blender/intern/cycles/kernel/kernel_path.h
Sergey Sharybin f01e43fac3 Fix T52433: Volume Absorption color tint
Need to exit the volume stack when shadow ray laves the medium.

Thanks Brecht for review and help in troubleshooting!
2017-09-05 15:48:34 +02:00

809 lines
25 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef __OSL__
# include "kernel/osl/osl_shader.h"
#endif
#include "kernel/kernel_random.h"
#include "kernel/kernel_projection.h"
#include "kernel/kernel_montecarlo.h"
#include "kernel/kernel_differential.h"
#include "kernel/kernel_camera.h"
#include "kernel/geom/geom.h"
#include "kernel/bvh/bvh.h"
#include "kernel/kernel_accumulate.h"
#include "kernel/kernel_shader.h"
#include "kernel/kernel_light.h"
#include "kernel/kernel_passes.h"
#ifdef __SUBSURFACE__
# include "kernel/kernel_subsurface.h"
#endif
#ifdef __VOLUME__
# include "kernel/kernel_volume.h"
#endif
#include "kernel/kernel_path_state.h"
#include "kernel/kernel_shadow.h"
#include "kernel/kernel_emission.h"
#include "kernel/kernel_path_common.h"
#include "kernel/kernel_path_surface.h"
#include "kernel/kernel_path_volume.h"
#include "kernel/kernel_path_subsurface.h"
CCL_NAMESPACE_BEGIN
ccl_device_noinline void kernel_path_ao(KernelGlobals *kg,
ShaderData *sd,
ShaderData *emission_sd,
PathRadiance *L,
ccl_addr_space PathState *state,
float3 throughput,
float3 ao_alpha)
{
/* todo: solve correlation */
float bsdf_u, bsdf_v;
path_state_rng_2D(kg, state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
float ao_factor = kernel_data.background.ao_factor;
float3 ao_N;
float3 ao_bsdf = shader_bsdf_ao(kg, sd, ao_factor, &ao_N);
float3 ao_D;
float ao_pdf;
sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf);
if(dot(sd->Ng, ao_D) > 0.0f && ao_pdf != 0.0f) {
Ray light_ray;
float3 ao_shadow;
light_ray.P = ray_offset(sd->P, sd->Ng);
light_ray.D = ao_D;
light_ray.t = kernel_data.background.ao_distance;
#ifdef __OBJECT_MOTION__
light_ray.time = sd->time;
#endif /* __OBJECT_MOTION__ */
light_ray.dP = sd->dP;
light_ray.dD = differential3_zero();
if(!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &ao_shadow)) {
path_radiance_accum_ao(L, state, throughput, ao_alpha, ao_bsdf, ao_shadow);
}
else {
path_radiance_accum_total_ao(L, state, throughput, ao_bsdf);
}
}
}
#ifndef __SPLIT_KERNEL__
#if defined(__BRANCHED_PATH__) || defined(__BAKING__)
ccl_device void kernel_path_indirect(KernelGlobals *kg,
ShaderData *sd,
ShaderData *emission_sd,
Ray *ray,
float3 throughput,
int num_samples,
PathState *state,
PathRadiance *L)
{
/* path iteration */
for(;;) {
/* intersect scene */
Intersection isect;
uint visibility = path_state_ray_visibility(kg, state);
if(state->bounce > kernel_data.integrator.ao_bounces) {
visibility = PATH_RAY_SHADOW;
ray->t = kernel_data.background.ao_distance;
}
bool hit = scene_intersect(kg,
*ray,
visibility,
&isect,
NULL,
0.0f, 0.0f);
#ifdef __LAMP_MIS__
if(kernel_data.integrator.use_lamp_mis && !(state->flag & PATH_RAY_CAMERA)) {
/* ray starting from previous non-transparent bounce */
Ray light_ray;
light_ray.P = ray->P - state->ray_t*ray->D;
state->ray_t += isect.t;
light_ray.D = ray->D;
light_ray.t = state->ray_t;
light_ray.time = ray->time;
light_ray.dD = ray->dD;
light_ray.dP = ray->dP;
/* intersect with lamp */
float3 emission;
if(indirect_lamp_emission(kg, emission_sd, state, &light_ray, &emission)) {
path_radiance_accum_emission(L,
throughput,
emission,
state->bounce);
}
}
#endif /* __LAMP_MIS__ */
#ifdef __VOLUME__
/* Sanitize volume stack. */
if(!hit) {
kernel_volume_clean_stack(kg, state->volume_stack);
}
/* volume attenuation, emission, scatter */
if(state->volume_stack[0].shader != SHADER_NONE) {
Ray volume_ray = *ray;
volume_ray.t = (hit)? isect.t: FLT_MAX;
bool heterogeneous =
volume_stack_is_heterogeneous(kg,
state->volume_stack);
# ifdef __VOLUME_DECOUPLED__
int sampling_method =
volume_stack_sampling_method(kg,
state->volume_stack);
bool decoupled = kernel_volume_use_decoupled(kg, heterogeneous, false, sampling_method);
if(decoupled) {
/* cache steps along volume for repeated sampling */
VolumeSegment volume_segment;
shader_setup_from_volume(kg,
sd,
&volume_ray);
kernel_volume_decoupled_record(kg,
state,
&volume_ray,
sd,
&volume_segment,
heterogeneous);
volume_segment.sampling_method = sampling_method;
/* emission */
if(volume_segment.closure_flag & SD_EMISSION) {
path_radiance_accum_emission(L,
throughput,
volume_segment.accum_emission,
state->bounce);
}
/* scattering */
VolumeIntegrateResult result = VOLUME_PATH_ATTENUATED;
if(volume_segment.closure_flag & SD_SCATTER) {
int all = kernel_data.integrator.sample_all_lights_indirect;
/* direct light sampling */
kernel_branched_path_volume_connect_light(kg,
sd,
emission_sd,
throughput,
state,
L,
all,
&volume_ray,
&volume_segment);
/* indirect sample. if we use distance sampling and take just
* one sample for direct and indirect light, we could share
* this computation, but makes code a bit complex */
float rphase = path_state_rng_1D_for_decision(kg, state, PRNG_PHASE);
float rscatter = path_state_rng_1D_for_decision(kg, state, PRNG_SCATTER_DISTANCE);
result = kernel_volume_decoupled_scatter(kg,
state,
&volume_ray,
sd,
&throughput,
rphase,
rscatter,
&volume_segment,
NULL,
true);
}
/* free cached steps */
kernel_volume_decoupled_free(kg, &volume_segment);
if(result == VOLUME_PATH_SCATTERED) {
if(kernel_path_volume_bounce(kg,
sd,
&throughput,
state,
L,
ray))
{
continue;
}
else {
break;
}
}
else {
throughput *= volume_segment.accum_transmittance;
}
}
else
# endif /* __VOLUME_DECOUPLED__ */
{
/* integrate along volume segment with distance sampling */
VolumeIntegrateResult result = kernel_volume_integrate(
kg, state, sd, &volume_ray, L, &throughput, heterogeneous);
# ifdef __VOLUME_SCATTER__
if(result == VOLUME_PATH_SCATTERED) {
/* direct lighting */
kernel_path_volume_connect_light(kg,
sd,
emission_sd,
throughput,
state,
L);
/* indirect light bounce */
if(kernel_path_volume_bounce(kg,
sd,
&throughput,
state,
L,
ray))
{
continue;
}
else {
break;
}
}
# endif /* __VOLUME_SCATTER__ */
}
}
#endif /* __VOLUME__ */
if(!hit) {
#ifdef __BACKGROUND__
/* sample background shader */
float3 L_background = indirect_background(kg, emission_sd, state, ray);
path_radiance_accum_background(L,
state,
throughput,
L_background);
#endif /* __BACKGROUND__ */
break;
}
else if(state->bounce > kernel_data.integrator.ao_bounces) {
break;
}
/* setup shading */
shader_setup_from_ray(kg,
sd,
&isect,
ray);
float rbsdf = path_state_rng_1D_for_decision(kg, state, PRNG_BSDF);
shader_eval_surface(kg, sd, state, rbsdf, state->flag);
#ifdef __BRANCHED_PATH__
shader_merge_closures(sd);
#endif /* __BRANCHED_PATH__ */
#ifdef __SHADOW_TRICKS__
if(!(sd->object_flag & SD_OBJECT_SHADOW_CATCHER) &&
(state->flag & PATH_RAY_SHADOW_CATCHER))
{
/* Only update transparency after shadow catcher bounce. */
L->shadow_transparency *=
average(shader_bsdf_transparency(kg, sd));
}
#endif /* __SHADOW_TRICKS__ */
/* blurring of bsdf after bounces, for rays that have a small likelihood
* of following this particular path (diffuse, rough glossy) */
if(kernel_data.integrator.filter_glossy != FLT_MAX) {
float blur_pdf = kernel_data.integrator.filter_glossy*state->min_ray_pdf;
if(blur_pdf < 1.0f) {
float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f;
shader_bsdf_blur(kg, sd, blur_roughness);
}
}
#ifdef __EMISSION__
/* emission */
if(sd->flag & SD_EMISSION) {
float3 emission = indirect_primitive_emission(kg,
sd,
isect.t,
state->flag,
state->ray_pdf);
path_radiance_accum_emission(L, throughput, emission, state->bounce);
}
#endif /* __EMISSION__ */
/* path termination. this is a strange place to put the termination, it's
* mainly due to the mixed in MIS that we use. gives too many unneeded
* shader evaluations, only need emission if we are going to terminate */
float probability =
path_state_continuation_probability(kg,
state,
throughput*num_samples);
if(probability == 0.0f) {
break;
}
else if(probability != 1.0f) {
float terminate = path_state_rng_1D_for_decision(kg, state, PRNG_TERMINATE);
if(terminate >= probability)
break;
throughput /= probability;
}
kernel_update_denoising_features(kg, sd, state, L);
#ifdef __AO__
/* ambient occlusion */
if(kernel_data.integrator.use_ambient_occlusion || (sd->flag & SD_AO)) {
kernel_path_ao(kg, sd, emission_sd, L, state, throughput, make_float3(0.0f, 0.0f, 0.0f));
}
#endif /* __AO__ */
#ifdef __SUBSURFACE__
/* bssrdf scatter to a different location on the same object, replacing
* the closures with a diffuse BSDF */
if(sd->flag & SD_BSSRDF) {
float bssrdf_probability;
ShaderClosure *sc = subsurface_scatter_pick_closure(kg, sd, &bssrdf_probability);
/* modify throughput for picking bssrdf or bsdf */
throughput *= bssrdf_probability;
/* do bssrdf scatter step if we picked a bssrdf closure */
if(sc) {
uint lcg_state = lcg_state_init(state, 0x68bc21eb);
float bssrdf_u, bssrdf_v;
path_state_rng_2D(kg,
state,
PRNG_BSDF_U,
&bssrdf_u, &bssrdf_v);
subsurface_scatter_step(kg,
sd,
state,
state->flag,
sc,
&lcg_state,
bssrdf_u, bssrdf_v,
false);
}
}
#endif /* __SUBSURFACE__ */
#if defined(__EMISSION__)
if(kernel_data.integrator.use_direct_light) {
int all = (kernel_data.integrator.sample_all_lights_indirect) ||
(state->flag & PATH_RAY_SHADOW_CATCHER);
kernel_branched_path_surface_connect_light(kg,
sd,
emission_sd,
state,
throughput,
1.0f,
L,
all);
}
#endif /* defined(__EMISSION__) */
if(!kernel_path_surface_bounce(kg, sd, &throughput, state, L, ray))
break;
}
}
#endif /* defined(__BRANCHED_PATH__) || defined(__BAKING__) */
ccl_device_inline void kernel_path_integrate(KernelGlobals *kg,
uint rng_hash,
int sample,
Ray ray,
ccl_global float *buffer,
PathRadiance *L,
bool *is_shadow_catcher)
{
/* initialize */
float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
path_radiance_init(L, kernel_data.film.use_light_pass);
/* shader data memory used for both volumes and surfaces, saves stack space */
ShaderData sd;
/* shader data used by emission, shadows, volume stacks */
ShaderData emission_sd;
PathState state;
path_state_init(kg, &emission_sd, &state, rng_hash, sample, &ray);
#ifdef __SUBSURFACE__
SubsurfaceIndirectRays ss_indirect;
kernel_path_subsurface_init_indirect(&ss_indirect);
for(;;) {
#endif /* __SUBSURFACE__ */
/* path iteration */
for(;;) {
/* intersect scene */
Intersection isect;
uint visibility = path_state_ray_visibility(kg, &state);
#ifdef __HAIR__
float difl = 0.0f, extmax = 0.0f;
uint lcg_state = 0;
if(kernel_data.bvh.have_curves) {
if((kernel_data.cam.resolution == 1) && (state.flag & PATH_RAY_CAMERA)) {
float3 pixdiff = ray.dD.dx + ray.dD.dy;
/*pixdiff = pixdiff - dot(pixdiff, ray.D)*ray.D;*/
difl = kernel_data.curve.minimum_width * len(pixdiff) * 0.5f;
}
extmax = kernel_data.curve.maximum_width;
lcg_state = lcg_state_init(&state, 0x51633e2d);
}
if(state.bounce > kernel_data.integrator.ao_bounces) {
visibility = PATH_RAY_SHADOW;
ray.t = kernel_data.background.ao_distance;
}
bool hit = scene_intersect(kg, ray, visibility, &isect, &lcg_state, difl, extmax);
#else
bool hit = scene_intersect(kg, ray, visibility, &isect, NULL, 0.0f, 0.0f);
#endif /* __HAIR__ */
#ifdef __KERNEL_DEBUG__
if(state.flag & PATH_RAY_CAMERA) {
L->debug_data.num_bvh_traversed_nodes += isect.num_traversed_nodes;
L->debug_data.num_bvh_traversed_instances += isect.num_traversed_instances;
L->debug_data.num_bvh_intersections += isect.num_intersections;
}
L->debug_data.num_ray_bounces++;
#endif /* __KERNEL_DEBUG__ */
#ifdef __LAMP_MIS__
if(kernel_data.integrator.use_lamp_mis && !(state.flag & PATH_RAY_CAMERA)) {
/* ray starting from previous non-transparent bounce */
Ray light_ray;
light_ray.P = ray.P - state.ray_t*ray.D;
state.ray_t += isect.t;
light_ray.D = ray.D;
light_ray.t = state.ray_t;
light_ray.time = ray.time;
light_ray.dD = ray.dD;
light_ray.dP = ray.dP;
/* intersect with lamp */
float3 emission;
if(indirect_lamp_emission(kg, &emission_sd, &state, &light_ray, &emission))
path_radiance_accum_emission(L, throughput, emission, state.bounce);
}
#endif /* __LAMP_MIS__ */
#ifdef __VOLUME__
/* Sanitize volume stack. */
if(!hit) {
kernel_volume_clean_stack(kg, state.volume_stack);
}
/* volume attenuation, emission, scatter */
if(state.volume_stack[0].shader != SHADER_NONE) {
Ray volume_ray = ray;
volume_ray.t = (hit)? isect.t: FLT_MAX;
bool heterogeneous = volume_stack_is_heterogeneous(kg, state.volume_stack);
# ifdef __VOLUME_DECOUPLED__
int sampling_method = volume_stack_sampling_method(kg, state.volume_stack);
bool decoupled = kernel_volume_use_decoupled(kg, heterogeneous, true, sampling_method);
if(decoupled) {
/* cache steps along volume for repeated sampling */
VolumeSegment volume_segment;
shader_setup_from_volume(kg, &sd, &volume_ray);
kernel_volume_decoupled_record(kg, &state,
&volume_ray, &sd, &volume_segment, heterogeneous);
volume_segment.sampling_method = sampling_method;
/* emission */
if(volume_segment.closure_flag & SD_EMISSION)
path_radiance_accum_emission(L, throughput, volume_segment.accum_emission, state.bounce);
/* scattering */
VolumeIntegrateResult result = VOLUME_PATH_ATTENUATED;
if(volume_segment.closure_flag & SD_SCATTER) {
int all = false;
/* direct light sampling */
kernel_branched_path_volume_connect_light(kg, &sd,
&emission_sd, throughput, &state, L, all,
&volume_ray, &volume_segment);
/* indirect sample. if we use distance sampling and take just
* one sample for direct and indirect light, we could share
* this computation, but makes code a bit complex */
float rphase = path_state_rng_1D_for_decision(kg, &state, PRNG_PHASE);
float rscatter = path_state_rng_1D_for_decision(kg, &state, PRNG_SCATTER_DISTANCE);
result = kernel_volume_decoupled_scatter(kg,
&state, &volume_ray, &sd, &throughput,
rphase, rscatter, &volume_segment, NULL, true);
}
/* free cached steps */
kernel_volume_decoupled_free(kg, &volume_segment);
if(result == VOLUME_PATH_SCATTERED) {
if(kernel_path_volume_bounce(kg, &sd, &throughput, &state, L, &ray))
continue;
else
break;
}
else {
throughput *= volume_segment.accum_transmittance;
}
}
else
# endif /* __VOLUME_DECOUPLED__ */
{
/* integrate along volume segment with distance sampling */
VolumeIntegrateResult result = kernel_volume_integrate(
kg, &state, &sd, &volume_ray, L, &throughput, heterogeneous);
# ifdef __VOLUME_SCATTER__
if(result == VOLUME_PATH_SCATTERED) {
/* direct lighting */
kernel_path_volume_connect_light(kg, &sd, &emission_sd, throughput, &state, L);
/* indirect light bounce */
if(kernel_path_volume_bounce(kg, &sd, &throughput, &state, L, &ray))
continue;
else
break;
}
# endif /* __VOLUME_SCATTER__ */
}
}
#endif /* __VOLUME__ */
if(!hit) {
/* eval background shader if nothing hit */
if(kernel_data.background.transparent && (state.flag & PATH_RAY_CAMERA)) {
L->transparent += average(throughput);
#ifdef __PASSES__
if(!(kernel_data.film.pass_flag & PASS_BACKGROUND))
#endif /* __PASSES__ */
break;
}
#ifdef __BACKGROUND__
/* sample background shader */
float3 L_background = indirect_background(kg, &emission_sd, &state, &ray);
path_radiance_accum_background(L, &state, throughput, L_background);
#endif /* __BACKGROUND__ */
break;
}
else if(state.bounce > kernel_data.integrator.ao_bounces) {
break;
}
/* setup shading */
shader_setup_from_ray(kg, &sd, &isect, &ray);
float rbsdf = path_state_rng_1D_for_decision(kg, &state, PRNG_BSDF);
shader_eval_surface(kg, &sd, &state, rbsdf, state.flag);
#ifdef __SHADOW_TRICKS__
if((sd.object_flag & SD_OBJECT_SHADOW_CATCHER)) {
if(state.flag & PATH_RAY_CAMERA) {
state.flag |= (PATH_RAY_SHADOW_CATCHER |
PATH_RAY_STORE_SHADOW_INFO);
if(!kernel_data.background.transparent) {
L->shadow_background_color =
indirect_background(kg, &emission_sd, &state, &ray);
}
L->shadow_radiance_sum = path_radiance_clamp_and_sum(kg, L);
L->shadow_throughput = average(throughput);
}
}
else if(state.flag & PATH_RAY_SHADOW_CATCHER) {
/* Only update transparency after shadow catcher bounce. */
L->shadow_transparency *=
average(shader_bsdf_transparency(kg, &sd));
}
#endif /* __SHADOW_TRICKS__ */
/* holdout */
#ifdef __HOLDOUT__
if(((sd.flag & SD_HOLDOUT) ||
(sd.object_flag & SD_OBJECT_HOLDOUT_MASK)) &&
(state.flag & PATH_RAY_CAMERA))
{
if(kernel_data.background.transparent) {
float3 holdout_weight;
if(sd.object_flag & SD_OBJECT_HOLDOUT_MASK) {
holdout_weight = make_float3(1.0f, 1.0f, 1.0f);
}
else {
holdout_weight = shader_holdout_eval(kg, &sd);
}
/* any throughput is ok, should all be identical here */
L->transparent += average(holdout_weight*throughput);
}
if(sd.object_flag & SD_OBJECT_HOLDOUT_MASK) {
break;
}
}
#endif /* __HOLDOUT__ */
/* holdout mask objects do not write data passes */
kernel_write_data_passes(kg, buffer, L, &sd, sample, &state, throughput);
/* blurring of bsdf after bounces, for rays that have a small likelihood
* of following this particular path (diffuse, rough glossy) */
if(kernel_data.integrator.filter_glossy != FLT_MAX) {
float blur_pdf = kernel_data.integrator.filter_glossy*state.min_ray_pdf;
if(blur_pdf < 1.0f) {
float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f;
shader_bsdf_blur(kg, &sd, blur_roughness);
}
}
#ifdef __EMISSION__
/* emission */
if(sd.flag & SD_EMISSION) {
/* todo: is isect.t wrong here for transparent surfaces? */
float3 emission = indirect_primitive_emission(kg, &sd, isect.t, state.flag, state.ray_pdf);
path_radiance_accum_emission(L, throughput, emission, state.bounce);
}
#endif /* __EMISSION__ */
/* path termination. this is a strange place to put the termination, it's
* mainly due to the mixed in MIS that we use. gives too many unneeded
* shader evaluations, only need emission if we are going to terminate */
float probability = path_state_continuation_probability(kg, &state, throughput);
if(probability == 0.0f) {
break;
}
else if(probability != 1.0f) {
float terminate = path_state_rng_1D_for_decision(kg, &state, PRNG_TERMINATE);
if(terminate >= probability)
break;
throughput /= probability;
}
kernel_update_denoising_features(kg, &sd, &state, L);
#ifdef __AO__
/* ambient occlusion */
if(kernel_data.integrator.use_ambient_occlusion || (sd.flag & SD_AO)) {
kernel_path_ao(kg, &sd, &emission_sd, L, &state, throughput, shader_bsdf_alpha(kg, &sd));
}
#endif /* __AO__ */
#ifdef __SUBSURFACE__
/* bssrdf scatter to a different location on the same object, replacing
* the closures with a diffuse BSDF */
if(sd.flag & SD_BSSRDF) {
if(kernel_path_subsurface_scatter(kg,
&sd,
&emission_sd,
L,
&state,
&ray,
&throughput,
&ss_indirect))
{
break;
}
}
#endif /* __SUBSURFACE__ */
/* direct lighting */
kernel_path_surface_connect_light(kg, &sd, &emission_sd, throughput, &state, L);
/* compute direct lighting and next bounce */
if(!kernel_path_surface_bounce(kg, &sd, &throughput, &state, L, &ray))
break;
}
#ifdef __SUBSURFACE__
kernel_path_subsurface_accum_indirect(&ss_indirect, L);
/* Trace indirect subsurface rays by restarting the loop. this uses less
* stack memory than invoking kernel_path_indirect.
*/
if(ss_indirect.num_rays) {
kernel_path_subsurface_setup_indirect(kg,
&ss_indirect,
&state,
&ray,
L,
&throughput);
}
else {
break;
}
}
#endif /* __SUBSURFACE__ */
#ifdef __SHADOW_TRICKS__
*is_shadow_catcher = (state.flag & PATH_RAY_SHADOW_CATCHER) != 0;
#endif /* __SHADOW_TRICKS__ */
}
ccl_device void kernel_path_trace(KernelGlobals *kg,
ccl_global float *buffer, ccl_global uint *rng_state,
int sample, int x, int y, int offset, int stride)
{
/* buffer offset */
int index = offset + x + y*stride;
int pass_stride = kernel_data.film.pass_stride;
rng_state += index;
buffer += index*pass_stride;
/* initialize random numbers and ray */
uint rng_hash;
Ray ray;
kernel_path_trace_setup(kg, rng_state, sample, x, y, &rng_hash, &ray);
/* integrate */
PathRadiance L;
bool is_shadow_catcher;
if(ray.t != 0.0f) {
kernel_path_integrate(kg, rng_hash, sample, ray, buffer, &L, &is_shadow_catcher);
kernel_write_result(kg, buffer, sample, &L, is_shadow_catcher);
}
else {
kernel_write_result(kg, buffer, sample, NULL, false);
}
}
#endif /* __SPLIT_KERNEL__ */
CCL_NAMESPACE_END