blender/intern/opensubdiv/opensubdiv_device_context_cuda.cc
Brecht Van Lommel 1dafe759ed Update CUEW to latest version
This brings separate initialization for libcuda and libnvrtc, which
fixes Cycles nvrtc compilation not working on build machines without
CUDA hardware available.

Differential Revision: https://developer.blender.org/D3045
2018-02-07 11:53:01 +01:00

238 lines
7.1 KiB
C++

/*
* Adopted from OpenSubdiv with the following license:
*
* Copyright 2015 Pixar
*
* Licensed under the Apache License, Version 2.0 (the "Apache License")
* with the following modification; you may not use this file except in
* compliance with the Apache License and the following modification to it:
* Section 6. Trademarks. is deleted and replaced with:
*
* 6. Trademarks. This License does not grant permission to use the trade
* names, trademarks, service marks, or product names of the Licensor
* and its affiliates, except as required to comply with Section 4(c) of
* the License and to reproduce the content of the NOTICE file.
*
* You may obtain a copy of the Apache License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the Apache License with the above modification is
* distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the Apache License for the specific
* language governing permissions and limitations under the Apache License.
*/
#ifdef OPENSUBDIV_HAS_CUDA
#ifdef _MSC_VER
# include "iso646.h"
#endif
#include "opensubdiv_device_context_cuda.h"
#if defined(_WIN32)
# include <windows.h>
#elif defined(__APPLE__)
# include <OpenGL/OpenGL.h>
#else
# include <X11/Xlib.h>
# include <GL/glx.h>
#endif
#include <cstdio>
#include <algorithm>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include <cuda_gl_interop.h>
#define message(fmt, ...)
//#define message(fmt, ...) fprintf(stderr, fmt, __VA_ARGS__)
#define error(fmt, ...) fprintf(stderr, fmt, __VA_ARGS__)
static int _GetCudaDeviceForCurrentGLContext()
{
// Find and use the CUDA device for the current GL context
unsigned int interopDeviceCount = 0;
int interopDevices[1];
cudaError_t status = cudaGLGetDevices(&interopDeviceCount, interopDevices,
1, cudaGLDeviceListCurrentFrame);
if (status == cudaErrorNoDevice or interopDeviceCount != 1) {
message("CUDA no interop devices found.\n");
return 0;
}
int device = interopDevices[0];
#if defined(_WIN32)
return device;
#elif defined(__APPLE__)
return device;
#else // X11
Display * display = glXGetCurrentDisplay();
int screen = DefaultScreen(display);
if (device != screen) {
error("The CUDA interop device (%d) does not match "
"the screen used by the current GL context (%d), "
"which may cause slow performance on systems "
"with multiple GPU devices.", device, screen);
}
message("CUDA init using device for current GL context: %d\n", device);
return device;
#endif
}
/* From "NVIDIA GPU Computing SDK 4.2/C/common/inc/cutil_inline_runtime.h": */
/* Beginning of GPU Architecture definitions */
inline int _ConvertSMVer2Cores_local(int major, int minor)
{
/* Defines for GPU Architecture types (using the SM version to determine
* the # of cores per SM
*/
typedef struct {
int SM; /* 0xMm (hexidecimal notation),
* M = SM Major version,
* and m = SM minor version
*/
int Cores;
} sSMtoCores;
sSMtoCores nGpuArchCoresPerSM[] =
{ { 0x10, 8 }, /* Tesla Generation (SM 1.0) G80 class */
{ 0x11, 8 }, /* Tesla Generation (SM 1.1) G8x class */
{ 0x12, 8 }, /* Tesla Generation (SM 1.2) G9x class */
{ 0x13, 8 }, /* Tesla Generation (SM 1.3) GT200 class */
{ 0x20, 32 }, /* Fermi Generation (SM 2.0) GF100 class */
{ 0x21, 48 }, /* Fermi Generation (SM 2.1) GF10x class */
{ 0x30, 192}, /* Fermi Generation (SM 3.0) GK10x class */
{ -1, -1 }
};
int index = 0;
while (nGpuArchCoresPerSM[index].SM != -1) {
if (nGpuArchCoresPerSM[index].SM == ((major << 4) + minor)) {
return nGpuArchCoresPerSM[index].Cores;
}
index++;
}
printf("MapSMtoCores undefined SMversion %d.%d!\n", major, minor);
return -1;
}
/* End of GPU Architecture definitions. */
/* This function returns the best GPU (with maximum GFLOPS) */
inline int cutGetMaxGflopsDeviceId()
{
int current_device = 0, sm_per_multiproc = 0;
int max_compute_perf = 0, max_perf_device = -1;
int device_count = 0, best_SM_arch = 0;
int compat_major, compat_minor;
cuDeviceGetCount(&device_count);
/* Find the best major SM Architecture GPU device. */
while (current_device < device_count) {
cuDeviceComputeCapability(&compat_major, &compat_minor, current_device);
if (compat_major > 0 && compat_major < 9999) {
best_SM_arch = std::max(best_SM_arch, compat_major);
}
current_device++;
}
/* Find the best CUDA capable GPU device. */
current_device = 0;
while (current_device < device_count) {
cuDeviceComputeCapability(&compat_major, &compat_minor, current_device);
if (compat_major == 9999 && compat_minor == 9999) {
sm_per_multiproc = 1;
} else {
sm_per_multiproc = _ConvertSMVer2Cores_local(compat_major,
compat_minor);
}
int multi_processor_count;
cuDeviceGetAttribute(&multi_processor_count,
CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT,
current_device);
int clock_rate;
cuDeviceGetAttribute(&clock_rate,
CU_DEVICE_ATTRIBUTE_CLOCK_RATE,
current_device);
int compute_perf = multi_processor_count * sm_per_multiproc * clock_rate;
if (compute_perf > max_compute_perf) {
/* If we find GPU with SM major > 2, search only these */
if (best_SM_arch > 2) {
/* If our device==dest_SM_arch, choose this, or else pass. */
if (compat_major == best_SM_arch) {
max_compute_perf = compute_perf;
max_perf_device = current_device;
}
} else {
max_compute_perf = compute_perf;
max_perf_device = current_device;
}
}
++current_device;
}
return max_perf_device;
}
bool CudaDeviceContext::HAS_CUDA_VERSION_4_0()
{
#ifdef OPENSUBDIV_HAS_CUDA
static bool cudaInitialized = false;
static bool cudaLoadSuccess = true;
if (!cudaInitialized) {
cudaInitialized = true;
# ifdef OPENSUBDIV_HAS_CUEW
cudaLoadSuccess = cuewInit(CUEW_INIT_CUDA) == CUEW_SUCCESS;
if (!cudaLoadSuccess) {
fprintf(stderr, "Loading CUDA failed.\n");
}
# endif
// Need to initialize CUDA here so getting device
// with the maximum FPLOS works fine.
if (cuInit(0) == CUDA_SUCCESS) {
// This is to deal with cases like NVidia Optimus,
// when there might be CUDA library installed but
// NVidia card is not being active.
if (cutGetMaxGflopsDeviceId() < 0) {
cudaLoadSuccess = false;
}
}
else {
cudaLoadSuccess = false;
}
}
return cudaLoadSuccess;
#else
return false;
#endif
}
CudaDeviceContext::CudaDeviceContext()
: _initialized(false) {
}
CudaDeviceContext::~CudaDeviceContext() {
cudaDeviceReset();
}
bool CudaDeviceContext::Initialize()
{
/* See if any cuda device is available. */
int deviceCount = 0;
cudaGetDeviceCount(&deviceCount);
message("CUDA device count: %d\n", deviceCount);
if (deviceCount <= 0) {
return false;
}
cudaGLSetGLDevice(_GetCudaDeviceForCurrentGLContext());
_initialized = true;
return true;
}
#endif /* OPENSUBDIV_HAS_CUDA */