blender/intern/cycles/render/image.cpp
2020-03-19 20:02:33 +01:00

842 lines
22 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "render/image.h"
#include "device/device.h"
#include "render/colorspace.h"
#include "render/image_oiio.h"
#include "render/scene.h"
#include "render/stats.h"
#include "util/util_foreach.h"
#include "util/util_image.h"
#include "util/util_image_impl.h"
#include "util/util_logging.h"
#include "util/util_path.h"
#include "util/util_progress.h"
#include "util/util_texture.h"
#include "util/util_unique_ptr.h"
#ifdef WITH_OSL
# include <OSL/oslexec.h>
#endif
CCL_NAMESPACE_BEGIN
namespace {
/* Some helpers to silence warning in templated function. */
bool isfinite(uchar /*value*/)
{
return true;
}
bool isfinite(half /*value*/)
{
return true;
}
bool isfinite(uint16_t /*value*/)
{
return true;
}
const char *name_from_type(ImageDataType type)
{
switch (type) {
case IMAGE_DATA_TYPE_FLOAT4:
return "float4";
case IMAGE_DATA_TYPE_BYTE4:
return "byte4";
case IMAGE_DATA_TYPE_HALF4:
return "half4";
case IMAGE_DATA_TYPE_FLOAT:
return "float";
case IMAGE_DATA_TYPE_BYTE:
return "byte";
case IMAGE_DATA_TYPE_HALF:
return "half";
case IMAGE_DATA_TYPE_USHORT4:
return "ushort4";
case IMAGE_DATA_TYPE_USHORT:
return "ushort";
case IMAGE_DATA_NUM_TYPES:
assert(!"System enumerator type, should never be used");
return "";
}
assert(!"Unhandled image data type");
return "";
}
} // namespace
/* Image Handle */
ImageHandle::ImageHandle() : manager(NULL)
{
}
ImageHandle::ImageHandle(const ImageHandle &other)
: tile_slots(other.tile_slots), manager(other.manager)
{
/* Increase image user count. */
foreach (const int slot, tile_slots) {
manager->add_image_user(slot);
}
}
ImageHandle &ImageHandle::operator=(const ImageHandle &other)
{
clear();
manager = other.manager;
tile_slots = other.tile_slots;
foreach (const int slot, tile_slots) {
manager->add_image_user(slot);
}
return *this;
}
ImageHandle::~ImageHandle()
{
clear();
}
void ImageHandle::clear()
{
foreach (const int slot, tile_slots) {
manager->remove_image_user(slot);
}
tile_slots.clear();
manager = NULL;
}
bool ImageHandle::empty()
{
return tile_slots.empty();
}
int ImageHandle::num_tiles()
{
return tile_slots.size();
}
ImageMetaData ImageHandle::metadata()
{
if (tile_slots.empty()) {
return ImageMetaData();
}
ImageManager::Image *img = manager->images[tile_slots.front()];
manager->load_image_metadata(img);
return img->metadata;
}
int ImageHandle::svm_slot(const int tile_index) const
{
if (tile_index >= tile_slots.size()) {
return -1;
}
if (manager->osl_texture_system) {
ImageManager::Image *img = manager->images[tile_slots[tile_index]];
if (!img->loader->osl_filepath().empty()) {
return -1;
}
}
return tile_slots[tile_index];
}
device_texture *ImageHandle::image_memory(const int tile_index) const
{
if (tile_index >= tile_slots.size()) {
return NULL;
}
ImageManager::Image *img = manager->images[tile_slots[tile_index]];
return img ? img->mem : NULL;
}
bool ImageHandle::operator==(const ImageHandle &other) const
{
return manager == other.manager && tile_slots == other.tile_slots;
}
/* Image MetaData */
ImageMetaData::ImageMetaData()
: channels(0),
width(0),
height(0),
depth(0),
type(IMAGE_DATA_NUM_TYPES),
colorspace(u_colorspace_raw),
colorspace_file_format(""),
use_transform_3d(false),
compress_as_srgb(false)
{
}
bool ImageMetaData::operator==(const ImageMetaData &other) const
{
return channels == other.channels && width == other.width && height == other.height &&
depth == other.depth && use_transform_3d == other.use_transform_3d &&
(!use_transform_3d || transform_3d == other.transform_3d) && type == other.type &&
colorspace == other.colorspace && compress_as_srgb == other.compress_as_srgb;
}
bool ImageMetaData::is_float() const
{
return (type == IMAGE_DATA_TYPE_FLOAT || type == IMAGE_DATA_TYPE_FLOAT4 ||
type == IMAGE_DATA_TYPE_HALF || type == IMAGE_DATA_TYPE_HALF4);
}
void ImageMetaData::detect_colorspace()
{
/* Convert used specified color spaces to one we know how to handle. */
colorspace = ColorSpaceManager::detect_known_colorspace(
colorspace, colorspace_file_format, is_float());
if (colorspace == u_colorspace_raw) {
/* Nothing to do. */
}
else if (colorspace == u_colorspace_srgb) {
/* Keep sRGB colorspace stored as sRGB, to save memory and/or loading time
* for the common case of 8bit sRGB images like PNG. */
compress_as_srgb = true;
}
else {
/* Always compress non-raw 8bit images as scene linear + sRGB, as a
* heuristic to keep memory usage the same without too much data loss
* due to quantization in common cases. */
compress_as_srgb = (type == IMAGE_DATA_TYPE_BYTE || type == IMAGE_DATA_TYPE_BYTE4);
/* If colorspace conversion needed, use half instead of short so we can
* represent HDR values that might result from conversion. */
if (type == IMAGE_DATA_TYPE_USHORT) {
type = IMAGE_DATA_TYPE_HALF;
}
else if (type == IMAGE_DATA_TYPE_USHORT4) {
type = IMAGE_DATA_TYPE_HALF4;
}
}
}
/* Image Loader */
ImageLoader::ImageLoader()
{
}
ustring ImageLoader::osl_filepath() const
{
return ustring();
}
bool ImageLoader::equals(const ImageLoader *a, const ImageLoader *b)
{
if (a == NULL && b == NULL) {
return true;
}
else {
return (a && b && typeid(*a) == typeid(*b) && a->equals(*b));
}
}
/* Image Manager */
ImageManager::ImageManager(const DeviceInfo &info)
{
need_update = true;
osl_texture_system = NULL;
animation_frame = 0;
/* Set image limits */
has_half_images = info.has_half_images;
}
ImageManager::~ImageManager()
{
for (size_t slot = 0; slot < images.size(); slot++)
assert(!images[slot]);
}
void ImageManager::set_osl_texture_system(void *texture_system)
{
osl_texture_system = texture_system;
}
bool ImageManager::set_animation_frame_update(int frame)
{
if (frame != animation_frame) {
animation_frame = frame;
for (size_t slot = 0; slot < images.size(); slot++) {
if (images[slot] && images[slot]->params.animated)
return true;
}
}
return false;
}
void ImageManager::load_image_metadata(Image *img)
{
if (!img->need_metadata) {
return;
}
thread_scoped_lock image_lock(img->mutex);
if (!img->need_metadata) {
return;
}
ImageMetaData &metadata = img->metadata;
metadata = ImageMetaData();
metadata.colorspace = img->params.colorspace;
if (img->loader->load_metadata(metadata)) {
assert(metadata.type != IMAGE_DATA_NUM_TYPES);
}
else {
metadata.type = IMAGE_DATA_TYPE_BYTE4;
}
metadata.detect_colorspace();
/* No half textures on OpenCL, use full float instead. */
if (!has_half_images) {
if (metadata.type == IMAGE_DATA_TYPE_HALF4) {
metadata.type = IMAGE_DATA_TYPE_FLOAT4;
}
else if (metadata.type == IMAGE_DATA_TYPE_HALF) {
metadata.type = IMAGE_DATA_TYPE_FLOAT;
}
}
img->need_metadata = false;
}
ImageHandle ImageManager::add_image(const string &filename, const ImageParams &params)
{
const int slot = add_image_slot(new OIIOImageLoader(filename), params, false);
ImageHandle handle;
handle.tile_slots.push_back(slot);
handle.manager = this;
return handle;
}
ImageHandle ImageManager::add_image(const string &filename,
const ImageParams &params,
const vector<int> &tiles)
{
ImageHandle handle;
handle.manager = this;
foreach (int tile, tiles) {
string tile_filename = filename;
if (tile != 0) {
string_replace(tile_filename, "<UDIM>", string_printf("%04d", tile));
}
const int slot = add_image_slot(new OIIOImageLoader(tile_filename), params, false);
handle.tile_slots.push_back(slot);
}
return handle;
}
ImageHandle ImageManager::add_image(ImageLoader *loader, const ImageParams &params)
{
const int slot = add_image_slot(loader, params, true);
ImageHandle handle;
handle.tile_slots.push_back(slot);
handle.manager = this;
return handle;
}
int ImageManager::add_image_slot(ImageLoader *loader,
const ImageParams &params,
const bool builtin)
{
Image *img;
size_t slot;
thread_scoped_lock device_lock(device_mutex);
/* Fnd existing image. */
for (slot = 0; slot < images.size(); slot++) {
img = images[slot];
if (img && ImageLoader::equals(img->loader, loader) && img->params == params) {
img->users++;
delete loader;
return slot;
}
}
/* Find free slot. */
for (slot = 0; slot < images.size(); slot++) {
if (!images[slot])
break;
}
if (slot == images.size()) {
images.resize(images.size() + 1);
}
/* Add new image. */
img = new Image();
img->params = params;
img->loader = loader;
img->need_metadata = true;
img->need_load = !(osl_texture_system && !img->loader->osl_filepath().empty());
img->builtin = builtin;
img->users = 1;
img->mem = NULL;
images[slot] = img;
need_update = true;
return slot;
}
void ImageManager::add_image_user(int slot)
{
Image *image = images[slot];
assert(image && image->users >= 1);
image->users++;
}
void ImageManager::remove_image_user(int slot)
{
Image *image = images[slot];
assert(image && image->users >= 1);
/* decrement user count */
image->users--;
/* don't remove immediately, rather do it all together later on. one of
* the reasons for this is that on shader changes we add and remove nodes
* that use them, but we do not want to reload the image all the time. */
if (image->users == 0)
need_update = true;
}
static bool image_associate_alpha(ImageManager::Image *img)
{
/* For typical RGBA images we let OIIO convert to associated alpha,
* but some types we want to leave the RGB channels untouched. */
return !(ColorSpaceManager::colorspace_is_data(img->params.colorspace) ||
img->params.alpha_type == IMAGE_ALPHA_IGNORE ||
img->params.alpha_type == IMAGE_ALPHA_CHANNEL_PACKED);
}
template<TypeDesc::BASETYPE FileFormat, typename StorageType>
bool ImageManager::file_load_image(Image *img, int texture_limit)
{
/* we only handle certain number of components */
if (!(img->metadata.channels >= 1 && img->metadata.channels <= 4)) {
return false;
}
/* Get metadata. */
int width = img->metadata.width;
int height = img->metadata.height;
int depth = img->metadata.depth;
int components = img->metadata.channels;
/* Read pixels. */
vector<StorageType> pixels_storage;
StorageType *pixels;
const size_t max_size = max(max(width, height), depth);
if (max_size == 0) {
/* Don't bother with empty images. */
return false;
}
/* Allocate memory as needed, may be smaller to resize down. */
if (texture_limit > 0 && max_size > texture_limit) {
pixels_storage.resize(((size_t)width) * height * depth * 4);
pixels = &pixels_storage[0];
}
else {
thread_scoped_lock device_lock(device_mutex);
pixels = (StorageType *)img->mem->alloc(width, height, depth);
}
if (pixels == NULL) {
/* Could be that we've run out of memory. */
return false;
}
const size_t num_pixels = ((size_t)width) * height * depth;
img->loader->load_pixels(
img->metadata, pixels, num_pixels * components, image_associate_alpha(img));
/* The kernel can handle 1 and 4 channel images. Anything that is not a single
* channel image is converted to RGBA format. */
bool is_rgba = (img->metadata.type == IMAGE_DATA_TYPE_FLOAT4 ||
img->metadata.type == IMAGE_DATA_TYPE_HALF4 ||
img->metadata.type == IMAGE_DATA_TYPE_BYTE4 ||
img->metadata.type == IMAGE_DATA_TYPE_USHORT4);
if (is_rgba) {
const StorageType one = util_image_cast_from_float<StorageType>(1.0f);
if (components == 2) {
/* Grayscale + alpha to RGBA. */
for (size_t i = num_pixels - 1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i * 4 + 3] = pixels[i * 2 + 1];
pixels[i * 4 + 2] = pixels[i * 2 + 0];
pixels[i * 4 + 1] = pixels[i * 2 + 0];
pixels[i * 4 + 0] = pixels[i * 2 + 0];
}
}
else if (components == 3) {
/* RGB to RGBA. */
for (size_t i = num_pixels - 1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i * 4 + 3] = one;
pixels[i * 4 + 2] = pixels[i * 3 + 2];
pixels[i * 4 + 1] = pixels[i * 3 + 1];
pixels[i * 4 + 0] = pixels[i * 3 + 0];
}
}
else if (components == 1) {
/* Grayscale to RGBA. */
for (size_t i = num_pixels - 1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i * 4 + 3] = one;
pixels[i * 4 + 2] = pixels[i];
pixels[i * 4 + 1] = pixels[i];
pixels[i * 4 + 0] = pixels[i];
}
}
/* Disable alpha if requested by the user. */
if (img->params.alpha_type == IMAGE_ALPHA_IGNORE) {
for (size_t i = num_pixels - 1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i * 4 + 3] = one;
}
}
if (img->metadata.colorspace != u_colorspace_raw &&
img->metadata.colorspace != u_colorspace_srgb) {
/* Convert to scene linear. */
ColorSpaceManager::to_scene_linear(
img->metadata.colorspace, pixels, num_pixels, img->metadata.compress_as_srgb);
}
}
/* Make sure we don't have buggy values. */
if (FileFormat == TypeDesc::FLOAT) {
/* For RGBA buffers we put all channels to 0 if either of them is not
* finite. This way we avoid possible artifacts caused by fully changed
* hue. */
if (is_rgba) {
for (size_t i = 0; i < num_pixels; i += 4) {
StorageType *pixel = &pixels[i * 4];
if (!isfinite(pixel[0]) || !isfinite(pixel[1]) || !isfinite(pixel[2]) ||
!isfinite(pixel[3])) {
pixel[0] = 0;
pixel[1] = 0;
pixel[2] = 0;
pixel[3] = 0;
}
}
}
else {
for (size_t i = 0; i < num_pixels; ++i) {
StorageType *pixel = &pixels[i];
if (!isfinite(pixel[0])) {
pixel[0] = 0;
}
}
}
}
/* Scale image down if needed. */
if (pixels_storage.size() > 0) {
float scale_factor = 1.0f;
while (max_size * scale_factor > texture_limit) {
scale_factor *= 0.5f;
}
VLOG(1) << "Scaling image " << img->loader->name() << " by a factor of " << scale_factor
<< ".";
vector<StorageType> scaled_pixels;
size_t scaled_width, scaled_height, scaled_depth;
util_image_resize_pixels(pixels_storage,
width,
height,
depth,
is_rgba ? 4 : 1,
scale_factor,
&scaled_pixels,
&scaled_width,
&scaled_height,
&scaled_depth);
StorageType *texture_pixels;
{
thread_scoped_lock device_lock(device_mutex);
texture_pixels = (StorageType *)img->mem->alloc(scaled_width, scaled_height, scaled_depth);
}
memcpy(texture_pixels, &scaled_pixels[0], scaled_pixels.size() * sizeof(StorageType));
}
return true;
}
void ImageManager::device_load_image(Device *device, Scene *scene, int slot, Progress *progress)
{
if (progress->get_cancel()) {
return;
}
Image *img = images[slot];
progress->set_status("Updating Images", "Loading " + img->loader->name());
const int texture_limit = scene->params.texture_limit;
load_image_metadata(img);
ImageDataType type = img->metadata.type;
/* Name for debugging. */
img->mem_name = string_printf("__tex_image_%s_%03d", name_from_type(type), slot);
/* Free previous texture in slot. */
if (img->mem) {
thread_scoped_lock device_lock(device_mutex);
delete img->mem;
img->mem = NULL;
}
img->mem = new device_texture(
device, img->mem_name.c_str(), slot, type, img->params.interpolation, img->params.extension);
img->mem->info.use_transform_3d = img->metadata.use_transform_3d;
img->mem->info.transform_3d = img->metadata.transform_3d;
/* Create new texture. */
if (type == IMAGE_DATA_TYPE_FLOAT4) {
if (!file_load_image<TypeDesc::FLOAT, float>(img, texture_limit)) {
/* on failure to load, we set a 1x1 pixels pink image */
thread_scoped_lock device_lock(device_mutex);
float *pixels = (float *)img->mem->alloc(1, 1);
pixels[0] = TEX_IMAGE_MISSING_R;
pixels[1] = TEX_IMAGE_MISSING_G;
pixels[2] = TEX_IMAGE_MISSING_B;
pixels[3] = TEX_IMAGE_MISSING_A;
}
}
else if (type == IMAGE_DATA_TYPE_FLOAT) {
if (!file_load_image<TypeDesc::FLOAT, float>(img, texture_limit)) {
/* on failure to load, we set a 1x1 pixels pink image */
thread_scoped_lock device_lock(device_mutex);
float *pixels = (float *)img->mem->alloc(1, 1);
pixels[0] = TEX_IMAGE_MISSING_R;
}
}
else if (type == IMAGE_DATA_TYPE_BYTE4) {
if (!file_load_image<TypeDesc::UINT8, uchar>(img, texture_limit)) {
/* on failure to load, we set a 1x1 pixels pink image */
thread_scoped_lock device_lock(device_mutex);
uchar *pixels = (uchar *)img->mem->alloc(1, 1);
pixels[0] = (TEX_IMAGE_MISSING_R * 255);
pixels[1] = (TEX_IMAGE_MISSING_G * 255);
pixels[2] = (TEX_IMAGE_MISSING_B * 255);
pixels[3] = (TEX_IMAGE_MISSING_A * 255);
}
}
else if (type == IMAGE_DATA_TYPE_BYTE) {
if (!file_load_image<TypeDesc::UINT8, uchar>(img, texture_limit)) {
/* on failure to load, we set a 1x1 pixels pink image */
thread_scoped_lock device_lock(device_mutex);
uchar *pixels = (uchar *)img->mem->alloc(1, 1);
pixels[0] = (TEX_IMAGE_MISSING_R * 255);
}
}
else if (type == IMAGE_DATA_TYPE_HALF4) {
if (!file_load_image<TypeDesc::HALF, half>(img, texture_limit)) {
/* on failure to load, we set a 1x1 pixels pink image */
thread_scoped_lock device_lock(device_mutex);
half *pixels = (half *)img->mem->alloc(1, 1);
pixels[0] = TEX_IMAGE_MISSING_R;
pixels[1] = TEX_IMAGE_MISSING_G;
pixels[2] = TEX_IMAGE_MISSING_B;
pixels[3] = TEX_IMAGE_MISSING_A;
}
}
else if (type == IMAGE_DATA_TYPE_USHORT) {
if (!file_load_image<TypeDesc::USHORT, uint16_t>(img, texture_limit)) {
/* on failure to load, we set a 1x1 pixels pink image */
thread_scoped_lock device_lock(device_mutex);
uint16_t *pixels = (uint16_t *)img->mem->alloc(1, 1);
pixels[0] = (TEX_IMAGE_MISSING_R * 65535);
}
}
else if (type == IMAGE_DATA_TYPE_USHORT4) {
if (!file_load_image<TypeDesc::USHORT, uint16_t>(img, texture_limit)) {
/* on failure to load, we set a 1x1 pixels pink image */
thread_scoped_lock device_lock(device_mutex);
uint16_t *pixels = (uint16_t *)img->mem->alloc(1, 1);
pixels[0] = (TEX_IMAGE_MISSING_R * 65535);
pixels[1] = (TEX_IMAGE_MISSING_G * 65535);
pixels[2] = (TEX_IMAGE_MISSING_B * 65535);
pixels[3] = (TEX_IMAGE_MISSING_A * 65535);
}
}
else if (type == IMAGE_DATA_TYPE_HALF) {
if (!file_load_image<TypeDesc::HALF, half>(img, texture_limit)) {
/* on failure to load, we set a 1x1 pixels pink image */
thread_scoped_lock device_lock(device_mutex);
half *pixels = (half *)img->mem->alloc(1, 1);
pixels[0] = TEX_IMAGE_MISSING_R;
}
}
{
thread_scoped_lock device_lock(device_mutex);
img->mem->copy_to_device();
}
/* Cleanup memory in image loader. */
img->loader->cleanup();
img->need_load = false;
}
void ImageManager::device_free_image(Device *, int slot)
{
Image *img = images[slot];
if (img == NULL) {
return;
}
if (osl_texture_system) {
#ifdef WITH_OSL
ustring filepath = img->loader->osl_filepath();
if (!filepath.empty()) {
((OSL::TextureSystem *)osl_texture_system)->invalidate(filepath);
}
#endif
}
if (img->mem) {
thread_scoped_lock device_lock(device_mutex);
delete img->mem;
}
delete img->loader;
delete img;
images[slot] = NULL;
}
void ImageManager::device_update(Device *device, Scene *scene, Progress &progress)
{
if (!need_update) {
return;
}
TaskPool pool;
for (size_t slot = 0; slot < images.size(); slot++) {
Image *img = images[slot];
if (img && img->users == 0) {
device_free_image(device, slot);
}
else if (img && img->need_load) {
pool.push(
function_bind(&ImageManager::device_load_image, this, device, scene, slot, &progress));
}
}
pool.wait_work();
need_update = false;
}
void ImageManager::device_update_slot(Device *device, Scene *scene, int slot, Progress *progress)
{
Image *img = images[slot];
assert(img != NULL);
if (img->users == 0) {
device_free_image(device, slot);
}
else if (img->need_load) {
device_load_image(device, scene, slot, progress);
}
}
void ImageManager::device_load_builtin(Device *device, Scene *scene, Progress &progress)
{
/* Load only builtin images, Blender needs this to load evaluated
* scene data from depsgraph before it is freed. */
if (!need_update) {
return;
}
TaskPool pool;
for (size_t slot = 0; slot < images.size(); slot++) {
Image *img = images[slot];
if (img && img->need_load && img->builtin) {
pool.push(
function_bind(&ImageManager::device_load_image, this, device, scene, slot, &progress));
}
}
pool.wait_work();
}
void ImageManager::device_free_builtin(Device *device)
{
for (size_t slot = 0; slot < images.size(); slot++) {
Image *img = images[slot];
if (img && img->builtin) {
device_free_image(device, slot);
}
}
}
void ImageManager::device_free(Device *device)
{
for (size_t slot = 0; slot < images.size(); slot++) {
device_free_image(device, slot);
}
images.clear();
}
void ImageManager::collect_statistics(RenderStats *stats)
{
foreach (const Image *image, images) {
stats->image.textures.add_entry(
NamedSizeEntry(image->loader->name(), image->mem->memory_size()));
}
}
CCL_NAMESPACE_END