)KX_GameObject::sPyGetChildren,METH_NOARGS},
{"getChildrenRecursive", (PyCFunction)KX_GameObject::sPyGetChildrenRecursive,METH_NOARGS},
{"getMesh", (PyCFunction)KX_GameObject::sPyGetMesh,METH_VARARGS},
{"getPhysicsId", (PyCFunction)KX_GameObject::sPyGetPhysicsId,METH_NOARGS},
{"getPropertyNames", (PyCFunction)KX_GameObject::sPyGetPropertyNames,METH_NOARGS},
{"endObject",(PyCFunction) KX_GameObject::sPyEndObject, METH_NOARGS},
KX_PYMETHODTABLE(KX_GameObject, rayCastTo),
KX_PYMETHODTABLE(KX_GameObject, rayCast),
KX_PYMETHODTABLE(KX_GameObject, getDistanceTo),
KX_PYMETHODTABLE(KX_GameObject, getVectTo),
{NULL,NULL} //Sentinel
};
/*
bool KX_GameObject::ConvertPythonVectorArgs(PyObject* args,
MT_Vector3& pos,
MT_Vector3& pos2)
{
PyObject* pylist;
PyObject* pylist2;
bool error = (PyArg_ParseTuple(args,"OO",&pylist,&pylist2)) != 0;
pos = ConvertPythonPylist(pylist);
pos2 = ConvertPythonPylist(pylist2);
return error;
}
*/
PyObject* KX_GameObject::PyEndObject(PyObject* self)
{
KX_Scene *scene = PHY_GetActiveScene();
scene->DelayedRemoveObject(this);
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyGetPosition(PyObject* self)
{
return PyObjectFrom(NodeGetWorldPosition());
}
PyTypeObject KX_GameObject::Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"KX_GameObject",
sizeof(KX_GameObject),
0,
PyDestructor,
0,
__getattr,
__setattr,
0, //&MyPyCompare,
__repr,
0, //&cvalue_as_number,
0,
0,
0,
0
};
PyParentObject KX_GameObject::Parents[] = {
&KX_GameObject::Type,
&SCA_IObject::Type,
&CValue::Type,
NULL
};
PyObject* KX_GameObject::_getattr(const STR_String& attr)
{
if (m_pPhysicsController1)
{
if (attr == "mass")
return PyFloat_FromDouble(GetPhysicsController()->GetMass());
}
if (attr == "parent")
{
KX_GameObject* parent = GetParent();
if (parent)
{
parent->AddRef();
return parent;
}
Py_RETURN_NONE;
}
if (attr == "visible")
return PyInt_FromLong(m_bVisible);
if (attr == "position")
return PyObjectFrom(NodeGetWorldPosition());
if (attr == "orientation")
return PyObjectFrom(NodeGetWorldOrientation());
if (attr == "scaling")
return PyObjectFrom(NodeGetWorldScaling());
if (attr == "name")
return PyString_FromString(m_name.ReadPtr());
if (attr == "timeOffset") {
if (m_pSGNode->GetSGParent()->IsSlowParent()) {
return PyFloat_FromDouble(static_cast<KX_SlowParentRelation *>(m_pSGNode->GetSGParent()->GetParentRelation())->GetTimeOffset());
} else {
return PyFloat_FromDouble(0.0);
}
}
_getattr_up(SCA_IObject);
}
int KX_GameObject::_setattr(const STR_String& attr, PyObject *value) // _setattr method
{
if (attr == "mass") {
PyErr_SetString(PyExc_AttributeError, "attribute \"mass\" is read only");
return 1;
}
if (attr == "parent") {
PyErr_SetString(PyExc_AttributeError, "attribute \"mass\" is read only\nUse setParent()");
return 1;
}
if (PyInt_Check(value))
{
int val = PyInt_AsLong(value);
if (attr == "visible")
{
SetVisible(val != 0, false);
UpdateBuckets(false);
return 0;
}
}
if (PyFloat_Check(value))
{
MT_Scalar val = PyFloat_AsDouble(value);
if (attr == "timeOffset") {
if (m_pSGNode->GetSGParent() && m_pSGNode->GetSGParent()->IsSlowParent()) {
static_cast<KX_SlowParentRelation *>(m_pSGNode->GetSGParent()->GetParentRelation())->SetTimeOffset(val);
return 0;
} else {
return 0;
}
}
}
if (PySequence_Check(value))
{
if (attr == "orientation")
{
MT_Matrix3x3 rot;
if (PyObject_IsMT_Matrix(value, 3))
{
if (PyMatTo(value, rot))
{
NodeSetLocalOrientation(rot);
NodeUpdateGS(0.f,true);
return 0;
}
return 1;
}
if (PySequence_Size(value) == 4)
{
MT_Quaternion qrot;
if (PyVecTo(value, qrot))
{
rot.setRotation(qrot);
NodeSetLocalOrientation(rot);
NodeUpdateGS(0.f,true);
return 0;
}
return 1;
}
if (PySequence_Size(value) == 3)
{
MT_Vector3 erot;
if (PyVecTo(value, erot))
{
rot.setEuler(erot);
NodeSetLocalOrientation(rot);
NodeUpdateGS(0.f,true);
return 0;
}
return 1;
}
PyErr_SetString(PyExc_AttributeError, "could not set the orientation from a 3x3 matrix, quaternion or euler sequence");
return 1;
}
if (attr == "position")
{
MT_Point3 pos;
if (PyVecTo(value, pos))
{
NodeSetLocalPosition(pos);
NodeUpdateGS(0.f,true);
return 0;
}
return 1;
}
if (attr == "scaling")
{
MT_Vector3 scale;
if (PyVecTo(value, scale))
{
NodeSetLocalScale(scale);
NodeUpdateGS(0.f,true);
return 0;
}
return 1;
}
}
if (PyString_Check(value))
{
if (attr == "name")
{
m_name = PyString_AsString(value);
return 0;
}
}
/* Need to have parent settable here too */
return SCA_IObject::_setattr(attr, value);
}
PyObject* KX_GameObject::PyGetLinearVelocity(PyObject* self, PyObject* args)
{
// only can get the velocity if we have a physics object connected to us...
int local = 0;
if (PyArg_ParseTuple(args,"|i",&local))
{
return PyObjectFrom(GetLinearVelocity((local!=0)));
}
else
{
return NULL;
}
}
PyObject* KX_GameObject::PySetLinearVelocity(PyObject* self, PyObject* args)
{
int local = 0;
PyObject* pyvect;
if (PyArg_ParseTuple(args,"O|i",&pyvect,&local)) {
MT_Vector3 velocity;
if (PyVecTo(pyvect, velocity)) {
setLinearVelocity(velocity, (local!=0));
Py_RETURN_NONE;
}
}
return NULL;
}
PyObject* KX_GameObject::PyGetAngularVelocity(PyObject* self, PyObject* args)
{
// only can get the velocity if we have a physics object connected to us...
int local = 0;
if (PyArg_ParseTuple(args,"|i",&local))
{
return PyObjectFrom(GetAngularVelocity((local!=0)));
}
else
{
return NULL;
}
}
PyObject* KX_GameObject::PySetAngularVelocity(PyObject* self, PyObject* args)
{
int local = 0;
PyObject* pyvect;
if (PyArg_ParseTuple(args,"O|i",&pyvect,&local)) {
MT_Vector3 velocity;
if (PyVecTo(pyvect, velocity)) {
setAngularVelocity(velocity, (local!=0));
Py_RETURN_NONE;
}
}
return NULL;
}
PyObject* KX_GameObject::PySetVisible(PyObject* self, PyObject* args)
{
int visible, recursive = 0;
if (!PyArg_ParseTuple(args,"i|i",&visible, &recursive))
return NULL;
SetVisible(visible ? true:false, recursive ? true:false);
UpdateBuckets(recursive ? true:false);
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyGetVisible(PyObject* self)
{
return PyInt_FromLong(m_bVisible);
}
PyObject* KX_GameObject::PyGetState(PyObject* self)
{
int state = 0;
state |= GetState();
return PyInt_FromLong(state);
}
PyObject* KX_GameObject::PySetState(PyObject* self, PyObject* value)
{
int state_i = PyInt_AsLong(value);
unsigned int state = 0;
if (state_i == -1 && PyErr_Occurred()) {
PyErr_SetString(PyExc_TypeError, "expected an int bit field");
return NULL;
}
state |= state_i;
if ((state & ((1<<30)-1)) == 0) {
PyErr_SetString(PyExc_AttributeError, "The state bitfield was not between 0 and 30 (1<<0 and 1<<29)");
return NULL;
}
SetState(state);
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyGetVelocity(PyObject* self, PyObject* args)
{
// only can get the velocity if we have a physics object connected to us...
MT_Vector3 velocity(0.0,0.0,0.0);
MT_Point3 point(0.0,0.0,0.0);
PyObject* pypos = NULL;
if (PyArg_ParseTuple(args, "|O", &pypos))
{
if (pypos)
PyVecTo(pypos, point);
}
else {
return NULL;
}
if (m_pPhysicsController1)
{
velocity = m_pPhysicsController1->GetVelocity(point);
}
return PyObjectFrom(velocity);
}
PyObject* KX_GameObject::PyGetMass(PyObject* self)
{
return PyFloat_FromDouble(GetPhysicsController()->GetMass());
}
PyObject* KX_GameObject::PyGetReactionForce(PyObject* self)
{
// only can get the velocity if we have a physics object connected to us...
return PyObjectFrom(GetPhysicsController()->getReactionForce());
}
PyObject* KX_GameObject::PyEnableRigidBody(PyObject* self)
{
GetPhysicsController()->setRigidBody(true);
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyDisableRigidBody(PyObject* self)
{
GetPhysicsController()->setRigidBody(false);
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyGetParent(PyObject* self)
{
KX_GameObject* parent = this->GetParent();
if (parent)
{
parent->AddRef();
return parent;
}
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PySetParent(PyObject* self, PyObject* value)
{
if (!PyObject_TypeCheck(value, &KX_GameObject::Type)) {
PyErr_SetString(PyExc_TypeError, "expected a KX_GameObject type");
return NULL;
}
// The object we want to set as parent
CValue *m_ob = (CValue*)value;
KX_GameObject *obj = ((KX_GameObject*)m_ob);
KX_Scene *scene = PHY_GetActiveScene();
this->SetParent(scene, obj);
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyRemoveParent(PyObject* self)
{
KX_Scene *scene = PHY_GetActiveScene();
this->RemoveParent(scene);
Py_RETURN_NONE;
}
static void walk_children(SG_Node* node, CListValue* list, bool recursive)
{
NodeList& children = node->GetSGChildren();
for (NodeList::iterator childit = children.begin();!(childit==children.end());++childit)
{
SG_Node* childnode = (*childit);
CValue* childobj = (CValue*)childnode->GetSGClientObject();
if (childobj != NULL) // This is a GameObject
{
// add to the list
list->Add(childobj->AddRef());
}
// if the childobj is NULL then this may be an inverse parent link
// so a non recursive search should still look down this node.
if (recursive || childobj==NULL) {
walk_children(childnode, list, recursive);
}
}
}
PyObject* KX_GameObject::PyGetChildren(PyObject* self)
{
CListValue* list = new CListValue();
walk_children(m_pSGNode, list, 0);
return list;
}
PyObject* KX_GameObject::PyGetChildrenRecursive(PyObject* self)
{
CListValue* list = new CListValue();
walk_children(m_pSGNode, list, 1);
return list;
}
PyObject* KX_GameObject::PyGetMesh(PyObject* self, PyObject* args)
{
int mesh = 0;
if (!PyArg_ParseTuple(args, "|i", &mesh))
return NULL; // python sets a simple error
if (((unsigned int)mesh < m_meshes.size()) && mesh >= 0)
{
KX_MeshProxy* meshproxy = new KX_MeshProxy(m_meshes[mesh]);
return meshproxy;
}
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PySetCollisionMargin(PyObject* self, PyObject* value)
{
float collisionMargin = PyFloat_AsDouble(value);
if (collisionMargin==-1 && PyErr_Occurred()) {
PyErr_SetString(PyExc_TypeError, "expected a float");
return NULL;
}
if (m_pPhysicsController1)
{
m_pPhysicsController1->setMargin(collisionMargin);
Py_RETURN_NONE;
}
PyErr_SetString(PyExc_RuntimeError, "This object has no physics controller");
return NULL;
}
PyObject* KX_GameObject::PyApplyImpulse(PyObject* self, PyObject* args)
{
PyObject* pyattach;
PyObject* pyimpulse;
if (!m_pPhysicsController1) {
PyErr_SetString(PyExc_RuntimeError, "This object has no physics controller");
return NULL;
}
if (PyArg_ParseTuple(args, "OO", &pyattach, &pyimpulse))
{
MT_Point3 attach;
MT_Vector3 impulse;
if (PyVecTo(pyattach, attach) && PyVecTo(pyimpulse, impulse))
{
m_pPhysicsController1->applyImpulse(attach, impulse);
Py_RETURN_NONE;
}
}
return NULL;
}
PyObject* KX_GameObject::PySuspendDynamics(PyObject* self)
{
SuspendDynamics();
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyRestoreDynamics(PyObject* self)
{
RestoreDynamics();
Py_RETURN_NONE;
}
PyObject* KX_GameObject::PyGetOrientation(PyObject* self) //keywords
{
return PyObjectFrom(NodeGetWorldOrientation());
}
PyObject* KX_GameObject::PySetOrientation(PyObject* self, PyObject* value)
{
MT_Matrix3x3 matrix;
if (PyObject_IsMT_Matrix(value, 3) && PyMatTo(value, matrix))
{
NodeSetLocalOrientation(matrix);
NodeUpdateGS(0.f,true);
Py_RETURN_NONE;
}
MT_Quaternion quat;
if (PyVecTo(value, quat))
{
matrix.setRotation(quat);
NodeSetLocalOrientation(matrix);
NodeUpdateGS(0.f,true);
Py_RETURN_NONE;
}
return NULL;
}
PyObject* KX_GameObject::PyAlignAxisToVect(PyObject* self, PyObject* args)
{
PyObject* pyvect;
int axis = 2; //z axis is the default
float fac = 1.0;
if (PyArg_ParseTuple(args,"O|if",&pyvect,&axis, &fac))
{
MT_Vector3 vect;
if (PyVecTo(pyvect, vect))
{
if (fac<=0.0) Py_RETURN_NONE; // Nothing to do.
if (fac> 1.0) fac= 1.0;
AlignAxisToVect(vect,axis,fac);
NodeUpdateGS(0.f,true);
Py_RETURN_NONE;
}
}
return NULL;
}
PyObject* KX_GameObject::PyGetAxisVect(PyObject* self, PyObject* value)
{
MT_Vector3 vect;
if (PyVecTo(value, vect))
{
return PyObjectFrom(NodeGetWorldOrientation() * vect);
}
return NULL;
}
PyObject* KX_GameObject::PySetPosition(PyObject* self, PyObject* value)
{
MT_Point3 pos;
if (PyVecTo(value, pos))
{
NodeSetLocalPosition(pos);
NodeUpdateGS(0.f,true);
Py_RETURN_NONE;
}
return NULL;
}
PyObject* KX_GameObject::PySetWorldPosition(PyObject* self, PyObject* value)
{
MT_Point3 pos;
if (PyVecTo(value, pos))
{
NodeSetWorldPosition(pos);
NodeUpdateGS(0.f,true);
Py_RETURN_NONE;
}
return NULL;
}
PyObject* KX_GameObject::PyGetPhysicsId(PyObject* self)
{
KX_IPhysicsController* ctrl = GetPhysicsController();
uint_ptr physid=0;
if (ctrl)
{
physid= (uint_ptr)ctrl->GetUserData();
}
return PyInt_FromLong((long)physid);
}
PyObject* KX_GameObject::PyGetPropertyNames(PyObject* self)
{
return ConvertKeysToPython();
}
KX_PYMETHODDEF_DOC(KX_GameObject, getDistanceTo,
"getDistanceTo(other): get distance to another point/KX_GameObject")
{
MT_Point3 b;
if (PyVecArgTo(args, b))
{
return PyFloat_FromDouble(NodeGetWorldPosition().distance(b));
}
PyErr_Clear();
PyObject *pyother;
KX_GameObject *other;
if (PyArg_ParseTuple(args, "O", &pyother) && ConvertPythonToGameObject(pyother, &other, false))
{
return PyFloat_FromDouble(NodeGetWorldPosition().distance(other->NodeGetWorldPosition()));
}
return NULL;
}
KX_PYMETHODDEF_DOC(KX_GameObject, getVectTo,
"getVectTo(other): get vector and the distance to another point/KX_GameObject\n"
"Returns a 3-tuple with (distance,worldVector,localVector)\n")
{
MT_Point3 toPoint, fromPoint;
MT_Vector3 toDir, locToDir;
MT_Scalar distance;
PyObject *returnValue;
PyObject *pyother;
if (!PyVecArgTo(args, toPoint))
{
PyErr_Clear();
KX_GameObject *other;
if (PyArg_ParseTuple(args, "O", &pyother) && ConvertPythonToGameObject(pyother, &other, false))
{
toPoint = other->NodeGetWorldPosition();
} else
{
PyErr_SetString(PyExc_TypeError, "Expected a 3D Vector or GameObject type");
return NULL;
}
}
fromPoint = NodeGetWorldPosition();
toDir = toPoint-fromPoint;
distance = toDir.length();
if (MT_fuzzyZero(distance))
{
//cout << "getVectTo() Error: Null vector!\n";
locToDir = toDir = MT_Vector3(0.0,0.0,0.0);
distance = 0.0;
} else {
toDir.normalize();
locToDir = toDir * NodeGetWorldOrientation();
}
returnValue = PyTuple_New(3);
if (returnValue) { // very unlikely to fail, python sets a memory error here.
PyTuple_SET_ITEM(returnValue, 0, PyFloat_FromDouble(distance));
PyTuple_SET_ITEM(returnValue, 1, PyObjectFrom(toDir));
PyTuple_SET_ITEM(returnValue, 2, PyObjectFrom(locToDir));
}
return returnValue;
}
bool KX_GameObject::RayHit(KX_ClientObjectInfo* client, KX_RayCast* result, void * const data)
{
KX_GameObject* hitKXObj = client->m_gameobject;
// if X-ray option is selected, the unwnted objects were not tested, so get here only with true hit
// if not, all objects were tested and the front one may not be the correct one.
if (m_xray || m_testPropName.Length() == 0 || hitKXObj->GetProperty(m_testPropName) != NULL)
{
m_pHitObject = hitKXObj;
return true;
}
// return true to stop RayCast::RayTest from looping, the above test was decisive
// We would want to loop only if we want to get more than one hit point
return true;
}
/* this function is used to pre-filter the object before casting the ray on them.
This is useful for "X-Ray" option when we want to see "through" unwanted object.
*/
bool KX_GameObject::NeedRayCast(KX_ClientObjectInfo* client)
{
KX_GameObject* hitKXObj = client->m_gameobject;
if (client->m_type > KX_ClientObjectInfo::ACTOR)
{
// Unknown type of object, skip it.
// Should not occur as the sensor objects are filtered in RayTest()
printf("Invalid client type %d found in ray casting\n", client->m_type);
return false;
}
// if X-Ray option is selected, skip object that don't match the criteria as we see through them
// if not, test all objects because we don't know yet which one will be on front
if (!m_xray || m_testPropName.Length() == 0 || hitKXObj->GetProperty(m_testPropName) != NULL)
{
return true;
}
// skip the object
return false;
}
KX_PYMETHODDEF_DOC(KX_GameObject, rayCastTo,
"rayCastTo(other,dist,prop): look towards another point/KX_GameObject and return first object hit within dist that matches prop\n"
" prop = property name that object must have; can be omitted => detect any object\n"
" dist = max distance to look (can be negative => look behind); 0 or omitted => detect up to other\n"
" other = 3-tuple or object reference")
{
MT_Point3 toPoint;
PyObject* pyarg;
float dist = 0.0f;
char *propName = NULL;
if (!PyArg_ParseTuple(args,"O|fs", &pyarg, &dist, &propName)) {
return NULL; // python sets simple error
}
if (!PyVecTo(pyarg, toPoint))
{
KX_GameObject *other;
PyErr_Clear();
if (ConvertPythonToGameObject(pyarg, &other, false))
{
toPoint = other->NodeGetWorldPosition();
} else
{
PyErr_SetString(PyExc_TypeError, "the first argument to rayCastTo must be a vector or a KX_GameObject");
return NULL;
}
}
MT_Point3 fromPoint = NodeGetWorldPosition();
if (dist != 0.0f)
{
MT_Vector3 toDir = toPoint-fromPoint;
toDir.normalize();
toPoint = fromPoint + (dist) * toDir;
}
PHY_IPhysicsEnvironment* pe = GetPhysicsEnvironment();
KX_IPhysicsController *spc = GetPhysicsController();
KX_GameObject *parent = GetParent();
if (!spc && parent)
spc = parent->GetPhysicsController();
if (parent)
parent->Release();
m_pHitObject = NULL;
if (propName)
m_testPropName = propName;
else
m_testPropName.SetLength(0);
KX_RayCast::Callback<KX_GameObject> callback(this,spc);
KX_RayCast::RayTest(pe, fromPoint, toPoint, callback);
if (m_pHitObject)
{
m_pHitObject->AddRef();
return m_pHitObject;
}
Py_RETURN_NONE;
}
KX_PYMETHODDEF_DOC(KX_GameObject, rayCast,
"rayCast(to,from,dist,prop,face,xray,poly): cast a ray and return 3-tuple (object,hit,normal) or 4-tuple (object,hit,normal,polygon) of contact point with object within dist that matches prop.\n"
" If no hit, return (None,None,None) or (None,None,None,None).\n"
" to = 3-tuple or object reference for destination of ray (if object, use center of object)\n"
" from = 3-tuple or object reference for origin of ray (if object, use center of object)\n"
" Can be None or omitted => start from self object center\n"
" dist = max distance to look (can be negative => look behind); 0 or omitted => detect up to to\n"
" prop = property name that object must have; can be omitted => detect any object\n"
" face = normal option: 1=>return face normal; 0 or omitted => normal is oriented towards origin\n"
" xray = X-ray option: 1=>skip objects that don't match prop; 0 or omitted => stop on first object\n"
" poly = polygon option: 1=>return value is a 4-tuple and the 4th element is a KX_PolyProxy object\n"
" which can be None if hit object has no mesh or if there is no hit\n"
" If 0 or omitted, return value is a 3-tuple\n"
"Note: The object on which you call this method matters: the ray will ignore it.\n"
" prop and xray option interact as follow:\n"
" prop off, xray off: return closest hit or no hit if there is no object on the full extend of the ray\n"
" prop off, xray on : idem\n"
" prop on, xray off: return closest hit if it matches prop, no hit otherwise\n"
" prop on, xray on : return closest hit matching prop or no hit if there is no object matching prop on the full extend of the ray\n")
{
MT_Point3 toPoint;
MT_Point3 fromPoint;
PyObject* pyto;
PyObject* pyfrom = NULL;
float dist = 0.0f;
char *propName = NULL;
KX_GameObject *other;
int face=0, xray=0, poly=0;
if (!PyArg_ParseTuple(args,"O|Ofsiii", &pyto, &pyfrom, &dist, &propName, &face, &xray, &poly)) {
return NULL; // Python sets a simple error
}
if (!PyVecTo(pyto, toPoint))
{
PyErr_Clear();
if (ConvertPythonToGameObject(pyto, &other, false))
{
toPoint = other->NodeGetWorldPosition();
} else
{
PyErr_SetString(PyExc_TypeError, "the first argument to rayCast must be a vector or a KX_GameObject");
return NULL;
}
}
if (!pyfrom || pyfrom == Py_None)
{
fromPoint = NodeGetWorldPosition();
}
else if (!PyVecTo(pyfrom, fromPoint))
{
PyErr_Clear();
if (ConvertPythonToGameObject(pyfrom, &other, false))
{
fromPoint = other->NodeGetWorldPosition();
} else
{
PyErr_SetString(PyExc_TypeError, "the second optional argument to rayCast must be a vector or a KX_GameObject");
return NULL;
}
}
if (dist != 0.0f) {
MT_Vector3 toDir = toPoint-fromPoint;
if (MT_fuzzyZero(toDir.length2())) {
return Py_BuildValue("OOO", Py_None, Py_None, Py_None);
}
toDir.normalize();
toPoint = fromPoint + (dist) * toDir;
} else if (MT_fuzzyZero((toPoint-fromPoint).length2())) {
return Py_BuildValue("OOO", Py_None, Py_None, Py_None);
}
PHY_IPhysicsEnvironment* pe = GetPhysicsEnvironment();
KX_IPhysicsController *spc = GetPhysicsController();
KX_GameObject *parent = GetParent();
if (!spc && parent)
spc = parent->GetPhysicsController();
if (parent)
parent->Release();
m_pHitObject = NULL;
if (propName)
m_testPropName = propName;
else
m_testPropName.SetLength(0);
m_xray = xray;
// to get the hit results
KX_RayCast::Callback<KX_GameObject> callback(this,spc,NULL,face);
KX_RayCast::RayTest(pe, fromPoint, toPoint, callback);
if (m_pHitObject)
{
PyObject* returnValue = (poly) ? PyTuple_New(4) : PyTuple_New(3);
if (returnValue) { // unlikely this would ever fail, if it does python sets an error
PyTuple_SET_ITEM(returnValue, 0, m_pHitObject->AddRef());
PyTuple_SET_ITEM(returnValue, 1, PyObjectFrom(callback.m_hitPoint));
PyTuple_SET_ITEM(returnValue, 2, PyObjectFrom(callback.m_hitNormal));
if (poly)
{
if (callback.m_hitMesh)
{
// if this field is set, then we can trust that m_hitPolygon is a valid polygon
RAS_Polygon* poly = callback.m_hitMesh->GetPolygon(callback.m_hitPolygon);
KX_PolyProxy* polyproxy = new KX_PolyProxy(callback.m_hitMesh, poly);
PyTuple_SET_ITEM(returnValue, 3, polyproxy);
}
else
{
Py_INCREF(Py_None);
PyTuple_SET_ITEM(returnValue, 3, Py_None);
}
}
}
return returnValue;
}
// no hit
if (poly)
return Py_BuildValue("OOOO", Py_None, Py_None, Py_None, Py_None);
else
return Py_BuildValue("OOO", Py_None, Py_None, Py_None);
}
/* ---------------------------------------------------------------------
* Some stuff taken from the header
* --------------------------------------------------------------------- */
void KX_GameObject::Relink(GEN_Map<GEN_HashedPtr, void*> *map_parameter)
{
// we will relink the sensors and actuators that use object references
// if the object is part of the replicated hierarchy, use the new
// object reference instead
SCA_SensorList& sensorlist = GetSensors();
SCA_SensorList::iterator sit;
for (sit=sensorlist.begin(); sit != sensorlist.end(); sit++)
{
(*sit)->Relink(map_parameter);
}
SCA_ActuatorList& actuatorlist = GetActuators();
SCA_ActuatorList::iterator ait;
for (ait=actuatorlist.begin(); ait != actuatorlist.end(); ait++)
{
(*ait)->Relink(map_parameter);
}
}
bool ConvertPythonToGameObject(PyObject * value, KX_GameObject **object, bool py_none_ok)
{
if (value==NULL) {
PyErr_SetString(PyExc_TypeError, "Error in ConvertPythonToGameObject, python pointer NULL, should never happen");
*object = NULL;
return false;
}
if (value==Py_None) {
*object = NULL;
if (py_none_ok) {
return true;
} else {
PyErr_SetString(PyExc_TypeError, "Expected KX_GameObject or a string for a name of a KX_GameObject, None is invalid");
return false;
}
return (py_none_ok ? true : false);
}
if (PyString_Check(value)) {
*object = (KX_GameObject *)SCA_ILogicBrick::m_sCurrentLogicManager->GetGameObjectByName(STR_String( PyString_AsString(value) ));
if (*object) {
return true;
} else {
PyErr_SetString(PyExc_ValueError, "Requested name did not match any KX_GameObject");
return false;
}
}
if (PyObject_TypeCheck(value, &KX_GameObject::Type)) {
*object = static_cast<KX_GameObject*>(value);
return true;
}
*object = NULL;
if (py_none_ok) {
PyErr_SetString(PyExc_TypeError, "Expect a KX_GameObject, a string or None");
} else {
PyErr_SetString(PyExc_TypeError, "Expect a KX_GameObject or a string");
}
return false;
}