blender/intern/cycles/render/nodes.cpp
2015-03-27 18:23:31 +05:00

4346 lines
118 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "image.h"
#include "nodes.h"
#include "svm.h"
#include "svm_math_util.h"
#include "osl.h"
#include "sky_model.h"
#include "util_foreach.h"
#include "util_transform.h"
CCL_NAMESPACE_BEGIN
/* Texture Mapping */
TextureMapping::TextureMapping()
{
translation = make_float3(0.0f, 0.0f, 0.0f);
rotation = make_float3(0.0f, 0.0f, 0.0f);
scale = make_float3(1.0f, 1.0f, 1.0f);
min = make_float3(-FLT_MAX, -FLT_MAX, -FLT_MAX);
max = make_float3(FLT_MAX, FLT_MAX, FLT_MAX);
use_minmax = false;
x_mapping = X;
y_mapping = Y;
z_mapping = Z;
type = TEXTURE;
projection = FLAT;
}
Transform TextureMapping::compute_transform()
{
Transform mmat = transform_scale(make_float3(0.0f, 0.0f, 0.0f));
if(x_mapping != NONE)
mmat[0][x_mapping-1] = 1.0f;
if(y_mapping != NONE)
mmat[1][y_mapping-1] = 1.0f;
if(z_mapping != NONE)
mmat[2][z_mapping-1] = 1.0f;
float3 scale_clamped = scale;
if(type == TEXTURE || type == NORMAL) {
/* keep matrix invertible */
if(fabsf(scale.x) < 1e-5f)
scale_clamped.x = signf(scale.x)*1e-5f;
if(fabsf(scale.y) < 1e-5f)
scale_clamped.y = signf(scale.y)*1e-5f;
if(fabsf(scale.z) < 1e-5f)
scale_clamped.z = signf(scale.z)*1e-5f;
}
Transform smat = transform_scale(scale_clamped);
Transform rmat = transform_euler(rotation);
Transform tmat = transform_translate(translation);
Transform mat;
switch(type) {
case TEXTURE:
/* inverse transform on texture coordinate gives
* forward transform on texture */
mat = tmat*rmat*smat;
mat = transform_inverse(mat);
break;
case POINT:
/* full transform */
mat = tmat*rmat*smat;
break;
case VECTOR:
/* no translation for vectors */
mat = rmat*smat;
break;
case NORMAL:
/* no translation for normals, and inverse transpose */
mat = rmat*smat;
mat = transform_inverse(mat);
mat = transform_transpose(mat);
break;
}
/* projection last */
mat = mat*mmat;
return mat;
}
bool TextureMapping::skip()
{
if(translation != make_float3(0.0f, 0.0f, 0.0f))
return false;
if(rotation != make_float3(0.0f, 0.0f, 0.0f))
return false;
if(scale != make_float3(1.0f, 1.0f, 1.0f))
return false;
if(x_mapping != X || y_mapping != Y || z_mapping != Z)
return false;
if(use_minmax)
return false;
return true;
}
void TextureMapping::compile(SVMCompiler& compiler, int offset_in, int offset_out)
{
if(offset_in == SVM_STACK_INVALID || offset_out == SVM_STACK_INVALID)
return;
compiler.add_node(NODE_MAPPING, offset_in, offset_out);
Transform tfm = compute_transform();
compiler.add_node(tfm.x);
compiler.add_node(tfm.y);
compiler.add_node(tfm.z);
compiler.add_node(tfm.w);
if(use_minmax) {
compiler.add_node(NODE_MIN_MAX, offset_out, offset_out);
compiler.add_node(float3_to_float4(min));
compiler.add_node(float3_to_float4(max));
}
if(type == NORMAL) {
compiler.add_node(NODE_VECTOR_MATH, NODE_VECTOR_MATH_NORMALIZE, offset_out, offset_out);
compiler.add_node(NODE_VECTOR_MATH, SVM_STACK_INVALID, offset_out);
}
}
void TextureMapping::compile(OSLCompiler &compiler)
{
if(!skip()) {
Transform tfm = transform_transpose(compute_transform());
compiler.parameter("mapping", tfm);
compiler.parameter("use_mapping", 1);
}
}
/* Image Texture */
static ShaderEnum color_space_init()
{
ShaderEnum enm;
enm.insert("None", 0);
enm.insert("Color", 1);
return enm;
}
static ShaderEnum image_projection_init()
{
ShaderEnum enm;
enm.insert("Flat", NODE_IMAGE_PROJ_FLAT);
enm.insert("Box", NODE_IMAGE_PROJ_BOX);
enm.insert("Sphere", NODE_IMAGE_PROJ_SPHERE);
enm.insert("Tube", NODE_IMAGE_PROJ_TUBE);
return enm;
}
ShaderEnum ImageTextureNode::color_space_enum = color_space_init();
ShaderEnum ImageTextureNode::projection_enum = image_projection_init();
ImageTextureNode::ImageTextureNode()
: TextureNode("image_texture")
{
image_manager = NULL;
slot = -1;
is_float = -1;
is_linear = false;
use_alpha = true;
filename = "";
builtin_data = NULL;
color_space = ustring("Color");
projection = ustring("Flat");
interpolation = INTERPOLATION_LINEAR;
projection_blend = 0.0f;
animated = false;
add_input("Vector", SHADER_SOCKET_POINT, ShaderInput::TEXTURE_UV);
add_output("Color", SHADER_SOCKET_COLOR);
add_output("Alpha", SHADER_SOCKET_FLOAT);
}
ImageTextureNode::~ImageTextureNode()
{
if(image_manager)
image_manager->remove_image(filename, builtin_data, interpolation);
}
ShaderNode *ImageTextureNode::clone() const
{
ImageTextureNode *node = new ImageTextureNode(*this);
node->image_manager = NULL;
node->slot = -1;
node->is_float = -1;
node->is_linear = false;
return node;
}
void ImageTextureNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
#ifdef WITH_PTEX
/* todo: avoid loading other texture coordinates when using ptex,
* and hide texture coordinate socket in the UI */
if (shader->has_surface && string_endswith(filename, ".ptx")) {
/* ptex */
attributes->add(ATTR_STD_PTEX_FACE_ID);
attributes->add(ATTR_STD_PTEX_UV);
}
#endif
ShaderNode::attributes(shader, attributes);
}
void ImageTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderOutput *color_out = output("Color");
ShaderOutput *alpha_out = output("Alpha");
image_manager = compiler.image_manager;
if(is_float == -1) {
bool is_float_bool;
slot = image_manager->add_image(filename, builtin_data,
animated, 0, is_float_bool, is_linear,
interpolation, use_alpha);
is_float = (int)is_float_bool;
}
if(!color_out->links.empty())
compiler.stack_assign(color_out);
if(!alpha_out->links.empty())
compiler.stack_assign(alpha_out);
if(slot != -1) {
compiler.stack_assign(vector_in);
int srgb = (is_linear || color_space != "Color")? 0: 1;
int vector_offset = vector_in->stack_offset;
if(!tex_mapping.skip()) {
vector_offset = compiler.stack_find_offset(SHADER_SOCKET_VECTOR);
tex_mapping.compile(compiler, vector_in->stack_offset, vector_offset);
}
if(projection != "Box") {
compiler.add_node(NODE_TEX_IMAGE,
slot,
compiler.encode_uchar4(
vector_offset,
color_out->stack_offset,
alpha_out->stack_offset,
srgb),
projection_enum[projection]);
}
else {
compiler.add_node(NODE_TEX_IMAGE_BOX,
slot,
compiler.encode_uchar4(
vector_offset,
color_out->stack_offset,
alpha_out->stack_offset,
srgb),
__float_as_int(projection_blend));
}
if(vector_offset != vector_in->stack_offset)
compiler.stack_clear_offset(vector_in->type, vector_offset);
}
else {
/* image not found */
if(!color_out->links.empty()) {
compiler.add_node(NODE_VALUE_V, color_out->stack_offset);
compiler.add_node(NODE_VALUE_V, make_float3(TEX_IMAGE_MISSING_R,
TEX_IMAGE_MISSING_G,
TEX_IMAGE_MISSING_B));
}
if(!alpha_out->links.empty())
compiler.add_node(NODE_VALUE_F, __float_as_int(TEX_IMAGE_MISSING_A), alpha_out->stack_offset);
}
}
void ImageTextureNode::compile(OSLCompiler& compiler)
{
ShaderOutput *alpha_out = output("Alpha");
tex_mapping.compile(compiler);
image_manager = compiler.image_manager;
if(is_float == -1) {
if(builtin_data == NULL) {
is_float = (int)image_manager->is_float_image(filename, NULL, is_linear);
}
else {
bool is_float_bool;
slot = image_manager->add_image(filename, builtin_data,
animated, 0, is_float_bool, is_linear,
interpolation, use_alpha);
is_float = (int)is_float_bool;
}
}
if(slot == -1) {
compiler.parameter("filename", filename.c_str());
}
else {
/* TODO(sergey): It's not so simple to pass custom attribute
* to the texture() function in order to make builtin images
* support more clear. So we use special file name which is
* "@<slot_number>" and check whether file name matches this
* mask in the OSLRenderServices::texture().
*/
compiler.parameter("filename", string_printf("@%d", slot).c_str());
}
if(is_linear || color_space != "Color")
compiler.parameter("color_space", "Linear");
else
compiler.parameter("color_space", "sRGB");
compiler.parameter("projection", projection);
compiler.parameter("projection_blend", projection_blend);
compiler.parameter("is_float", is_float);
compiler.parameter("use_alpha", !alpha_out->links.empty());
switch (interpolation) {
case INTERPOLATION_CLOSEST:
compiler.parameter("interpolation", "closest");
break;
case INTERPOLATION_CUBIC:
compiler.parameter("interpolation", "cubic");
break;
case INTERPOLATION_SMART:
compiler.parameter("interpolation", "smart");
break;
case INTERPOLATION_LINEAR:
default:
compiler.parameter("interpolation", "linear");
break;
}
compiler.add(this, "node_image_texture");
}
/* Environment Texture */
static ShaderEnum env_projection_init()
{
ShaderEnum enm;
enm.insert("Equirectangular", 0);
enm.insert("Mirror Ball", 1);
return enm;
}
ShaderEnum EnvironmentTextureNode::color_space_enum = color_space_init();
ShaderEnum EnvironmentTextureNode::projection_enum = env_projection_init();
EnvironmentTextureNode::EnvironmentTextureNode()
: TextureNode("environment_texture")
{
image_manager = NULL;
slot = -1;
is_float = -1;
is_linear = false;
use_alpha = true;
filename = "";
builtin_data = NULL;
color_space = ustring("Color");
projection = ustring("Equirectangular");
animated = false;
add_input("Vector", SHADER_SOCKET_VECTOR, ShaderInput::POSITION);
add_output("Color", SHADER_SOCKET_COLOR);
add_output("Alpha", SHADER_SOCKET_FLOAT);
}
EnvironmentTextureNode::~EnvironmentTextureNode()
{
if(image_manager)
image_manager->remove_image(filename, builtin_data, INTERPOLATION_LINEAR);
}
ShaderNode *EnvironmentTextureNode::clone() const
{
EnvironmentTextureNode *node = new EnvironmentTextureNode(*this);
node->image_manager = NULL;
node->slot = -1;
node->is_float = -1;
node->is_linear = false;
return node;
}
void EnvironmentTextureNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
#ifdef WITH_PTEX
if (shader->has_surface && string_endswith(filename, ".ptx")) {
/* ptex */
attributes->add(ATTR_STD_PTEX_FACE_ID);
attributes->add(ATTR_STD_PTEX_UV);
}
#endif
ShaderNode::attributes(shader, attributes);
}
void EnvironmentTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderOutput *color_out = output("Color");
ShaderOutput *alpha_out = output("Alpha");
image_manager = compiler.image_manager;
if(slot == -1) {
bool is_float_bool;
slot = image_manager->add_image(filename, builtin_data,
animated, 0, is_float_bool, is_linear,
INTERPOLATION_LINEAR, use_alpha);
is_float = (int)is_float_bool;
}
if(!color_out->links.empty())
compiler.stack_assign(color_out);
if(!alpha_out->links.empty())
compiler.stack_assign(alpha_out);
if(slot != -1) {
compiler.stack_assign(vector_in);
int srgb = (is_linear || color_space != "Color")? 0: 1;
int vector_offset = vector_in->stack_offset;
if(!tex_mapping.skip()) {
vector_offset = compiler.stack_find_offset(SHADER_SOCKET_VECTOR);
tex_mapping.compile(compiler, vector_in->stack_offset, vector_offset);
}
compiler.add_node(NODE_TEX_ENVIRONMENT,
slot,
compiler.encode_uchar4(
vector_offset,
color_out->stack_offset,
alpha_out->stack_offset,
srgb),
projection_enum[projection]);
if(vector_offset != vector_in->stack_offset)
compiler.stack_clear_offset(vector_in->type, vector_offset);
}
else {
/* image not found */
if(!color_out->links.empty()) {
compiler.add_node(NODE_VALUE_V, color_out->stack_offset);
compiler.add_node(NODE_VALUE_V, make_float3(TEX_IMAGE_MISSING_R,
TEX_IMAGE_MISSING_G,
TEX_IMAGE_MISSING_B));
}
if(!alpha_out->links.empty())
compiler.add_node(NODE_VALUE_F, __float_as_int(TEX_IMAGE_MISSING_A), alpha_out->stack_offset);
}
}
void EnvironmentTextureNode::compile(OSLCompiler& compiler)
{
ShaderOutput *alpha_out = output("Alpha");
tex_mapping.compile(compiler);
/* See comments in ImageTextureNode::compile about support
* of builtin images.
*/
image_manager = compiler.image_manager;
if(is_float == -1) {
if(builtin_data == NULL) {
is_float = (int)image_manager->is_float_image(filename, NULL, is_linear);
}
else {
bool is_float_bool;
slot = image_manager->add_image(filename, builtin_data,
animated, 0, is_float_bool, is_linear,
INTERPOLATION_LINEAR, use_alpha);
is_float = (int)is_float_bool;
}
}
if(slot == -1) {
compiler.parameter("filename", filename.c_str());
}
else {
compiler.parameter("filename", string_printf("@%d", slot).c_str());
}
compiler.parameter("projection", projection);
if(is_linear || color_space != "Color")
compiler.parameter("color_space", "Linear");
else
compiler.parameter("color_space", "sRGB");
compiler.parameter("is_float", is_float);
compiler.parameter("use_alpha", !alpha_out->links.empty());
compiler.add(this, "node_environment_texture");
}
/* Sky Texture */
static float2 sky_spherical_coordinates(float3 dir)
{
return make_float2(acosf(dir.z), atan2f(dir.x, dir.y));
}
typedef struct SunSky {
/* sun direction in spherical and cartesian */
float theta, phi;
/* Parameter */
float radiance_x, radiance_y, radiance_z;
float config_x[9], config_y[9], config_z[9];
} SunSky;
/* Preetham model */
static float sky_perez_function(float lam[6], float theta, float gamma)
{
return (1.0f + lam[0]*expf(lam[1]/cosf(theta))) * (1.0f + lam[2]*expf(lam[3]*gamma) + lam[4]*cosf(gamma)*cosf(gamma));
}
static void sky_texture_precompute_old(SunSky *sunsky, float3 dir, float turbidity)
{
/*
* We re-use the SunSky struct of the new model, to avoid extra variables
* zenith_Y/x/y is now radiance_x/y/z
* perez_Y/x/y is now config_x/y/z
*/
float2 spherical = sky_spherical_coordinates(dir);
float theta = spherical.x;
float phi = spherical.y;
sunsky->theta = theta;
sunsky->phi = phi;
float theta2 = theta*theta;
float theta3 = theta2*theta;
float T = turbidity;
float T2 = T * T;
float chi = (4.0f / 9.0f - T / 120.0f) * (M_PI_F - 2.0f * theta);
sunsky->radiance_x = (4.0453f * T - 4.9710f) * tanf(chi) - 0.2155f * T + 2.4192f;
sunsky->radiance_x *= 0.06f;
sunsky->radiance_y =
(0.00166f * theta3 - 0.00375f * theta2 + 0.00209f * theta) * T2 +
(-0.02903f * theta3 + 0.06377f * theta2 - 0.03202f * theta + 0.00394f) * T +
(0.11693f * theta3 - 0.21196f * theta2 + 0.06052f * theta + 0.25886f);
sunsky->radiance_z =
(0.00275f * theta3 - 0.00610f * theta2 + 0.00317f * theta) * T2 +
(-0.04214f * theta3 + 0.08970f * theta2 - 0.04153f * theta + 0.00516f) * T +
(0.15346f * theta3 - 0.26756f * theta2 + 0.06670f * theta + 0.26688f);
sunsky->config_x[0] = (0.1787f * T - 1.4630f);
sunsky->config_x[1] = (-0.3554f * T + 0.4275f);
sunsky->config_x[2] = (-0.0227f * T + 5.3251f);
sunsky->config_x[3] = (0.1206f * T - 2.5771f);
sunsky->config_x[4] = (-0.0670f * T + 0.3703f);
sunsky->config_y[0] = (-0.0193f * T - 0.2592f);
sunsky->config_y[1] = (-0.0665f * T + 0.0008f);
sunsky->config_y[2] = (-0.0004f * T + 0.2125f);
sunsky->config_y[3] = (-0.0641f * T - 0.8989f);
sunsky->config_y[4] = (-0.0033f * T + 0.0452f);
sunsky->config_z[0] = (-0.0167f * T - 0.2608f);
sunsky->config_z[1] = (-0.0950f * T + 0.0092f);
sunsky->config_z[2] = (-0.0079f * T + 0.2102f);
sunsky->config_z[3] = (-0.0441f * T - 1.6537f);
sunsky->config_z[4] = (-0.0109f * T + 0.0529f);
/* unused for old sky model */
for(int i = 5; i < 9; i++) {
sunsky->config_x[i] = 0.0f;
sunsky->config_y[i] = 0.0f;
sunsky->config_z[i] = 0.0f;
}
sunsky->radiance_x /= sky_perez_function(sunsky->config_x, 0, theta);
sunsky->radiance_y /= sky_perez_function(sunsky->config_y, 0, theta);
sunsky->radiance_z /= sky_perez_function(sunsky->config_z, 0, theta);
}
/* Hosek / Wilkie */
static void sky_texture_precompute_new(SunSky *sunsky, float3 dir, float turbidity, float ground_albedo)
{
/* Calculate Sun Direction and save coordinates */
float2 spherical = sky_spherical_coordinates(dir);
float theta = spherical.x;
float phi = spherical.y;
/* Clamp Turbidity */
turbidity = clamp(turbidity, 0.0f, 10.0f);
/* Clamp to Horizon */
theta = clamp(theta, 0.0f, M_PI_2_F);
sunsky->theta = theta;
sunsky->phi = phi;
double solarElevation = M_PI_2_F - theta;
/* Initialize Sky Model */
ArHosekSkyModelState *sky_state;
sky_state = arhosek_xyz_skymodelstate_alloc_init(turbidity, ground_albedo, solarElevation);
/* Copy values from sky_state to SunSky */
for (int i = 0; i < 9; ++i) {
sunsky->config_x[i] = (float)sky_state->configs[0][i];
sunsky->config_y[i] = (float)sky_state->configs[1][i];
sunsky->config_z[i] = (float)sky_state->configs[2][i];
}
sunsky->radiance_x = (float)sky_state->radiances[0];
sunsky->radiance_y = (float)sky_state->radiances[1];
sunsky->radiance_z = (float)sky_state->radiances[2];
/* Free sky_state */
arhosekskymodelstate_free(sky_state);
}
static ShaderEnum sky_type_init()
{
ShaderEnum enm;
enm.insert("Preetham", NODE_SKY_OLD);
enm.insert("Hosek / Wilkie", NODE_SKY_NEW);
return enm;
}
ShaderEnum SkyTextureNode::type_enum = sky_type_init();
SkyTextureNode::SkyTextureNode()
: TextureNode("sky_texture")
{
type = ustring("Hosek / Wilkie");
sun_direction = make_float3(0.0f, 0.0f, 1.0f);
turbidity = 2.2f;
ground_albedo = 0.3f;
add_input("Vector", SHADER_SOCKET_VECTOR, ShaderInput::POSITION);
add_output("Color", SHADER_SOCKET_COLOR);
}
void SkyTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderOutput *color_out = output("Color");
SunSky sunsky;
if(type_enum[type] == NODE_SKY_OLD)
sky_texture_precompute_old(&sunsky, sun_direction, turbidity);
else if(type_enum[type] == NODE_SKY_NEW)
sky_texture_precompute_new(&sunsky, sun_direction, turbidity, ground_albedo);
else
assert(false);
if(vector_in->link)
compiler.stack_assign(vector_in);
int vector_offset = vector_in->stack_offset;
int sky_model = type_enum[type];
if(!tex_mapping.skip()) {
vector_offset = compiler.stack_find_offset(SHADER_SOCKET_VECTOR);
tex_mapping.compile(compiler, vector_in->stack_offset, vector_offset);
}
compiler.stack_assign(color_out);
compiler.add_node(NODE_TEX_SKY, vector_offset, color_out->stack_offset, sky_model);
compiler.add_node(__float_as_uint(sunsky.phi), __float_as_uint(sunsky.theta), __float_as_uint(sunsky.radiance_x), __float_as_uint(sunsky.radiance_y));
compiler.add_node(__float_as_uint(sunsky.radiance_z), __float_as_uint(sunsky.config_x[0]), __float_as_uint(sunsky.config_x[1]), __float_as_uint(sunsky.config_x[2]));
compiler.add_node(__float_as_uint(sunsky.config_x[3]), __float_as_uint(sunsky.config_x[4]), __float_as_uint(sunsky.config_x[5]), __float_as_uint(sunsky.config_x[6]));
compiler.add_node(__float_as_uint(sunsky.config_x[7]), __float_as_uint(sunsky.config_x[8]), __float_as_uint(sunsky.config_y[0]), __float_as_uint(sunsky.config_y[1]));
compiler.add_node(__float_as_uint(sunsky.config_y[2]), __float_as_uint(sunsky.config_y[3]), __float_as_uint(sunsky.config_y[4]), __float_as_uint(sunsky.config_y[5]));
compiler.add_node(__float_as_uint(sunsky.config_y[6]), __float_as_uint(sunsky.config_y[7]), __float_as_uint(sunsky.config_y[8]), __float_as_uint(sunsky.config_z[0]));
compiler.add_node(__float_as_uint(sunsky.config_z[1]), __float_as_uint(sunsky.config_z[2]), __float_as_uint(sunsky.config_z[3]), __float_as_uint(sunsky.config_z[4]));
compiler.add_node(__float_as_uint(sunsky.config_z[5]), __float_as_uint(sunsky.config_z[6]), __float_as_uint(sunsky.config_z[7]), __float_as_uint(sunsky.config_z[8]));
if(vector_offset != vector_in->stack_offset)
compiler.stack_clear_offset(vector_in->type, vector_offset);
}
void SkyTextureNode::compile(OSLCompiler& compiler)
{
tex_mapping.compile(compiler);
SunSky sunsky;
if(type_enum[type] == NODE_SKY_OLD)
sky_texture_precompute_old(&sunsky, sun_direction, turbidity);
else if(type_enum[type] == NODE_SKY_NEW)
sky_texture_precompute_new(&sunsky, sun_direction, turbidity, ground_albedo);
else
assert(false);
compiler.parameter("sky_model", type);
compiler.parameter("theta", sunsky.theta);
compiler.parameter("phi", sunsky.phi);
compiler.parameter_color("radiance", make_float3(sunsky.radiance_x, sunsky.radiance_y, sunsky.radiance_z));
compiler.parameter_array("config_x", sunsky.config_x, 9);
compiler.parameter_array("config_y", sunsky.config_y, 9);
compiler.parameter_array("config_z", sunsky.config_z, 9);
compiler.add(this, "node_sky_texture");
}
/* Gradient Texture */
static ShaderEnum gradient_type_init()
{
ShaderEnum enm;
enm.insert("Linear", NODE_BLEND_LINEAR);
enm.insert("Quadratic", NODE_BLEND_QUADRATIC);
enm.insert("Easing", NODE_BLEND_EASING);
enm.insert("Diagonal", NODE_BLEND_DIAGONAL);
enm.insert("Radial", NODE_BLEND_RADIAL);
enm.insert("Quadratic Sphere", NODE_BLEND_QUADRATIC_SPHERE);
enm.insert("Spherical", NODE_BLEND_SPHERICAL);
return enm;
}
ShaderEnum GradientTextureNode::type_enum = gradient_type_init();
GradientTextureNode::GradientTextureNode()
: TextureNode("gradient_texture")
{
type = ustring("Linear");
add_input("Vector", SHADER_SOCKET_POINT, ShaderInput::TEXTURE_GENERATED);
add_output("Color", SHADER_SOCKET_COLOR);
add_output("Fac", SHADER_SOCKET_FLOAT);
}
void GradientTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderOutput *color_out = output("Color");
ShaderOutput *fac_out = output("Fac");
if(vector_in->link) compiler.stack_assign(vector_in);
int vector_offset = vector_in->stack_offset;
if(!tex_mapping.skip()) {
vector_offset = compiler.stack_find_offset(SHADER_SOCKET_VECTOR);
tex_mapping.compile(compiler, vector_in->stack_offset, vector_offset);
}
if(!fac_out->links.empty())
compiler.stack_assign(fac_out);
if(!color_out->links.empty())
compiler.stack_assign(color_out);
compiler.add_node(NODE_TEX_GRADIENT,
compiler.encode_uchar4(type_enum[type], vector_offset, fac_out->stack_offset, color_out->stack_offset));
if(vector_offset != vector_in->stack_offset)
compiler.stack_clear_offset(vector_in->type, vector_offset);
}
void GradientTextureNode::compile(OSLCompiler& compiler)
{
tex_mapping.compile(compiler);
compiler.parameter("Type", type);
compiler.add(this, "node_gradient_texture");
}
/* Noise Texture */
NoiseTextureNode::NoiseTextureNode()
: TextureNode("noise_texture")
{
add_input("Vector", SHADER_SOCKET_POINT, ShaderInput::TEXTURE_GENERATED);
add_input("Scale", SHADER_SOCKET_FLOAT, 1.0f);
add_input("Detail", SHADER_SOCKET_FLOAT, 2.0f);
add_input("Distortion", SHADER_SOCKET_FLOAT, 0.0f);
add_output("Color", SHADER_SOCKET_COLOR);
add_output("Fac", SHADER_SOCKET_FLOAT);
}
void NoiseTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *distortion_in = input("Distortion");
ShaderInput *detail_in = input("Detail");
ShaderInput *scale_in = input("Scale");
ShaderInput *vector_in = input("Vector");
ShaderOutput *color_out = output("Color");
ShaderOutput *fac_out = output("Fac");
if(vector_in->link) compiler.stack_assign(vector_in);
if(scale_in->link) compiler.stack_assign(scale_in);
if(detail_in->link) compiler.stack_assign(detail_in);
if(distortion_in->link) compiler.stack_assign(distortion_in);
int vector_offset = vector_in->stack_offset;
if(!tex_mapping.skip()) {
vector_offset = compiler.stack_find_offset(SHADER_SOCKET_VECTOR);
tex_mapping.compile(compiler, vector_in->stack_offset, vector_offset);
}
if(!fac_out->links.empty())
compiler.stack_assign(fac_out);
if(!color_out->links.empty())
compiler.stack_assign(color_out);
compiler.add_node(NODE_TEX_NOISE,
compiler.encode_uchar4(vector_offset, scale_in->stack_offset, detail_in->stack_offset, distortion_in->stack_offset),
compiler.encode_uchar4(color_out->stack_offset, fac_out->stack_offset));
compiler.add_node(
__float_as_int(scale_in->value.x),
__float_as_int(detail_in->value.x),
__float_as_int(distortion_in->value.x));
if(vector_offset != vector_in->stack_offset)
compiler.stack_clear_offset(vector_in->type, vector_offset);
}
void NoiseTextureNode::compile(OSLCompiler& compiler)
{
tex_mapping.compile(compiler);
compiler.add(this, "node_noise_texture");
}
/* Voronoi Texture */
static ShaderEnum voronoi_coloring_init()
{
ShaderEnum enm;
enm.insert("Intensity", NODE_VORONOI_INTENSITY);
enm.insert("Cells", NODE_VORONOI_CELLS);
return enm;
}
ShaderEnum VoronoiTextureNode::coloring_enum = voronoi_coloring_init();
VoronoiTextureNode::VoronoiTextureNode()
: TextureNode("voronoi_texture")
{
coloring = ustring("Intensity");
add_input("Scale", SHADER_SOCKET_FLOAT, 1.0f);
add_input("Vector", SHADER_SOCKET_POINT, ShaderInput::TEXTURE_GENERATED);
add_output("Color", SHADER_SOCKET_COLOR);
add_output("Fac", SHADER_SOCKET_FLOAT);
}
void VoronoiTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *scale_in = input("Scale");
ShaderInput *vector_in = input("Vector");
ShaderOutput *color_out = output("Color");
ShaderOutput *fac_out = output("Fac");
if(vector_in->link) compiler.stack_assign(vector_in);
if(scale_in->link) compiler.stack_assign(scale_in);
int vector_offset = vector_in->stack_offset;
if(!tex_mapping.skip()) {
vector_offset = compiler.stack_find_offset(SHADER_SOCKET_VECTOR);
tex_mapping.compile(compiler, vector_in->stack_offset, vector_offset);
}
compiler.stack_assign(color_out);
compiler.stack_assign(fac_out);
compiler.add_node(NODE_TEX_VORONOI,
coloring_enum[coloring],
compiler.encode_uchar4(scale_in->stack_offset, vector_offset, fac_out->stack_offset, color_out->stack_offset),
__float_as_int(scale_in->value.x));
if(vector_offset != vector_in->stack_offset)
compiler.stack_clear_offset(vector_in->type, vector_offset);
}
void VoronoiTextureNode::compile(OSLCompiler& compiler)
{
tex_mapping.compile(compiler);
compiler.parameter("Coloring", coloring);
compiler.add(this, "node_voronoi_texture");
}
/* Musgrave Texture */
static ShaderEnum musgrave_type_init()
{
ShaderEnum enm;
enm.insert("Multifractal", NODE_MUSGRAVE_MULTIFRACTAL);
enm.insert("fBM", NODE_MUSGRAVE_FBM);
enm.insert("Hybrid Multifractal", NODE_MUSGRAVE_HYBRID_MULTIFRACTAL);
enm.insert("Ridged Multifractal", NODE_MUSGRAVE_RIDGED_MULTIFRACTAL);
enm.insert("Hetero Terrain", NODE_MUSGRAVE_HETERO_TERRAIN);
return enm;
}
ShaderEnum MusgraveTextureNode::type_enum = musgrave_type_init();
MusgraveTextureNode::MusgraveTextureNode()
: TextureNode("musgrave_texture")
{
type = ustring("fBM");
add_input("Scale", SHADER_SOCKET_FLOAT, 1.0f);
add_input("Detail", SHADER_SOCKET_FLOAT, 2.0f);
add_input("Vector", SHADER_SOCKET_POINT, ShaderInput::TEXTURE_GENERATED);
add_input("Dimension", SHADER_SOCKET_FLOAT, 2.0f);
add_input("Lacunarity", SHADER_SOCKET_FLOAT, 1.0f);
add_input("Offset", SHADER_SOCKET_FLOAT, 0.0f);
add_input("Gain", SHADER_SOCKET_FLOAT, 1.0f);
add_output("Fac", SHADER_SOCKET_FLOAT);
add_output("Color", SHADER_SOCKET_COLOR);
}
void MusgraveTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderInput *scale_in = input("Scale");
ShaderInput *dimension_in = input("Dimension");
ShaderInput *lacunarity_in = input("Lacunarity");
ShaderInput *detail_in = input("Detail");
ShaderInput *offset_in = input("Offset");
ShaderInput *gain_in = input("Gain");
ShaderOutput *fac_out = output("Fac");
ShaderOutput *color_out = output("Color");
if(vector_in->link) compiler.stack_assign(vector_in);
if(dimension_in->link) compiler.stack_assign(dimension_in);
if(lacunarity_in->link) compiler.stack_assign(lacunarity_in);
if(detail_in->link) compiler.stack_assign(detail_in);
if(offset_in->link) compiler.stack_assign(offset_in);
if(gain_in->link) compiler.stack_assign(gain_in);
if(scale_in->link) compiler.stack_assign(scale_in);
int vector_offset = vector_in->stack_offset;
if(!tex_mapping.skip()) {
vector_offset = compiler.stack_find_offset(SHADER_SOCKET_VECTOR);
tex_mapping.compile(compiler, vector_in->stack_offset, vector_offset);
}
if(!fac_out->links.empty())
compiler.stack_assign(fac_out);
if(!color_out->links.empty())
compiler.stack_assign(color_out);
compiler.add_node(NODE_TEX_MUSGRAVE,
compiler.encode_uchar4(type_enum[type], vector_offset, color_out->stack_offset, fac_out->stack_offset),
compiler.encode_uchar4(dimension_in->stack_offset, lacunarity_in->stack_offset, detail_in->stack_offset, offset_in->stack_offset),
compiler.encode_uchar4(gain_in->stack_offset, scale_in->stack_offset));
compiler.add_node(__float_as_int(dimension_in->value.x),
__float_as_int(lacunarity_in->value.x),
__float_as_int(detail_in->value.x),
__float_as_int(offset_in->value.x));
compiler.add_node(__float_as_int(gain_in->value.x),
__float_as_int(scale_in->value.x));
if(vector_offset != vector_in->stack_offset)
compiler.stack_clear_offset(vector_in->type, vector_offset);
}
void MusgraveTextureNode::compile(OSLCompiler& compiler)
{
tex_mapping.compile(compiler);
compiler.parameter("Type", type);
compiler.add(this, "node_musgrave_texture");
}
/* Wave Texture */
static ShaderEnum wave_type_init()
{
ShaderEnum enm;
enm.insert("Bands", NODE_WAVE_BANDS);
enm.insert("Rings", NODE_WAVE_RINGS);
return enm;
}
ShaderEnum WaveTextureNode::type_enum = wave_type_init();
WaveTextureNode::WaveTextureNode()
: TextureNode("wave_texture")
{
type = ustring("Bands");
add_input("Scale", SHADER_SOCKET_FLOAT, 1.0f);
add_input("Distortion", SHADER_SOCKET_FLOAT, 0.0f);
add_input("Detail", SHADER_SOCKET_FLOAT, 2.0f);
add_input("Detail Scale", SHADER_SOCKET_FLOAT, 1.0f);
add_input("Vector", SHADER_SOCKET_POINT, ShaderInput::TEXTURE_GENERATED);
add_output("Color", SHADER_SOCKET_COLOR);
add_output("Fac", SHADER_SOCKET_FLOAT);
}
void WaveTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *scale_in = input("Scale");
ShaderInput *distortion_in = input("Distortion");
ShaderInput *dscale_in = input("Detail Scale");
ShaderInput *detail_in = input("Detail");
ShaderInput *vector_in = input("Vector");
ShaderOutput *fac_out = output("Fac");
ShaderOutput *color_out = output("Color");
if(scale_in->link) compiler.stack_assign(scale_in);
if(detail_in->link) compiler.stack_assign(detail_in);
if(distortion_in->link) compiler.stack_assign(distortion_in);
if(dscale_in->link) compiler.stack_assign(dscale_in);
if(vector_in->link) compiler.stack_assign(vector_in);
int vector_offset = vector_in->stack_offset;
if(!tex_mapping.skip()) {
vector_offset = compiler.stack_find_offset(SHADER_SOCKET_VECTOR);
tex_mapping.compile(compiler, vector_in->stack_offset, vector_offset);
}
if(!fac_out->links.empty())
compiler.stack_assign(fac_out);
if(!color_out->links.empty())
compiler.stack_assign(color_out);
compiler.add_node(NODE_TEX_WAVE,
compiler.encode_uchar4(type_enum[type], color_out->stack_offset, fac_out->stack_offset, dscale_in->stack_offset),
compiler.encode_uchar4(vector_offset, scale_in->stack_offset, detail_in->stack_offset, distortion_in->stack_offset));
compiler.add_node(
__float_as_int(scale_in->value.x),
__float_as_int(detail_in->value.x),
__float_as_int(distortion_in->value.x),
__float_as_int(dscale_in->value.x));
if(vector_offset != vector_in->stack_offset)
compiler.stack_clear_offset(vector_in->type, vector_offset);
}
void WaveTextureNode::compile(OSLCompiler& compiler)
{
tex_mapping.compile(compiler);
compiler.parameter("Type", type);
compiler.add(this, "node_wave_texture");
}
/* Magic Texture */
MagicTextureNode::MagicTextureNode()
: TextureNode("magic_texture")
{
depth = 2;
add_input("Vector", SHADER_SOCKET_POINT, ShaderInput::TEXTURE_GENERATED);
add_input("Scale", SHADER_SOCKET_FLOAT, 5.0f);
add_input("Distortion", SHADER_SOCKET_FLOAT, 1.0f);
add_output("Color", SHADER_SOCKET_COLOR);
add_output("Fac", SHADER_SOCKET_FLOAT);
}
void MagicTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderInput *scale_in = input("Scale");
ShaderInput *distortion_in = input("Distortion");
ShaderOutput *color_out = output("Color");
ShaderOutput *fac_out = output("Fac");
if(vector_in->link) compiler.stack_assign(vector_in);
if(distortion_in->link) compiler.stack_assign(distortion_in);
if(scale_in->link) compiler.stack_assign(scale_in);
int vector_offset = vector_in->stack_offset;
if(!tex_mapping.skip()) {
vector_offset = compiler.stack_find_offset(SHADER_SOCKET_VECTOR);
tex_mapping.compile(compiler, vector_in->stack_offset, vector_offset);
}
if(!fac_out->links.empty())
compiler.stack_assign(fac_out);
if(!color_out->links.empty())
compiler.stack_assign(color_out);
compiler.add_node(NODE_TEX_MAGIC,
compiler.encode_uchar4(depth, color_out->stack_offset, fac_out->stack_offset),
compiler.encode_uchar4(vector_offset, scale_in->stack_offset, distortion_in->stack_offset));
compiler.add_node(
__float_as_int(scale_in->value.x),
__float_as_int(distortion_in->value.x));
if(vector_offset != vector_in->stack_offset)
compiler.stack_clear_offset(vector_in->type, vector_offset);
}
void MagicTextureNode::compile(OSLCompiler& compiler)
{
tex_mapping.compile(compiler);
compiler.parameter("Depth", depth);
compiler.add(this, "node_magic_texture");
}
/* Checker Texture */
CheckerTextureNode::CheckerTextureNode()
: TextureNode("checker_texture")
{
add_input("Vector", SHADER_SOCKET_POINT, ShaderInput::TEXTURE_GENERATED);
add_input("Color1", SHADER_SOCKET_COLOR);
add_input("Color2", SHADER_SOCKET_COLOR);
add_input("Scale", SHADER_SOCKET_FLOAT, 1.0f);
add_output("Color", SHADER_SOCKET_COLOR);
add_output("Fac", SHADER_SOCKET_FLOAT);
}
void CheckerTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderInput *color1_in = input("Color1");
ShaderInput *color2_in = input("Color2");
ShaderInput *scale_in = input("Scale");
ShaderOutput *color_out = output("Color");
ShaderOutput *fac_out = output("Fac");
compiler.stack_assign(vector_in);
compiler.stack_assign(color1_in);
compiler.stack_assign(color2_in);
if(scale_in->link) compiler.stack_assign(scale_in);
int vector_offset = vector_in->stack_offset;
if(!tex_mapping.skip()) {
vector_offset = compiler.stack_find_offset(SHADER_SOCKET_VECTOR);
tex_mapping.compile(compiler, vector_in->stack_offset, vector_offset);
}
if(!color_out->links.empty())
compiler.stack_assign(color_out);
if(!fac_out->links.empty())
compiler.stack_assign(fac_out);
compiler.add_node(NODE_TEX_CHECKER,
compiler.encode_uchar4(vector_offset, color1_in->stack_offset, color2_in->stack_offset, scale_in->stack_offset),
compiler.encode_uchar4(color_out->stack_offset, fac_out->stack_offset),
__float_as_int(scale_in->value.x));
if(vector_offset != vector_in->stack_offset)
compiler.stack_clear_offset(vector_in->type, vector_offset);
}
void CheckerTextureNode::compile(OSLCompiler& compiler)
{
tex_mapping.compile(compiler);
compiler.add(this, "node_checker_texture");
}
/* Brick Texture */
BrickTextureNode::BrickTextureNode()
: TextureNode("brick_texture")
{
offset = 0.5f;
offset_frequency = 2;
squash = 1.0f;
squash_frequency = 2;
add_input("Vector", SHADER_SOCKET_POINT, ShaderInput::TEXTURE_GENERATED);
add_input("Color1", SHADER_SOCKET_COLOR);
add_input("Color2", SHADER_SOCKET_COLOR);
add_input("Mortar", SHADER_SOCKET_COLOR);
add_input("Scale", SHADER_SOCKET_FLOAT, 5.0f);
add_input("Mortar Size", SHADER_SOCKET_FLOAT, 0.02f);
add_input("Bias", SHADER_SOCKET_FLOAT, 0.0f);
add_input("Brick Width", SHADER_SOCKET_FLOAT, 0.5f);
add_input("Row Height", SHADER_SOCKET_FLOAT, 0.25f);
add_output("Color", SHADER_SOCKET_COLOR);
add_output("Fac", SHADER_SOCKET_FLOAT);
}
void BrickTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderInput *color1_in = input("Color1");
ShaderInput *color2_in = input("Color2");
ShaderInput *mortar_in = input("Mortar");
ShaderInput *scale_in = input("Scale");
ShaderInput *mortar_size_in = input("Mortar Size");
ShaderInput *bias_in = input("Bias");
ShaderInput *brick_width_in = input("Brick Width");
ShaderInput *row_height_in = input("Row Height");
ShaderOutput *color_out = output("Color");
ShaderOutput *fac_out = output("Fac");
compiler.stack_assign(vector_in);
compiler.stack_assign(color1_in);
compiler.stack_assign(color2_in);
compiler.stack_assign(mortar_in);
if(scale_in->link) compiler.stack_assign(scale_in);
if(mortar_size_in->link) compiler.stack_assign(mortar_size_in);
if(bias_in->link) compiler.stack_assign(bias_in);
if(brick_width_in->link) compiler.stack_assign(brick_width_in);
if(row_height_in->link) compiler.stack_assign(row_height_in);
int vector_offset = vector_in->stack_offset;
if(!tex_mapping.skip()) {
vector_offset = compiler.stack_find_offset(SHADER_SOCKET_VECTOR);
tex_mapping.compile(compiler, vector_in->stack_offset, vector_offset);
}
if(!color_out->links.empty())
compiler.stack_assign(color_out);
if(!fac_out->links.empty())
compiler.stack_assign(fac_out);
compiler.add_node(NODE_TEX_BRICK,
compiler.encode_uchar4(vector_offset,
color1_in->stack_offset, color2_in->stack_offset, mortar_in->stack_offset),
compiler.encode_uchar4(scale_in->stack_offset,
mortar_size_in->stack_offset, bias_in->stack_offset, brick_width_in->stack_offset),
compiler.encode_uchar4(row_height_in->stack_offset,
color_out->stack_offset, fac_out->stack_offset));
compiler.add_node(compiler.encode_uchar4(offset_frequency, squash_frequency),
__float_as_int(scale_in->value.x),
__float_as_int(mortar_size_in->value.x),
__float_as_int(bias_in->value.x));
compiler.add_node(__float_as_int(brick_width_in->value.x),
__float_as_int(row_height_in->value.x),
__float_as_int(offset),
__float_as_int(squash));
if(vector_offset != vector_in->stack_offset)
compiler.stack_clear_offset(vector_in->type, vector_offset);
}
void BrickTextureNode::compile(OSLCompiler& compiler)
{
tex_mapping.compile(compiler);
compiler.parameter("Offset", offset);
compiler.parameter("OffsetFrequency", offset_frequency);
compiler.parameter("Squash", squash);
compiler.parameter("SquashFrequency", squash_frequency);
compiler.add(this, "node_brick_texture");
}
/* Normal */
NormalNode::NormalNode()
: ShaderNode("normal")
{
direction = make_float3(0.0f, 0.0f, 1.0f);
add_input("Normal", SHADER_SOCKET_NORMAL);
add_output("Normal", SHADER_SOCKET_NORMAL);
add_output("Dot", SHADER_SOCKET_FLOAT);
}
void NormalNode::compile(SVMCompiler& compiler)
{
ShaderInput *normal_in = input("Normal");
ShaderOutput *normal_out = output("Normal");
ShaderOutput *dot_out = output("Dot");
compiler.stack_assign(normal_in);
compiler.stack_assign(normal_out);
compiler.stack_assign(dot_out);
compiler.add_node(NODE_NORMAL, normal_in->stack_offset, normal_out->stack_offset, dot_out->stack_offset);
compiler.add_node(
__float_as_int(direction.x),
__float_as_int(direction.y),
__float_as_int(direction.z));
}
void NormalNode::compile(OSLCompiler& compiler)
{
compiler.parameter_normal("Direction", direction);
compiler.add(this, "node_normal");
}
/* Mapping */
MappingNode::MappingNode()
: ShaderNode("mapping")
{
add_input("Vector", SHADER_SOCKET_POINT);
add_output("Vector", SHADER_SOCKET_POINT);
}
void MappingNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderOutput *vector_out = output("Vector");
compiler.stack_assign(vector_in);
compiler.stack_assign(vector_out);
tex_mapping.compile(compiler, vector_in->stack_offset, vector_out->stack_offset);
}
void MappingNode::compile(OSLCompiler& compiler)
{
Transform tfm = transform_transpose(tex_mapping.compute_transform());
compiler.parameter("Matrix", tfm);
compiler.parameter_point("mapping_min", tex_mapping.min);
compiler.parameter_point("mapping_max", tex_mapping.max);
compiler.parameter("use_minmax", tex_mapping.use_minmax);
compiler.add(this, "node_mapping");
}
/* Convert */
ConvertNode::ConvertNode(ShaderSocketType from_, ShaderSocketType to_, bool autoconvert)
: ShaderNode("convert")
{
from = from_;
to = to_;
if(autoconvert)
special_type = SHADER_SPECIAL_TYPE_AUTOCONVERT;
assert(from != to);
if(from == SHADER_SOCKET_FLOAT)
add_input("Val", SHADER_SOCKET_FLOAT);
else if(from == SHADER_SOCKET_INT)
add_input("ValInt", SHADER_SOCKET_INT);
else if(from == SHADER_SOCKET_COLOR)
add_input("Color", SHADER_SOCKET_COLOR);
else if(from == SHADER_SOCKET_VECTOR)
add_input("Vector", SHADER_SOCKET_VECTOR);
else if(from == SHADER_SOCKET_POINT)
add_input("Point", SHADER_SOCKET_POINT);
else if(from == SHADER_SOCKET_NORMAL)
add_input("Normal", SHADER_SOCKET_NORMAL);
else if(from == SHADER_SOCKET_STRING)
add_input("String", SHADER_SOCKET_STRING);
else
assert(0);
if(to == SHADER_SOCKET_FLOAT)
add_output("Val", SHADER_SOCKET_FLOAT);
else if(to == SHADER_SOCKET_INT)
add_output("ValInt", SHADER_SOCKET_INT);
else if(to == SHADER_SOCKET_COLOR)
add_output("Color", SHADER_SOCKET_COLOR);
else if(to == SHADER_SOCKET_VECTOR)
add_output("Vector", SHADER_SOCKET_VECTOR);
else if(to == SHADER_SOCKET_POINT)
add_output("Point", SHADER_SOCKET_POINT);
else if(to == SHADER_SOCKET_NORMAL)
add_output("Normal", SHADER_SOCKET_NORMAL);
else if(to == SHADER_SOCKET_STRING)
add_output("String", SHADER_SOCKET_STRING);
else
assert(0);
}
void ConvertNode::compile(SVMCompiler& compiler)
{
ShaderInput *in = inputs[0];
ShaderOutput *out = outputs[0];
if(from == SHADER_SOCKET_FLOAT) {
compiler.stack_assign(in);
compiler.stack_assign(out);
if(to == SHADER_SOCKET_INT)
/* float to int */
compiler.add_node(NODE_CONVERT, NODE_CONVERT_FI, in->stack_offset, out->stack_offset);
else
/* float to float3 */
compiler.add_node(NODE_CONVERT, NODE_CONVERT_FV, in->stack_offset, out->stack_offset);
}
else if(from == SHADER_SOCKET_INT) {
compiler.stack_assign(in);
compiler.stack_assign(out);
if(to == SHADER_SOCKET_FLOAT)
/* int to float */
compiler.add_node(NODE_CONVERT, NODE_CONVERT_IF, in->stack_offset, out->stack_offset);
else
/* int to vector/point/normal */
compiler.add_node(NODE_CONVERT, NODE_CONVERT_IV, in->stack_offset, out->stack_offset);
}
else if(to == SHADER_SOCKET_FLOAT) {
compiler.stack_assign(in);
compiler.stack_assign(out);
if(from == SHADER_SOCKET_COLOR)
/* color to float */
compiler.add_node(NODE_CONVERT, NODE_CONVERT_CF, in->stack_offset, out->stack_offset);
else
/* vector/point/normal to float */
compiler.add_node(NODE_CONVERT, NODE_CONVERT_VF, in->stack_offset, out->stack_offset);
}
else if(to == SHADER_SOCKET_INT) {
compiler.stack_assign(in);
compiler.stack_assign(out);
if(from == SHADER_SOCKET_COLOR)
/* color to int */
compiler.add_node(NODE_CONVERT, NODE_CONVERT_CI, in->stack_offset, out->stack_offset);
else
/* vector/point/normal to int */
compiler.add_node(NODE_CONVERT, NODE_CONVERT_VI, in->stack_offset, out->stack_offset);
}
else {
/* float3 to float3 */
if(in->link) {
/* no op in SVM */
compiler.stack_link(in, out);
}
else {
/* set 0,0,0 value */
compiler.stack_assign(in);
compiler.stack_assign(out);
compiler.add_node(NODE_VALUE_V, in->stack_offset);
compiler.add_node(NODE_VALUE_V, in->value);
}
}
}
void ConvertNode::compile(OSLCompiler& compiler)
{
if(from == SHADER_SOCKET_FLOAT)
compiler.add(this, "node_convert_from_float");
else if(from == SHADER_SOCKET_INT)
compiler.add(this, "node_convert_from_int");
else if(from == SHADER_SOCKET_COLOR)
compiler.add(this, "node_convert_from_color");
else if(from == SHADER_SOCKET_VECTOR)
compiler.add(this, "node_convert_from_vector");
else if(from == SHADER_SOCKET_POINT)
compiler.add(this, "node_convert_from_point");
else if(from == SHADER_SOCKET_NORMAL)
compiler.add(this, "node_convert_from_normal");
else
assert(0);
}
/* Proxy */
ProxyNode::ProxyNode(ShaderSocketType type_)
: ShaderNode("proxy")
{
type = type_;
special_type = SHADER_SPECIAL_TYPE_PROXY;
add_input("Input", type);
add_output("Output", type);
}
void ProxyNode::compile(SVMCompiler& /*compiler*/)
{
}
void ProxyNode::compile(OSLCompiler& /*compiler*/)
{
}
/* BSDF Closure */
BsdfNode::BsdfNode(bool scattering_)
: ShaderNode("bsdf"), scattering(scattering_)
{
add_input("Color", SHADER_SOCKET_COLOR, make_float3(0.8f, 0.8f, 0.8f));
add_input("Normal", SHADER_SOCKET_NORMAL, ShaderInput::NORMAL);
add_input("SurfaceMixWeight", SHADER_SOCKET_FLOAT, 0.0f, ShaderInput::USE_SVM);
if(scattering) {
closure = CLOSURE_BSSRDF_CUBIC_ID;
add_output("BSSRDF", SHADER_SOCKET_CLOSURE);
}
else {
closure = CLOSURE_BSDF_DIFFUSE_ID;
add_output("BSDF", SHADER_SOCKET_CLOSURE);
}
}
void BsdfNode::compile(SVMCompiler& compiler, ShaderInput *param1, ShaderInput *param2, ShaderInput *param3, ShaderInput *param4)
{
ShaderInput *color_in = input("Color");
ShaderInput *normal_in = input("Normal");
ShaderInput *tangent_in = input("Tangent");
if(color_in->link) {
compiler.stack_assign(color_in);
compiler.add_node(NODE_CLOSURE_WEIGHT, color_in->stack_offset);
}
else
compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color_in->value);
if(param1)
compiler.stack_assign(param1);
if(param2)
compiler.stack_assign(param2);
if(param3)
compiler.stack_assign(param3);
if(param4)
compiler.stack_assign(param4);
if(normal_in->link)
compiler.stack_assign(normal_in);
if(tangent_in && tangent_in->link)
compiler.stack_assign(tangent_in);
compiler.add_node(NODE_CLOSURE_BSDF,
compiler.encode_uchar4(closure,
(param1)? param1->stack_offset: SVM_STACK_INVALID,
(param2)? param2->stack_offset: SVM_STACK_INVALID,
compiler.closure_mix_weight_offset()),
__float_as_int((param1)? param1->value.x: 0.0f),
__float_as_int((param2)? param2->value.x: 0.0f));
if(tangent_in) {
compiler.add_node(normal_in->stack_offset, tangent_in->stack_offset,
(param3)? param3->stack_offset: SVM_STACK_INVALID,
(param4)? param4->stack_offset: SVM_STACK_INVALID);
}
else {
compiler.add_node(normal_in->stack_offset, SVM_STACK_INVALID,
(param3)? param3->stack_offset: SVM_STACK_INVALID,
(param4)? param4->stack_offset: SVM_STACK_INVALID);
}
}
void BsdfNode::compile(SVMCompiler& compiler)
{
compile(compiler, NULL, NULL);
}
void BsdfNode::compile(OSLCompiler& /*compiler*/)
{
assert(0);
}
/* Anisotropic BSDF Closure */
static ShaderEnum aniso_distribution_init()
{
ShaderEnum enm;
enm.insert("Beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID);
enm.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID);
enm.insert("Ashikhmin-Shirley", CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID);
return enm;
}
ShaderEnum AnisotropicBsdfNode::distribution_enum = aniso_distribution_init();
AnisotropicBsdfNode::AnisotropicBsdfNode()
{
distribution = ustring("GGX");
add_input("Tangent", SHADER_SOCKET_VECTOR, ShaderInput::TANGENT);
add_input("Roughness", SHADER_SOCKET_FLOAT, 0.2f);
add_input("Anisotropy", SHADER_SOCKET_FLOAT, 0.5f);
add_input("Rotation", SHADER_SOCKET_FLOAT, 0.0f);
}
void AnisotropicBsdfNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
if(shader->has_surface) {
ShaderInput *tangent_in = input("Tangent");
if(!tangent_in->link)
attributes->add(ATTR_STD_GENERATED);
}
ShaderNode::attributes(shader, attributes);
}
void AnisotropicBsdfNode::compile(SVMCompiler& compiler)
{
closure = (ClosureType)distribution_enum[distribution];
BsdfNode::compile(compiler, input("Roughness"), input("Anisotropy"), input("Rotation"));
}
void AnisotropicBsdfNode::compile(OSLCompiler& compiler)
{
compiler.parameter("distribution", distribution);
compiler.add(this, "node_anisotropic_bsdf");
}
/* Glossy BSDF Closure */
static ShaderEnum glossy_distribution_init()
{
ShaderEnum enm;
enm.insert("Sharp", CLOSURE_BSDF_REFLECTION_ID);
enm.insert("Beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_ID);
enm.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_ID);
enm.insert("Ashikhmin-Shirley", CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID);
return enm;
}
ShaderEnum GlossyBsdfNode::distribution_enum = glossy_distribution_init();
GlossyBsdfNode::GlossyBsdfNode()
{
distribution = ustring("GGX");
add_input("Roughness", SHADER_SOCKET_FLOAT, 0.2f);
}
void GlossyBsdfNode::compile(SVMCompiler& compiler)
{
closure = (ClosureType)distribution_enum[distribution];
if(closure == CLOSURE_BSDF_REFLECTION_ID)
BsdfNode::compile(compiler, NULL, NULL);
else
BsdfNode::compile(compiler, input("Roughness"), NULL);
}
void GlossyBsdfNode::compile(OSLCompiler& compiler)
{
compiler.parameter("distribution", distribution);
compiler.add(this, "node_glossy_bsdf");
}
/* Glass BSDF Closure */
static ShaderEnum glass_distribution_init()
{
ShaderEnum enm;
enm.insert("Sharp", CLOSURE_BSDF_SHARP_GLASS_ID);
enm.insert("Beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID);
enm.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID);
return enm;
}
ShaderEnum GlassBsdfNode::distribution_enum = glass_distribution_init();
GlassBsdfNode::GlassBsdfNode()
{
distribution = ustring("Sharp");
add_input("Roughness", SHADER_SOCKET_FLOAT, 0.0f);
add_input("IOR", SHADER_SOCKET_FLOAT, 0.3f);
}
void GlassBsdfNode::compile(SVMCompiler& compiler)
{
closure = (ClosureType)distribution_enum[distribution];
if(closure == CLOSURE_BSDF_SHARP_GLASS_ID)
BsdfNode::compile(compiler, NULL, input("IOR"));
else
BsdfNode::compile(compiler, input("Roughness"), input("IOR"));
}
void GlassBsdfNode::compile(OSLCompiler& compiler)
{
compiler.parameter("distribution", distribution);
compiler.add(this, "node_glass_bsdf");
}
/* Refraction BSDF Closure */
static ShaderEnum refraction_distribution_init()
{
ShaderEnum enm;
enm.insert("Sharp", CLOSURE_BSDF_REFRACTION_ID);
enm.insert("Beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID);
enm.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID);
return enm;
}
ShaderEnum RefractionBsdfNode::distribution_enum = refraction_distribution_init();
RefractionBsdfNode::RefractionBsdfNode()
{
distribution = ustring("Sharp");
add_input("Roughness", SHADER_SOCKET_FLOAT, 0.0f);
add_input("IOR", SHADER_SOCKET_FLOAT, 0.3f);
}
void RefractionBsdfNode::compile(SVMCompiler& compiler)
{
closure = (ClosureType)distribution_enum[distribution];
if(closure == CLOSURE_BSDF_REFRACTION_ID)
BsdfNode::compile(compiler, NULL, input("IOR"));
else
BsdfNode::compile(compiler, input("Roughness"), input("IOR"));
}
void RefractionBsdfNode::compile(OSLCompiler& compiler)
{
compiler.parameter("distribution", distribution);
compiler.add(this, "node_refraction_bsdf");
}
/* Toon BSDF Closure */
static ShaderEnum toon_component_init()
{
ShaderEnum enm;
enm.insert("Diffuse", CLOSURE_BSDF_DIFFUSE_TOON_ID);
enm.insert("Glossy", CLOSURE_BSDF_GLOSSY_TOON_ID);
return enm;
}
ShaderEnum ToonBsdfNode::component_enum = toon_component_init();
ToonBsdfNode::ToonBsdfNode()
{
component = ustring("Diffuse");
add_input("Size", SHADER_SOCKET_FLOAT, 0.5f);
add_input("Smooth", SHADER_SOCKET_FLOAT, 0.0f);
}
void ToonBsdfNode::compile(SVMCompiler& compiler)
{
closure = (ClosureType)component_enum[component];
BsdfNode::compile(compiler, input("Size"), input("Smooth"));
}
void ToonBsdfNode::compile(OSLCompiler& compiler)
{
compiler.parameter("component", component);
compiler.add(this, "node_toon_bsdf");
}
/* Velvet BSDF Closure */
VelvetBsdfNode::VelvetBsdfNode()
{
closure = CLOSURE_BSDF_ASHIKHMIN_VELVET_ID;
add_input("Sigma", SHADER_SOCKET_FLOAT, 1.0f);
}
void VelvetBsdfNode::compile(SVMCompiler& compiler)
{
BsdfNode::compile(compiler, input("Sigma"), NULL);
}
void VelvetBsdfNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_velvet_bsdf");
}
/* Diffuse BSDF Closure */
DiffuseBsdfNode::DiffuseBsdfNode()
{
closure = CLOSURE_BSDF_DIFFUSE_ID;
add_input("Roughness", SHADER_SOCKET_FLOAT, 0.0f);
}
void DiffuseBsdfNode::compile(SVMCompiler& compiler)
{
BsdfNode::compile(compiler, input("Roughness"), NULL);
}
void DiffuseBsdfNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_diffuse_bsdf");
}
/* Translucent BSDF Closure */
TranslucentBsdfNode::TranslucentBsdfNode()
{
closure = CLOSURE_BSDF_TRANSLUCENT_ID;
}
void TranslucentBsdfNode::compile(SVMCompiler& compiler)
{
BsdfNode::compile(compiler, NULL, NULL);
}
void TranslucentBsdfNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_translucent_bsdf");
}
/* Transparent BSDF Closure */
TransparentBsdfNode::TransparentBsdfNode()
{
name = "transparent";
closure = CLOSURE_BSDF_TRANSPARENT_ID;
}
void TransparentBsdfNode::compile(SVMCompiler& compiler)
{
BsdfNode::compile(compiler, NULL, NULL);
}
void TransparentBsdfNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_transparent_bsdf");
}
/* Subsurface Scattering Closure */
static ShaderEnum subsurface_falloff_init()
{
ShaderEnum enm;
enm.insert("Cubic", CLOSURE_BSSRDF_CUBIC_ID);
enm.insert("Gaussian", CLOSURE_BSSRDF_GAUSSIAN_ID);
return enm;
}
ShaderEnum SubsurfaceScatteringNode::falloff_enum = subsurface_falloff_init();
SubsurfaceScatteringNode::SubsurfaceScatteringNode()
: BsdfNode(true)
{
name = "subsurface_scattering";
closure = CLOSURE_BSSRDF_CUBIC_ID;
add_input("Scale", SHADER_SOCKET_FLOAT, 0.01f);
add_input("Radius", SHADER_SOCKET_VECTOR, make_float3(0.1f, 0.1f, 0.1f));
add_input("Sharpness", SHADER_SOCKET_FLOAT, 0.0f);
add_input("Texture Blur", SHADER_SOCKET_FLOAT, 1.0f);
}
void SubsurfaceScatteringNode::compile(SVMCompiler& compiler)
{
BsdfNode::compile(compiler, input("Scale"), input("Texture Blur"), input("Radius"), input("Sharpness"));
}
void SubsurfaceScatteringNode::compile(OSLCompiler& compiler)
{
compiler.parameter("Falloff", falloff_enum[closure]);
compiler.add(this, "node_subsurface_scattering");
}
bool SubsurfaceScatteringNode::has_bssrdf_bump()
{
/* detect if anything is plugged into the normal input besides the default */
ShaderInput *normal_in = input("Normal");
return (normal_in->link && normal_in->link->parent->special_type != SHADER_SPECIAL_TYPE_GEOMETRY);
}
/* Emissive Closure */
EmissionNode::EmissionNode()
: ShaderNode("emission")
{
add_input("Color", SHADER_SOCKET_COLOR, make_float3(0.8f, 0.8f, 0.8f));
add_input("Strength", SHADER_SOCKET_FLOAT, 10.0f);
add_input("SurfaceMixWeight", SHADER_SOCKET_FLOAT, 0.0f, ShaderInput::USE_SVM);
add_output("Emission", SHADER_SOCKET_CLOSURE);
}
void EmissionNode::compile(SVMCompiler& compiler)
{
ShaderInput *color_in = input("Color");
ShaderInput *strength_in = input("Strength");
if(color_in->link || strength_in->link) {
compiler.stack_assign(color_in);
compiler.stack_assign(strength_in);
compiler.add_node(NODE_EMISSION_WEIGHT, color_in->stack_offset, strength_in->stack_offset);
}
else
compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color_in->value * strength_in->value.x);
compiler.add_node(NODE_CLOSURE_EMISSION, compiler.closure_mix_weight_offset());
}
void EmissionNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_emission");
}
/* Background Closure */
BackgroundNode::BackgroundNode()
: ShaderNode("background")
{
special_type = SHADER_SPECIAL_TYPE_BACKGROUND;
add_input("Color", SHADER_SOCKET_COLOR, make_float3(0.8f, 0.8f, 0.8f));
add_input("Strength", SHADER_SOCKET_FLOAT, 1.0f);
add_input("SurfaceMixWeight", SHADER_SOCKET_FLOAT, 0.0f, ShaderInput::USE_SVM);
add_output("Background", SHADER_SOCKET_CLOSURE);
}
void BackgroundNode::compile(SVMCompiler& compiler)
{
ShaderInput *color_in = input("Color");
ShaderInput *strength_in = input("Strength");
if(color_in->link || strength_in->link) {
compiler.stack_assign(color_in);
compiler.stack_assign(strength_in);
compiler.add_node(NODE_EMISSION_WEIGHT, color_in->stack_offset, strength_in->stack_offset);
}
else
compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color_in->value*strength_in->value.x);
compiler.add_node(NODE_CLOSURE_BACKGROUND, compiler.closure_mix_weight_offset());
}
void BackgroundNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_background");
}
/* Holdout Closure */
HoldoutNode::HoldoutNode()
: ShaderNode("holdout")
{
add_input("SurfaceMixWeight", SHADER_SOCKET_FLOAT, 0.0f, ShaderInput::USE_SVM);
add_input("VolumeMixWeight", SHADER_SOCKET_FLOAT, 0.0f, ShaderInput::USE_SVM);
add_output("Holdout", SHADER_SOCKET_CLOSURE);
}
void HoldoutNode::compile(SVMCompiler& compiler)
{
float3 value = make_float3(1.0f, 1.0f, 1.0f);
compiler.add_node(NODE_CLOSURE_SET_WEIGHT, value);
compiler.add_node(NODE_CLOSURE_HOLDOUT, compiler.closure_mix_weight_offset());
}
void HoldoutNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_holdout");
}
/* Ambient Occlusion */
AmbientOcclusionNode::AmbientOcclusionNode()
: ShaderNode("ambient_occlusion")
{
add_input("NormalIn", SHADER_SOCKET_NORMAL, ShaderInput::NORMAL, ShaderInput::USE_OSL);
add_input("Color", SHADER_SOCKET_COLOR, make_float3(0.8f, 0.8f, 0.8f));
add_input("SurfaceMixWeight", SHADER_SOCKET_FLOAT, 0.0f, ShaderInput::USE_SVM);
add_output("AO", SHADER_SOCKET_CLOSURE);
}
void AmbientOcclusionNode::compile(SVMCompiler& compiler)
{
ShaderInput *color_in = input("Color");
if(color_in->link) {
compiler.stack_assign(color_in);
compiler.add_node(NODE_CLOSURE_WEIGHT, color_in->stack_offset);
}
else
compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color_in->value);
compiler.add_node(NODE_CLOSURE_AMBIENT_OCCLUSION, compiler.closure_mix_weight_offset());
}
void AmbientOcclusionNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_ambient_occlusion");
}
/* Volume Closure */
VolumeNode::VolumeNode()
: ShaderNode("volume")
{
closure = CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID;
add_input("Color", SHADER_SOCKET_COLOR, make_float3(0.8f, 0.8f, 0.8f));
add_input("Density", SHADER_SOCKET_FLOAT, 1.0f);
add_input("VolumeMixWeight", SHADER_SOCKET_FLOAT, 0.0f, ShaderInput::USE_SVM);
add_output("Volume", SHADER_SOCKET_CLOSURE);
}
void VolumeNode::compile(SVMCompiler& compiler, ShaderInput *param1, ShaderInput *param2)
{
ShaderInput *color_in = input("Color");
if(color_in->link) {
compiler.stack_assign(color_in);
compiler.add_node(NODE_CLOSURE_WEIGHT, color_in->stack_offset);
}
else
compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color_in->value);
if(param1)
compiler.stack_assign(param1);
if(param2)
compiler.stack_assign(param2);
compiler.add_node(NODE_CLOSURE_VOLUME,
compiler.encode_uchar4(closure,
(param1)? param1->stack_offset: SVM_STACK_INVALID,
(param2)? param2->stack_offset: SVM_STACK_INVALID,
compiler.closure_mix_weight_offset()),
__float_as_int((param1)? param1->value.x: 0.0f),
__float_as_int((param2)? param2->value.x: 0.0f));
}
void VolumeNode::compile(SVMCompiler& compiler)
{
compile(compiler, NULL, NULL);
}
void VolumeNode::compile(OSLCompiler& /*compiler*/)
{
assert(0);
}
/* Absorption Volume Closure */
AbsorptionVolumeNode::AbsorptionVolumeNode()
{
closure = CLOSURE_VOLUME_ABSORPTION_ID;
}
void AbsorptionVolumeNode::compile(SVMCompiler& compiler)
{
VolumeNode::compile(compiler, input("Density"), NULL);
}
void AbsorptionVolumeNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_absorption_volume");
}
/* Scatter Volume Closure */
ScatterVolumeNode::ScatterVolumeNode()
{
closure = CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID;
add_input("Anisotropy", SHADER_SOCKET_FLOAT, 0.0f);
}
void ScatterVolumeNode::compile(SVMCompiler& compiler)
{
VolumeNode::compile(compiler, input("Density"), input("Anisotropy"));
}
void ScatterVolumeNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_scatter_volume");
}
/* Hair BSDF Closure */
static ShaderEnum hair_component_init()
{
ShaderEnum enm;
enm.insert("Reflection", CLOSURE_BSDF_HAIR_REFLECTION_ID);
enm.insert("Transmission", CLOSURE_BSDF_HAIR_TRANSMISSION_ID);
return enm;
}
ShaderEnum HairBsdfNode::component_enum = hair_component_init();
HairBsdfNode::HairBsdfNode()
{
component = ustring("Reflection");
add_input("Offset", SHADER_SOCKET_FLOAT);
add_input("RoughnessU", SHADER_SOCKET_FLOAT);
add_input("RoughnessV", SHADER_SOCKET_FLOAT);
}
void HairBsdfNode::compile(SVMCompiler& compiler)
{
closure = (ClosureType)component_enum[component];
BsdfNode::compile(compiler, input("RoughnessU"), input("RoughnessV"), input("Offset"));
}
void HairBsdfNode::compile(OSLCompiler& compiler)
{
compiler.parameter("component", component);
compiler.add(this, "node_hair_bsdf");
}
/* Geometry */
GeometryNode::GeometryNode()
: ShaderNode("geometry")
{
special_type = SHADER_SPECIAL_TYPE_GEOMETRY;
add_input("NormalIn", SHADER_SOCKET_NORMAL, ShaderInput::NORMAL, ShaderInput::USE_OSL);
add_output("Position", SHADER_SOCKET_POINT);
add_output("Normal", SHADER_SOCKET_NORMAL);
add_output("Tangent", SHADER_SOCKET_NORMAL);
add_output("True Normal", SHADER_SOCKET_NORMAL);
add_output("Incoming", SHADER_SOCKET_VECTOR);
add_output("Parametric", SHADER_SOCKET_POINT);
add_output("Backfacing", SHADER_SOCKET_FLOAT);
add_output("Pointiness", SHADER_SOCKET_FLOAT);
}
void GeometryNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
if(shader->has_surface) {
if(!output("Tangent")->links.empty()) {
attributes->add(ATTR_STD_GENERATED);
}
if(!output("Pointiness")->links.empty()) {
attributes->add(ATTR_STD_POINTINESS);
}
}
ShaderNode::attributes(shader, attributes);
}
void GeometryNode::compile(SVMCompiler& compiler)
{
ShaderOutput *out;
NodeType geom_node = NODE_GEOMETRY;
NodeType attr_node = NODE_ATTR;
if(bump == SHADER_BUMP_DX) {
geom_node = NODE_GEOMETRY_BUMP_DX;
attr_node = NODE_ATTR_BUMP_DX;
}
else if(bump == SHADER_BUMP_DY) {
geom_node = NODE_GEOMETRY_BUMP_DY;
attr_node = NODE_ATTR_BUMP_DY;
}
out = output("Position");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(geom_node, NODE_GEOM_P, out->stack_offset);
}
out = output("Normal");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(geom_node, NODE_GEOM_N, out->stack_offset);
}
out = output("Tangent");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(geom_node, NODE_GEOM_T, out->stack_offset);
}
out = output("True Normal");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(geom_node, NODE_GEOM_Ng, out->stack_offset);
}
out = output("Incoming");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(geom_node, NODE_GEOM_I, out->stack_offset);
}
out = output("Parametric");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(geom_node, NODE_GEOM_uv, out->stack_offset);
}
out = output("Backfacing");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_backfacing, out->stack_offset);
}
out = output("Pointiness");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(attr_node,
ATTR_STD_POINTINESS,
out->stack_offset,
NODE_ATTR_FLOAT);
}
}
void GeometryNode::compile(OSLCompiler& compiler)
{
if(bump == SHADER_BUMP_DX)
compiler.parameter("bump_offset", "dx");
else if(bump == SHADER_BUMP_DY)
compiler.parameter("bump_offset", "dy");
else
compiler.parameter("bump_offset", "center");
compiler.add(this, "node_geometry");
}
/* TextureCoordinate */
TextureCoordinateNode::TextureCoordinateNode()
: ShaderNode("texture_coordinate")
{
add_input("NormalIn", SHADER_SOCKET_NORMAL, ShaderInput::NORMAL, ShaderInput::USE_OSL);
add_output("Generated", SHADER_SOCKET_POINT);
add_output("Normal", SHADER_SOCKET_NORMAL);
add_output("UV", SHADER_SOCKET_POINT);
add_output("Object", SHADER_SOCKET_POINT);
add_output("Camera", SHADER_SOCKET_POINT);
add_output("Window", SHADER_SOCKET_POINT);
add_output("Reflection", SHADER_SOCKET_NORMAL);
from_dupli = false;
use_transform = false;
ob_tfm = transform_identity();
}
void TextureCoordinateNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
if(shader->has_surface) {
if(!from_dupli) {
if(!output("Generated")->links.empty())
attributes->add(ATTR_STD_GENERATED);
if(!output("UV")->links.empty())
attributes->add(ATTR_STD_UV);
}
}
if(shader->has_volume) {
if(!from_dupli) {
if(!output("Generated")->links.empty()) {
attributes->add(ATTR_STD_GENERATED_TRANSFORM);
}
}
}
ShaderNode::attributes(shader, attributes);
}
void TextureCoordinateNode::compile(SVMCompiler& compiler)
{
ShaderOutput *out;
NodeType texco_node = NODE_TEX_COORD;
NodeType attr_node = NODE_ATTR;
NodeType geom_node = NODE_GEOMETRY;
if(bump == SHADER_BUMP_DX) {
texco_node = NODE_TEX_COORD_BUMP_DX;
attr_node = NODE_ATTR_BUMP_DX;
geom_node = NODE_GEOMETRY_BUMP_DX;
}
else if(bump == SHADER_BUMP_DY) {
texco_node = NODE_TEX_COORD_BUMP_DY;
attr_node = NODE_ATTR_BUMP_DY;
geom_node = NODE_GEOMETRY_BUMP_DY;
}
out = output("Generated");
if(!out->links.empty()) {
if(compiler.background) {
compiler.stack_assign(out);
compiler.add_node(geom_node, NODE_GEOM_P, out->stack_offset);
}
else {
if(from_dupli) {
compiler.stack_assign(out);
compiler.add_node(texco_node, NODE_TEXCO_DUPLI_GENERATED, out->stack_offset);
}
else if(compiler.output_type() == SHADER_TYPE_VOLUME) {
compiler.stack_assign(out);
compiler.add_node(texco_node, NODE_TEXCO_VOLUME_GENERATED, out->stack_offset);
}
else {
int attr = compiler.attribute(ATTR_STD_GENERATED);
compiler.stack_assign(out);
compiler.add_node(attr_node, attr, out->stack_offset, NODE_ATTR_FLOAT3);
}
}
}
out = output("Normal");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(texco_node, NODE_TEXCO_NORMAL, out->stack_offset);
}
out = output("UV");
if(!out->links.empty()) {
if(from_dupli) {
compiler.stack_assign(out);
compiler.add_node(texco_node, NODE_TEXCO_DUPLI_UV, out->stack_offset);
}
else {
int attr = compiler.attribute(ATTR_STD_UV);
compiler.stack_assign(out);
compiler.add_node(attr_node, attr, out->stack_offset, NODE_ATTR_FLOAT3);
}
}
out = output("Object");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(texco_node, NODE_TEXCO_OBJECT, out->stack_offset, use_transform);
if(use_transform) {
Transform ob_itfm = transform_inverse(ob_tfm);
compiler.add_node(ob_itfm.x);
compiler.add_node(ob_itfm.y);
compiler.add_node(ob_itfm.z);
compiler.add_node(ob_itfm.w);
}
}
out = output("Camera");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(texco_node, NODE_TEXCO_CAMERA, out->stack_offset);
}
out = output("Window");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(texco_node, NODE_TEXCO_WINDOW, out->stack_offset);
}
out = output("Reflection");
if(!out->links.empty()) {
if(compiler.background) {
compiler.stack_assign(out);
compiler.add_node(geom_node, NODE_GEOM_I, out->stack_offset);
}
else {
compiler.stack_assign(out);
compiler.add_node(texco_node, NODE_TEXCO_REFLECTION, out->stack_offset);
}
}
}
void TextureCoordinateNode::compile(OSLCompiler& compiler)
{
if(bump == SHADER_BUMP_DX)
compiler.parameter("bump_offset", "dx");
else if(bump == SHADER_BUMP_DY)
compiler.parameter("bump_offset", "dy");
else
compiler.parameter("bump_offset", "center");
if(compiler.background)
compiler.parameter("is_background", true);
if(compiler.output_type() == SHADER_TYPE_VOLUME)
compiler.parameter("is_volume", true);
compiler.parameter("use_transform", use_transform);
Transform ob_itfm = transform_transpose(transform_inverse(ob_tfm));
compiler.parameter("object_itfm", ob_itfm);
compiler.parameter("from_dupli", from_dupli);
compiler.add(this, "node_texture_coordinate");
}
UVMapNode::UVMapNode()
: ShaderNode("uvmap")
{
attribute = "";
from_dupli = false;
add_output("UV", SHADER_SOCKET_POINT);
}
void UVMapNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
if(shader->has_surface) {
if(!from_dupli) {
if(!output("UV")->links.empty()) {
if (attribute != "")
attributes->add(attribute);
else
attributes->add(ATTR_STD_UV);
}
}
}
ShaderNode::attributes(shader, attributes);
}
void UVMapNode::compile(SVMCompiler& compiler)
{
ShaderOutput *out = output("UV");
NodeType texco_node = NODE_TEX_COORD;
NodeType attr_node = NODE_ATTR;
int attr;
if(bump == SHADER_BUMP_DX) {
texco_node = NODE_TEX_COORD_BUMP_DX;
attr_node = NODE_ATTR_BUMP_DX;
}
else if(bump == SHADER_BUMP_DY) {
texco_node = NODE_TEX_COORD_BUMP_DY;
attr_node = NODE_ATTR_BUMP_DY;
}
if(!out->links.empty()) {
if(from_dupli) {
compiler.stack_assign(out);
compiler.add_node(texco_node, NODE_TEXCO_DUPLI_UV, out->stack_offset);
}
else {
if (attribute != "")
attr = compiler.attribute(attribute);
else
attr = compiler.attribute(ATTR_STD_UV);
compiler.stack_assign(out);
compiler.add_node(attr_node, attr, out->stack_offset, NODE_ATTR_FLOAT3);
}
}
}
void UVMapNode::compile(OSLCompiler& compiler)
{
if(bump == SHADER_BUMP_DX)
compiler.parameter("bump_offset", "dx");
else if(bump == SHADER_BUMP_DY)
compiler.parameter("bump_offset", "dy");
else
compiler.parameter("bump_offset", "center");
compiler.parameter("from_dupli", from_dupli);
compiler.parameter("name", attribute.c_str());
compiler.add(this, "node_uv_map");
}
/* Light Path */
LightPathNode::LightPathNode()
: ShaderNode("light_path")
{
add_output("Is Camera Ray", SHADER_SOCKET_FLOAT);
add_output("Is Shadow Ray", SHADER_SOCKET_FLOAT);
add_output("Is Diffuse Ray", SHADER_SOCKET_FLOAT);
add_output("Is Glossy Ray", SHADER_SOCKET_FLOAT);
add_output("Is Singular Ray", SHADER_SOCKET_FLOAT);
add_output("Is Reflection Ray", SHADER_SOCKET_FLOAT);
add_output("Is Transmission Ray", SHADER_SOCKET_FLOAT);
add_output("Is Volume Scatter Ray", SHADER_SOCKET_FLOAT);
add_output("Ray Length", SHADER_SOCKET_FLOAT);
add_output("Ray Depth", SHADER_SOCKET_FLOAT);
add_output("Transparent Depth", SHADER_SOCKET_FLOAT);
}
void LightPathNode::compile(SVMCompiler& compiler)
{
ShaderOutput *out;
out = output("Is Camera Ray");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_camera, out->stack_offset);
}
out = output("Is Shadow Ray");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_shadow, out->stack_offset);
}
out = output("Is Diffuse Ray");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_diffuse, out->stack_offset);
}
out = output("Is Glossy Ray");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_glossy, out->stack_offset);
}
out = output("Is Singular Ray");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_singular, out->stack_offset);
}
out = output("Is Reflection Ray");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_reflection, out->stack_offset);
}
out = output("Is Transmission Ray");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_transmission, out->stack_offset);
}
out = output("Is Volume Scatter Ray");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_volume_scatter, out->stack_offset);
}
out = output("Ray Length");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_length, out->stack_offset);
}
out = output("Ray Depth");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_depth, out->stack_offset);
}
out = output("Transparent Depth");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_transparent, out->stack_offset);
}
}
void LightPathNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_light_path");
}
/* Light Falloff */
LightFalloffNode::LightFalloffNode()
: ShaderNode("light_fallof")
{
add_input("Strength", SHADER_SOCKET_FLOAT, 100.0f);
add_input("Smooth", SHADER_SOCKET_FLOAT, 0.0f);
add_output("Quadratic", SHADER_SOCKET_FLOAT);
add_output("Linear", SHADER_SOCKET_FLOAT);
add_output("Constant", SHADER_SOCKET_FLOAT);
}
void LightFalloffNode::compile(SVMCompiler& compiler)
{
ShaderInput *strength_in = input("Strength");
ShaderInput *smooth_in = input("Smooth");
compiler.stack_assign(strength_in);
compiler.stack_assign(smooth_in);
ShaderOutput *out = output("Quadratic");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_LIGHT_FALLOFF, NODE_LIGHT_FALLOFF_QUADRATIC,
compiler.encode_uchar4(strength_in->stack_offset, smooth_in->stack_offset, out->stack_offset));
}
out = output("Linear");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_LIGHT_FALLOFF, NODE_LIGHT_FALLOFF_LINEAR,
compiler.encode_uchar4(strength_in->stack_offset, smooth_in->stack_offset, out->stack_offset));
}
out = output("Constant");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_LIGHT_FALLOFF, NODE_LIGHT_FALLOFF_CONSTANT,
compiler.encode_uchar4(strength_in->stack_offset, smooth_in->stack_offset, out->stack_offset));
}
}
void LightFalloffNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_light_falloff");
}
/* Object Info */
ObjectInfoNode::ObjectInfoNode()
: ShaderNode("object_info")
{
add_output("Location", SHADER_SOCKET_VECTOR);
add_output("Object Index", SHADER_SOCKET_FLOAT);
add_output("Material Index", SHADER_SOCKET_FLOAT);
add_output("Random", SHADER_SOCKET_FLOAT);
}
void ObjectInfoNode::compile(SVMCompiler& compiler)
{
ShaderOutput *out = output("Location");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_OB_LOCATION, out->stack_offset);
}
out = output("Object Index");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_OB_INDEX, out->stack_offset);
}
out = output("Material Index");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_MAT_INDEX, out->stack_offset);
}
out = output("Random");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_OB_RANDOM, out->stack_offset);
}
}
void ObjectInfoNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_object_info");
}
/* Particle Info */
ParticleInfoNode::ParticleInfoNode()
: ShaderNode("particle_info")
{
add_output("Index", SHADER_SOCKET_FLOAT);
add_output("Age", SHADER_SOCKET_FLOAT);
add_output("Lifetime", SHADER_SOCKET_FLOAT);
add_output("Location", SHADER_SOCKET_POINT);
#if 0 /* not yet supported */
add_output("Rotation", SHADER_SOCKET_QUATERNION);
#endif
add_output("Size", SHADER_SOCKET_FLOAT);
add_output("Velocity", SHADER_SOCKET_VECTOR);
add_output("Angular Velocity", SHADER_SOCKET_VECTOR);
}
void ParticleInfoNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
if(!output("Index")->links.empty())
attributes->add(ATTR_STD_PARTICLE);
if(!output("Age")->links.empty())
attributes->add(ATTR_STD_PARTICLE);
if(!output("Lifetime")->links.empty())
attributes->add(ATTR_STD_PARTICLE);
if(!output("Location")->links.empty())
attributes->add(ATTR_STD_PARTICLE);
#if 0 /* not yet supported */
if(!output("Rotation")->links.empty())
attributes->add(ATTR_STD_PARTICLE);
#endif
if(!output("Size")->links.empty())
attributes->add(ATTR_STD_PARTICLE);
if(!output("Velocity")->links.empty())
attributes->add(ATTR_STD_PARTICLE);
if(!output("Angular Velocity")->links.empty())
attributes->add(ATTR_STD_PARTICLE);
ShaderNode::attributes(shader, attributes);
}
void ParticleInfoNode::compile(SVMCompiler& compiler)
{
ShaderOutput *out;
out = output("Index");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_INDEX, out->stack_offset);
}
out = output("Age");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_AGE, out->stack_offset);
}
out = output("Lifetime");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_LIFETIME, out->stack_offset);
}
out = output("Location");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_LOCATION, out->stack_offset);
}
/* quaternion data is not yet supported by Cycles */
#if 0
out = output("Rotation");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_ROTATION, out->stack_offset);
}
#endif
out = output("Size");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_SIZE, out->stack_offset);
}
out = output("Velocity");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_VELOCITY, out->stack_offset);
}
out = output("Angular Velocity");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_ANGULAR_VELOCITY, out->stack_offset);
}
}
void ParticleInfoNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_particle_info");
}
/* Hair Info */
HairInfoNode::HairInfoNode()
: ShaderNode("hair_info")
{
add_output("Is Strand", SHADER_SOCKET_FLOAT);
add_output("Intercept", SHADER_SOCKET_FLOAT);
add_output("Thickness", SHADER_SOCKET_FLOAT);
add_output("Tangent Normal", SHADER_SOCKET_NORMAL);
/*output for minimum hair width transparency - deactivated*/
/*add_output("Fade", SHADER_SOCKET_FLOAT);*/
}
void HairInfoNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
if(shader->has_surface) {
ShaderOutput *intercept_out = output("Intercept");
if(!intercept_out->links.empty())
attributes->add(ATTR_STD_CURVE_INTERCEPT);
}
ShaderNode::attributes(shader, attributes);
}
void HairInfoNode::compile(SVMCompiler& compiler)
{
ShaderOutput *out;
out = output("Is Strand");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_IS_STRAND, out->stack_offset);
}
out = output("Intercept");
if(!out->links.empty()) {
int attr = compiler.attribute(ATTR_STD_CURVE_INTERCEPT);
compiler.stack_assign(out);
compiler.add_node(NODE_ATTR, attr, out->stack_offset, NODE_ATTR_FLOAT);
}
out = output("Thickness");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_THICKNESS, out->stack_offset);
}
out = output("Tangent Normal");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_TANGENT_NORMAL, out->stack_offset);
}
/*out = output("Fade");
if(!out->links.empty()) {
compiler.stack_assign(out);
compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_FADE, out->stack_offset);
}*/
}
void HairInfoNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_hair_info");
}
/* Value */
ValueNode::ValueNode()
: ShaderNode("value")
{
value = 0.0f;
add_output("Value", SHADER_SOCKET_FLOAT);
}
void ValueNode::compile(SVMCompiler& compiler)
{
ShaderOutput *val_out = output("Value");
compiler.stack_assign(val_out);
compiler.add_node(NODE_VALUE_F, __float_as_int(value), val_out->stack_offset);
}
void ValueNode::compile(OSLCompiler& compiler)
{
compiler.parameter("value_value", value);
compiler.add(this, "node_value");
}
/* Color */
ColorNode::ColorNode()
: ShaderNode("color")
{
value = make_float3(0.0f, 0.0f, 0.0f);
add_output("Color", SHADER_SOCKET_COLOR);
}
void ColorNode::compile(SVMCompiler& compiler)
{
ShaderOutput *color_out = output("Color");
if(color_out && !color_out->links.empty()) {
compiler.stack_assign(color_out);
compiler.add_node(NODE_VALUE_V, color_out->stack_offset);
compiler.add_node(NODE_VALUE_V, value);
}
}
void ColorNode::compile(OSLCompiler& compiler)
{
compiler.parameter_color("color_value", value);
compiler.add(this, "node_value");
}
/* Add Closure */
AddClosureNode::AddClosureNode()
: ShaderNode("add_closure")
{
add_input("Closure1", SHADER_SOCKET_CLOSURE);
add_input("Closure2", SHADER_SOCKET_CLOSURE);
add_output("Closure", SHADER_SOCKET_CLOSURE);
}
void AddClosureNode::compile(SVMCompiler& /*compiler*/)
{
/* handled in the SVM compiler */
}
void AddClosureNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_add_closure");
}
/* Mix Closure */
MixClosureNode::MixClosureNode()
: ShaderNode("mix_closure")
{
special_type = SHADER_SPECIAL_TYPE_MIX_CLOSURE;
add_input("Fac", SHADER_SOCKET_FLOAT, 0.5f);
add_input("Closure1", SHADER_SOCKET_CLOSURE);
add_input("Closure2", SHADER_SOCKET_CLOSURE);
add_output("Closure", SHADER_SOCKET_CLOSURE);
}
void MixClosureNode::compile(SVMCompiler& /*compiler*/)
{
/* handled in the SVM compiler */
}
void MixClosureNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_mix_closure");
}
/* Mix Closure */
MixClosureWeightNode::MixClosureWeightNode()
: ShaderNode("mix_closure_weight")
{
add_input("Weight", SHADER_SOCKET_FLOAT, 1.0f);
add_input("Fac", SHADER_SOCKET_FLOAT, 1.0f);
add_output("Weight1", SHADER_SOCKET_FLOAT);
add_output("Weight2", SHADER_SOCKET_FLOAT);
}
void MixClosureWeightNode::compile(SVMCompiler& compiler)
{
ShaderInput *weight_in = input("Weight");
ShaderInput *fac_in = input("Fac");
ShaderOutput *weight1_out = output("Weight1");
ShaderOutput *weight2_out = output("Weight2");
compiler.stack_assign(weight_in);
compiler.stack_assign(fac_in);
compiler.stack_assign(weight1_out);
compiler.stack_assign(weight2_out);
compiler.add_node(NODE_MIX_CLOSURE,
compiler.encode_uchar4(fac_in->stack_offset, weight_in->stack_offset,
weight1_out->stack_offset, weight2_out->stack_offset));
}
void MixClosureWeightNode::compile(OSLCompiler& /*compiler*/)
{
assert(0);
}
/* Invert */
InvertNode::InvertNode()
: ShaderNode("invert")
{
add_input("Fac", SHADER_SOCKET_FLOAT, 1.0f);
add_input("Color", SHADER_SOCKET_COLOR);
add_output("Color", SHADER_SOCKET_COLOR);
}
void InvertNode::compile(SVMCompiler& compiler)
{
ShaderInput *fac_in = input("Fac");
ShaderInput *color_in = input("Color");
ShaderOutput *color_out = output("Color");
compiler.stack_assign(fac_in);
compiler.stack_assign(color_in);
compiler.stack_assign(color_out);
compiler.add_node(NODE_INVERT, fac_in->stack_offset, color_in->stack_offset, color_out->stack_offset);
}
void InvertNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_invert");
}
/* Mix */
MixNode::MixNode()
: ShaderNode("mix")
{
type = ustring("Mix");
use_clamp = false;
add_input("Fac", SHADER_SOCKET_FLOAT, 0.5f);
add_input("Color1", SHADER_SOCKET_COLOR);
add_input("Color2", SHADER_SOCKET_COLOR);
add_output("Color", SHADER_SOCKET_COLOR);
}
static ShaderEnum mix_type_init()
{
ShaderEnum enm;
enm.insert("Mix", NODE_MIX_BLEND);
enm.insert("Add", NODE_MIX_ADD);
enm.insert("Multiply", NODE_MIX_MUL);
enm.insert("Screen", NODE_MIX_SCREEN);
enm.insert("Overlay", NODE_MIX_OVERLAY);
enm.insert("Subtract", NODE_MIX_SUB);
enm.insert("Divide", NODE_MIX_DIV);
enm.insert("Difference", NODE_MIX_DIFF);
enm.insert("Darken", NODE_MIX_DARK);
enm.insert("Lighten", NODE_MIX_LIGHT);
enm.insert("Dodge", NODE_MIX_DODGE);
enm.insert("Burn", NODE_MIX_BURN);
enm.insert("Hue", NODE_MIX_HUE);
enm.insert("Saturation", NODE_MIX_SAT);
enm.insert("Value", NODE_MIX_VAL);
enm.insert("Color", NODE_MIX_COLOR);
enm.insert("Soft Light", NODE_MIX_SOFT);
enm.insert("Linear Light", NODE_MIX_LINEAR);
return enm;
}
ShaderEnum MixNode::type_enum = mix_type_init();
void MixNode::compile(SVMCompiler& compiler)
{
ShaderInput *fac_in = input("Fac");
ShaderInput *color1_in = input("Color1");
ShaderInput *color2_in = input("Color2");
ShaderOutput *color_out = output("Color");
compiler.stack_assign(fac_in);
compiler.stack_assign(color1_in);
compiler.stack_assign(color2_in);
compiler.stack_assign(color_out);
compiler.add_node(NODE_MIX, fac_in->stack_offset, color1_in->stack_offset, color2_in->stack_offset);
compiler.add_node(NODE_MIX, type_enum[type], color_out->stack_offset);
if(use_clamp) {
compiler.add_node(NODE_MIX, 0, color_out->stack_offset);
compiler.add_node(NODE_MIX, NODE_MIX_CLAMP, color_out->stack_offset);
}
}
void MixNode::compile(OSLCompiler& compiler)
{
compiler.parameter("type", type);
compiler.parameter("Clamp", use_clamp);
compiler.add(this, "node_mix");
}
/* Combine RGB */
CombineRGBNode::CombineRGBNode()
: ShaderNode("combine_rgb")
{
add_input("R", SHADER_SOCKET_FLOAT);
add_input("G", SHADER_SOCKET_FLOAT);
add_input("B", SHADER_SOCKET_FLOAT);
add_output("Image", SHADER_SOCKET_COLOR);
}
void CombineRGBNode::compile(SVMCompiler& compiler)
{
ShaderInput *red_in = input("R");
ShaderInput *green_in = input("G");
ShaderInput *blue_in = input("B");
ShaderOutput *color_out = output("Image");
compiler.stack_assign(color_out);
compiler.stack_assign(red_in);
compiler.add_node(NODE_COMBINE_VECTOR, red_in->stack_offset, 0, color_out->stack_offset);
compiler.stack_assign(green_in);
compiler.add_node(NODE_COMBINE_VECTOR, green_in->stack_offset, 1, color_out->stack_offset);
compiler.stack_assign(blue_in);
compiler.add_node(NODE_COMBINE_VECTOR, blue_in->stack_offset, 2, color_out->stack_offset);
}
void CombineRGBNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_combine_rgb");
}
/* Combine XYZ */
CombineXYZNode::CombineXYZNode()
: ShaderNode("combine_xyz")
{
add_input("X", SHADER_SOCKET_FLOAT);
add_input("Y", SHADER_SOCKET_FLOAT);
add_input("Z", SHADER_SOCKET_FLOAT);
add_output("Vector", SHADER_SOCKET_VECTOR);
}
void CombineXYZNode::compile(SVMCompiler& compiler)
{
ShaderInput *x_in = input("X");
ShaderInput *y_in = input("Y");
ShaderInput *z_in = input("Z");
ShaderOutput *vector_out = output("Vector");
compiler.stack_assign(vector_out);
compiler.stack_assign(x_in);
compiler.add_node(NODE_COMBINE_VECTOR, x_in->stack_offset, 0, vector_out->stack_offset);
compiler.stack_assign(y_in);
compiler.add_node(NODE_COMBINE_VECTOR, y_in->stack_offset, 1, vector_out->stack_offset);
compiler.stack_assign(z_in);
compiler.add_node(NODE_COMBINE_VECTOR, z_in->stack_offset, 2, vector_out->stack_offset);
}
void CombineXYZNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_combine_xyz");
}
/* Combine HSV */
CombineHSVNode::CombineHSVNode()
: ShaderNode("combine_hsv")
{
add_input("H", SHADER_SOCKET_FLOAT);
add_input("S", SHADER_SOCKET_FLOAT);
add_input("V", SHADER_SOCKET_FLOAT);
add_output("Color", SHADER_SOCKET_COLOR);
}
void CombineHSVNode::compile(SVMCompiler& compiler)
{
ShaderInput *hue_in = input("H");
ShaderInput *saturation_in = input("S");
ShaderInput *value_in = input("V");
ShaderOutput *color_out = output("Color");
compiler.stack_assign(color_out);
compiler.stack_assign(hue_in);
compiler.stack_assign(saturation_in);
compiler.stack_assign(value_in);
compiler.add_node(NODE_COMBINE_HSV, hue_in->stack_offset, saturation_in->stack_offset, value_in->stack_offset);
compiler.add_node(NODE_COMBINE_HSV, color_out->stack_offset);
}
void CombineHSVNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_combine_hsv");
}
/* Gamma */
GammaNode::GammaNode()
: ShaderNode("gamma")
{
add_input("Color", SHADER_SOCKET_COLOR);
add_input("Gamma", SHADER_SOCKET_FLOAT);
add_output("Color", SHADER_SOCKET_COLOR);
}
void GammaNode::compile(SVMCompiler& compiler)
{
ShaderInput *color_in = input("Color");
ShaderInput *gamma_in = input("Gamma");
ShaderOutput *color_out = output("Color");
compiler.stack_assign(color_in);
compiler.stack_assign(gamma_in);
compiler.stack_assign(color_out);
compiler.add_node(NODE_GAMMA, gamma_in->stack_offset, color_in->stack_offset, color_out->stack_offset);
}
void GammaNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_gamma");
}
/* Bright Contrast */
BrightContrastNode::BrightContrastNode()
: ShaderNode("brightness")
{
add_input("Color", SHADER_SOCKET_COLOR);
add_input("Bright", SHADER_SOCKET_FLOAT);
add_input("Contrast", SHADER_SOCKET_FLOAT);
add_output("Color", SHADER_SOCKET_COLOR);
}
void BrightContrastNode::compile(SVMCompiler& compiler)
{
ShaderInput *color_in = input("Color");
ShaderInput *bright_in = input("Bright");
ShaderInput *contrast_in = input("Contrast");
ShaderOutput *color_out = output("Color");
compiler.stack_assign(color_in);
compiler.stack_assign(bright_in);
compiler.stack_assign(contrast_in);
compiler.stack_assign(color_out);
compiler.add_node(NODE_BRIGHTCONTRAST,
color_in->stack_offset, color_out->stack_offset,
compiler.encode_uchar4(bright_in->stack_offset, contrast_in->stack_offset));
}
void BrightContrastNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_brightness");
}
/* Separate RGB */
SeparateRGBNode::SeparateRGBNode()
: ShaderNode("separate_rgb")
{
add_input("Image", SHADER_SOCKET_COLOR);
add_output("R", SHADER_SOCKET_FLOAT);
add_output("G", SHADER_SOCKET_FLOAT);
add_output("B", SHADER_SOCKET_FLOAT);
}
void SeparateRGBNode::compile(SVMCompiler& compiler)
{
ShaderInput *color_in = input("Image");
ShaderOutput *red_out = output("R");
ShaderOutput *green_out = output("G");
ShaderOutput *blue_out = output("B");
compiler.stack_assign(color_in);
compiler.stack_assign(red_out);
compiler.add_node(NODE_SEPARATE_VECTOR, color_in->stack_offset, 0, red_out->stack_offset);
compiler.stack_assign(green_out);
compiler.add_node(NODE_SEPARATE_VECTOR, color_in->stack_offset, 1, green_out->stack_offset);
compiler.stack_assign(blue_out);
compiler.add_node(NODE_SEPARATE_VECTOR, color_in->stack_offset, 2, blue_out->stack_offset);
}
void SeparateRGBNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_separate_rgb");
}
/* Separate XYZ */
SeparateXYZNode::SeparateXYZNode()
: ShaderNode("separate_xyz")
{
add_input("Vector", SHADER_SOCKET_VECTOR);
add_output("X", SHADER_SOCKET_FLOAT);
add_output("Y", SHADER_SOCKET_FLOAT);
add_output("Z", SHADER_SOCKET_FLOAT);
}
void SeparateXYZNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderOutput *x_out = output("X");
ShaderOutput *y_out = output("Y");
ShaderOutput *z_out = output("Z");
compiler.stack_assign(vector_in);
compiler.stack_assign(x_out);
compiler.add_node(NODE_SEPARATE_VECTOR, vector_in->stack_offset, 0, x_out->stack_offset);
compiler.stack_assign(y_out);
compiler.add_node(NODE_SEPARATE_VECTOR, vector_in->stack_offset, 1, y_out->stack_offset);
compiler.stack_assign(z_out);
compiler.add_node(NODE_SEPARATE_VECTOR, vector_in->stack_offset, 2, z_out->stack_offset);
}
void SeparateXYZNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_separate_xyz");
}
/* Separate HSV */
SeparateHSVNode::SeparateHSVNode()
: ShaderNode("separate_hsv")
{
add_input("Color", SHADER_SOCKET_COLOR);
add_output("H", SHADER_SOCKET_FLOAT);
add_output("S", SHADER_SOCKET_FLOAT);
add_output("V", SHADER_SOCKET_FLOAT);
}
void SeparateHSVNode::compile(SVMCompiler& compiler)
{
ShaderInput *color_in = input("Color");
ShaderOutput *hue_out = output("H");
ShaderOutput *saturation_out = output("S");
ShaderOutput *value_out = output("V");
compiler.stack_assign(color_in);
compiler.stack_assign(hue_out);
compiler.stack_assign(saturation_out);
compiler.stack_assign(value_out);
compiler.add_node(NODE_SEPARATE_HSV, color_in->stack_offset, hue_out->stack_offset, saturation_out->stack_offset);
compiler.add_node(NODE_SEPARATE_HSV, value_out->stack_offset);
}
void SeparateHSVNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_separate_hsv");
}
/* Hue Saturation Value */
HSVNode::HSVNode()
: ShaderNode("hsv")
{
add_input("Hue", SHADER_SOCKET_FLOAT);
add_input("Saturation", SHADER_SOCKET_FLOAT);
add_input("Value", SHADER_SOCKET_FLOAT);
add_input("Fac", SHADER_SOCKET_FLOAT);
add_input("Color", SHADER_SOCKET_COLOR);
add_output("Color", SHADER_SOCKET_COLOR);
}
void HSVNode::compile(SVMCompiler& compiler)
{
ShaderInput *hue_in = input("Hue");
ShaderInput *saturation_in = input("Saturation");
ShaderInput *value_in = input("Value");
ShaderInput *fac_in = input("Fac");
ShaderInput *color_in = input("Color");
ShaderOutput *color_out = output("Color");
compiler.stack_assign(hue_in);
compiler.stack_assign(saturation_in);
compiler.stack_assign(value_in);
compiler.stack_assign(fac_in);
compiler.stack_assign(color_in);
compiler.stack_assign(color_out);
compiler.add_node(NODE_HSV, color_in->stack_offset, fac_in->stack_offset, color_out->stack_offset);
compiler.add_node(NODE_HSV, hue_in->stack_offset, saturation_in->stack_offset, value_in->stack_offset);
}
void HSVNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_hsv");
}
/* Attribute */
AttributeNode::AttributeNode()
: ShaderNode("attribute")
{
attribute = "";
add_output("Color", SHADER_SOCKET_COLOR);
add_output("Vector", SHADER_SOCKET_VECTOR);
add_output("Fac", SHADER_SOCKET_FLOAT);
}
void AttributeNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
ShaderOutput *color_out = output("Color");
ShaderOutput *vector_out = output("Vector");
ShaderOutput *fac_out = output("Fac");
if(!color_out->links.empty() || !vector_out->links.empty() || !fac_out->links.empty()) {
AttributeStandard std = Attribute::name_standard(attribute.c_str());
if(std != ATTR_STD_NONE)
attributes->add(std);
else
attributes->add(attribute);
}
if(shader->has_volume)
attributes->add(ATTR_STD_GENERATED_TRANSFORM);
ShaderNode::attributes(shader, attributes);
}
void AttributeNode::compile(SVMCompiler& compiler)
{
ShaderOutput *color_out = output("Color");
ShaderOutput *vector_out = output("Vector");
ShaderOutput *fac_out = output("Fac");
NodeType attr_node = NODE_ATTR;
AttributeStandard std = Attribute::name_standard(attribute.c_str());
int attr;
if(std != ATTR_STD_NONE)
attr = compiler.attribute(std);
else
attr = compiler.attribute(attribute);
if(bump == SHADER_BUMP_DX)
attr_node = NODE_ATTR_BUMP_DX;
else if(bump == SHADER_BUMP_DY)
attr_node = NODE_ATTR_BUMP_DY;
if(!color_out->links.empty() || !vector_out->links.empty()) {
if(!color_out->links.empty()) {
compiler.stack_assign(color_out);
compiler.add_node(attr_node, attr, color_out->stack_offset, NODE_ATTR_FLOAT3);
}
if(!vector_out->links.empty()) {
compiler.stack_assign(vector_out);
compiler.add_node(attr_node, attr, vector_out->stack_offset, NODE_ATTR_FLOAT3);
}
}
if(!fac_out->links.empty()) {
compiler.stack_assign(fac_out);
compiler.add_node(attr_node, attr, fac_out->stack_offset, NODE_ATTR_FLOAT);
}
}
void AttributeNode::compile(OSLCompiler& compiler)
{
if(bump == SHADER_BUMP_DX)
compiler.parameter("bump_offset", "dx");
else if(bump == SHADER_BUMP_DY)
compiler.parameter("bump_offset", "dy");
else
compiler.parameter("bump_offset", "center");
if(Attribute::name_standard(attribute.c_str()) != ATTR_STD_NONE)
compiler.parameter("name", (string("geom:") + attribute.c_str()).c_str());
else
compiler.parameter("name", attribute.c_str());
compiler.add(this, "node_attribute");
}
/* Camera */
CameraNode::CameraNode()
: ShaderNode("camera")
{
add_output("View Vector", SHADER_SOCKET_VECTOR);
add_output("View Z Depth", SHADER_SOCKET_FLOAT);
add_output("View Distance", SHADER_SOCKET_FLOAT);
}
void CameraNode::compile(SVMCompiler& compiler)
{
ShaderOutput *vector_out = output("View Vector");
ShaderOutput *z_depth_out = output("View Z Depth");
ShaderOutput *distance_out = output("View Distance");
compiler.stack_assign(vector_out);
compiler.stack_assign(z_depth_out);
compiler.stack_assign(distance_out);
compiler.add_node(NODE_CAMERA, vector_out->stack_offset, z_depth_out->stack_offset, distance_out->stack_offset);
}
void CameraNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_camera");
}
/* Fresnel */
FresnelNode::FresnelNode()
: ShaderNode("fresnel")
{
add_input("Normal", SHADER_SOCKET_NORMAL, ShaderInput::NORMAL, ShaderInput::USE_OSL);
add_input("IOR", SHADER_SOCKET_FLOAT, 1.45f);
add_output("Fac", SHADER_SOCKET_FLOAT);
}
void FresnelNode::compile(SVMCompiler& compiler)
{
ShaderInput *normal_in = input("Normal");
ShaderInput *ior_in = input("IOR");
ShaderOutput *fac_out = output("Fac");
compiler.stack_assign(ior_in);
compiler.stack_assign(fac_out);
if(normal_in->link)
compiler.stack_assign(normal_in);
compiler.add_node(NODE_FRESNEL, ior_in->stack_offset, __float_as_int(ior_in->value.x), compiler.encode_uchar4(normal_in->stack_offset, fac_out->stack_offset));
}
void FresnelNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_fresnel");
}
/* Layer Weight */
LayerWeightNode::LayerWeightNode()
: ShaderNode("layer_weight")
{
add_input("Normal", SHADER_SOCKET_NORMAL, ShaderInput::NORMAL, ShaderInput::USE_OSL);
add_input("Blend", SHADER_SOCKET_FLOAT, 0.5f);
add_output("Fresnel", SHADER_SOCKET_FLOAT);
add_output("Facing", SHADER_SOCKET_FLOAT);
}
void LayerWeightNode::compile(SVMCompiler& compiler)
{
ShaderInput *normal_in = input("Normal");
ShaderInput *blend_in = input("Blend");
if(normal_in->link)
compiler.stack_assign(normal_in);
if(blend_in->link)
compiler.stack_assign(blend_in);
ShaderOutput *fresnel_out = output("Fresnel");
if(!fresnel_out->links.empty()) {
compiler.stack_assign(fresnel_out);
compiler.add_node(NODE_LAYER_WEIGHT, blend_in->stack_offset, __float_as_int(blend_in->value.x),
compiler.encode_uchar4(NODE_LAYER_WEIGHT_FRESNEL, normal_in->stack_offset, fresnel_out->stack_offset));
}
ShaderOutput *facing_out = output("Facing");
if(!facing_out->links.empty()) {
compiler.stack_assign(facing_out);
compiler.add_node(NODE_LAYER_WEIGHT, blend_in->stack_offset, __float_as_int(blend_in->value.x),
compiler.encode_uchar4(NODE_LAYER_WEIGHT_FACING, normal_in->stack_offset, facing_out->stack_offset));
}
}
void LayerWeightNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_layer_weight");
}
/* Wireframe */
WireframeNode::WireframeNode()
: ShaderNode("wireframe")
{
add_input("Size", SHADER_SOCKET_FLOAT, 0.01f);
add_output("Fac", SHADER_SOCKET_FLOAT);
use_pixel_size = false;
}
void WireframeNode::compile(SVMCompiler& compiler)
{
ShaderInput *size_in = input("Size");
ShaderOutput *fac_out = output("Fac");
NodeBumpOffset bump_offset = NODE_BUMP_OFFSET_CENTER;
if(bump == SHADER_BUMP_DX) {
bump_offset = NODE_BUMP_OFFSET_DX;
}
else if(bump == SHADER_BUMP_DY) {
bump_offset = NODE_BUMP_OFFSET_DY;
}
compiler.stack_assign(size_in);
compiler.stack_assign(fac_out);
compiler.add_node(NODE_WIREFRAME,
size_in->stack_offset,
fac_out->stack_offset,
compiler.encode_uchar4(use_pixel_size,
bump_offset,
0, 0));
}
void WireframeNode::compile(OSLCompiler& compiler)
{
if(bump == SHADER_BUMP_DX) {
compiler.parameter("bump_offset", "dx");
}
else if(bump == SHADER_BUMP_DY) {
compiler.parameter("bump_offset", "dy");
}
else {
compiler.parameter("bump_offset", "center");
}
compiler.parameter("use_pixel_size", use_pixel_size);
compiler.add(this, "node_wireframe");
}
/* Wavelength */
WavelengthNode::WavelengthNode()
: ShaderNode("wavelength")
{
add_input("Wavelength", SHADER_SOCKET_FLOAT, 500.0f);
add_output("Color", SHADER_SOCKET_COLOR);
}
void WavelengthNode::compile(SVMCompiler& compiler)
{
ShaderInput *wavelength_in = input("Wavelength");
ShaderOutput *color_out = output("Color");
compiler.stack_assign(wavelength_in);
compiler.stack_assign(color_out);
compiler.add_node(NODE_WAVELENGTH, wavelength_in->stack_offset, color_out->stack_offset);
}
void WavelengthNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_wavelength");
}
/* Blackbody */
BlackbodyNode::BlackbodyNode()
: ShaderNode("blackbody")
{
add_input("Temperature", SHADER_SOCKET_FLOAT, 1200.0f);
add_output("Color", SHADER_SOCKET_COLOR);
}
void BlackbodyNode::compile(SVMCompiler& compiler)
{
ShaderInput *temperature_in = input("Temperature");
ShaderOutput *color_out = output("Color");
compiler.stack_assign(temperature_in);
compiler.stack_assign(color_out);
compiler.add_node(NODE_BLACKBODY, temperature_in->stack_offset, color_out->stack_offset);
}
void BlackbodyNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_blackbody");
}
/* Output */
OutputNode::OutputNode()
: ShaderNode("output")
{
add_input("Surface", SHADER_SOCKET_CLOSURE);
add_input("Volume", SHADER_SOCKET_CLOSURE);
add_input("Displacement", SHADER_SOCKET_FLOAT);
add_input("Normal", SHADER_SOCKET_NORMAL);
}
void OutputNode::compile(SVMCompiler& compiler)
{
if(compiler.output_type() == SHADER_TYPE_DISPLACEMENT) {
ShaderInput *displacement_in = input("Displacement");
if(displacement_in->link) {
compiler.stack_assign(displacement_in);
compiler.add_node(NODE_SET_DISPLACEMENT, displacement_in->stack_offset);
}
}
}
void OutputNode::compile(OSLCompiler& compiler)
{
if(compiler.output_type() == SHADER_TYPE_SURFACE)
compiler.add(this, "node_output_surface");
else if(compiler.output_type() == SHADER_TYPE_VOLUME)
compiler.add(this, "node_output_volume");
else if(compiler.output_type() == SHADER_TYPE_DISPLACEMENT)
compiler.add(this, "node_output_displacement");
}
/* Math */
MathNode::MathNode()
: ShaderNode("math")
{
type = ustring("Add");
use_clamp = false;
add_input("Value1", SHADER_SOCKET_FLOAT);
add_input("Value2", SHADER_SOCKET_FLOAT);
add_output("Value", SHADER_SOCKET_FLOAT);
}
static ShaderEnum math_type_init()
{
ShaderEnum enm;
enm.insert("Add", NODE_MATH_ADD);
enm.insert("Subtract", NODE_MATH_SUBTRACT);
enm.insert("Multiply", NODE_MATH_MULTIPLY);
enm.insert("Divide", NODE_MATH_DIVIDE);
enm.insert("Sine", NODE_MATH_SINE);
enm.insert("Cosine", NODE_MATH_COSINE);
enm.insert("Tangent", NODE_MATH_TANGENT);
enm.insert("Arcsine", NODE_MATH_ARCSINE);
enm.insert("Arccosine", NODE_MATH_ARCCOSINE);
enm.insert("Arctangent", NODE_MATH_ARCTANGENT);
enm.insert("Power", NODE_MATH_POWER);
enm.insert("Logarithm", NODE_MATH_LOGARITHM);
enm.insert("Minimum", NODE_MATH_MINIMUM);
enm.insert("Maximum", NODE_MATH_MAXIMUM);
enm.insert("Round", NODE_MATH_ROUND);
enm.insert("Less Than", NODE_MATH_LESS_THAN);
enm.insert("Greater Than", NODE_MATH_GREATER_THAN);
enm.insert("Modulo", NODE_MATH_MODULO);
enm.insert("Absolute", NODE_MATH_ABSOLUTE);
return enm;
}
ShaderEnum MathNode::type_enum = math_type_init();
void MathNode::compile(SVMCompiler& compiler)
{
ShaderInput *value1_in = input("Value1");
ShaderInput *value2_in = input("Value2");
ShaderOutput *value_out = output("Value");
compiler.stack_assign(value_out);
/* Optimize math node without links to a single value node. */
if(value1_in->link == NULL && value2_in->link == NULL) {
float optimized_value = svm_math((NodeMath)type_enum[type],
value1_in->value.x,
value2_in->value.x);
if(use_clamp) {
optimized_value = clamp(optimized_value, 0.0f, 1.0f);
}
compiler.add_node(NODE_VALUE_F,
__float_as_int(optimized_value),
value_out->stack_offset);
return;
}
compiler.stack_assign(value1_in);
compiler.stack_assign(value2_in);
compiler.add_node(NODE_MATH, type_enum[type], value1_in->stack_offset, value2_in->stack_offset);
compiler.add_node(NODE_MATH, value_out->stack_offset);
if(use_clamp) {
compiler.add_node(NODE_MATH, NODE_MATH_CLAMP, value_out->stack_offset);
compiler.add_node(NODE_MATH, value_out->stack_offset);
}
}
void MathNode::compile(OSLCompiler& compiler)
{
compiler.parameter("type", type);
compiler.parameter("Clamp", use_clamp);
compiler.add(this, "node_math");
}
/* VectorMath */
VectorMathNode::VectorMathNode()
: ShaderNode("vector_math")
{
type = ustring("Add");
add_input("Vector1", SHADER_SOCKET_VECTOR);
add_input("Vector2", SHADER_SOCKET_VECTOR);
add_output("Value", SHADER_SOCKET_FLOAT);
add_output("Vector", SHADER_SOCKET_VECTOR);
}
static ShaderEnum vector_math_type_init()
{
ShaderEnum enm;
enm.insert("Add", NODE_VECTOR_MATH_ADD);
enm.insert("Subtract", NODE_VECTOR_MATH_SUBTRACT);
enm.insert("Average", NODE_VECTOR_MATH_AVERAGE);
enm.insert("Dot Product", NODE_VECTOR_MATH_DOT_PRODUCT);
enm.insert("Cross Product", NODE_VECTOR_MATH_CROSS_PRODUCT);
enm.insert("Normalize", NODE_VECTOR_MATH_NORMALIZE);
return enm;
}
ShaderEnum VectorMathNode::type_enum = vector_math_type_init();
void VectorMathNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector1_in = input("Vector1");
ShaderInput *vector2_in = input("Vector2");
ShaderOutput *value_out = output("Value");
ShaderOutput *vector_out = output("Vector");
compiler.stack_assign(value_out);
compiler.stack_assign(vector_out);
/* Optimize vector math node without links to a single value node. */
if(vector1_in->link == NULL && vector2_in->link == NULL) {
float optimized_value;
float3 optimized_vector;
svm_vector_math(&optimized_value,
&optimized_vector,
(NodeVectorMath)type_enum[type],
vector1_in->value,
vector2_in->value);
compiler.add_node(NODE_VALUE_F,
__float_as_int(optimized_value),
value_out->stack_offset);
compiler.add_node(NODE_VALUE_V, vector_out->stack_offset);
compiler.add_node(NODE_VALUE_V, optimized_vector);
return;
}
compiler.stack_assign(vector1_in);
compiler.stack_assign(vector2_in);
compiler.add_node(NODE_VECTOR_MATH, type_enum[type], vector1_in->stack_offset, vector2_in->stack_offset);
compiler.add_node(NODE_VECTOR_MATH, value_out->stack_offset, vector_out->stack_offset);
}
void VectorMathNode::compile(OSLCompiler& compiler)
{
compiler.parameter("type", type);
compiler.add(this, "node_vector_math");
}
/* VectorTransform */
VectorTransformNode::VectorTransformNode()
: ShaderNode("vector_transform")
{
type = ustring("Vector");
convert_from = ustring("world");
convert_to = ustring("object");
add_input("Vector", SHADER_SOCKET_VECTOR);
add_output("Vector", SHADER_SOCKET_VECTOR);
}
static ShaderEnum vector_transform_type_init()
{
ShaderEnum enm;
enm.insert("Vector", NODE_VECTOR_TRANSFORM_TYPE_VECTOR);
enm.insert("Point", NODE_VECTOR_TRANSFORM_TYPE_POINT);
enm.insert("Normal", NODE_VECTOR_TRANSFORM_TYPE_NORMAL);
return enm;
}
static ShaderEnum vector_transform_convert_space_init()
{
ShaderEnum enm;
enm.insert("world", NODE_VECTOR_TRANSFORM_CONVERT_SPACE_WORLD);
enm.insert("object", NODE_VECTOR_TRANSFORM_CONVERT_SPACE_OBJECT);
enm.insert("camera", NODE_VECTOR_TRANSFORM_CONVERT_SPACE_CAMERA);
return enm;
}
ShaderEnum VectorTransformNode::type_enum = vector_transform_type_init();
ShaderEnum VectorTransformNode::convert_space_enum = vector_transform_convert_space_init();
void VectorTransformNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderOutput *vector_out = output("Vector");
compiler.stack_assign(vector_in);
compiler.stack_assign(vector_out);
compiler.add_node(NODE_VECTOR_TRANSFORM,
compiler.encode_uchar4(type_enum[type], convert_space_enum[convert_from], convert_space_enum[convert_to]),
compiler.encode_uchar4(vector_in->stack_offset, vector_out->stack_offset));
}
void VectorTransformNode::compile(OSLCompiler& compiler)
{
compiler.parameter("type", type);
compiler.parameter("convert_from", convert_from);
compiler.parameter("convert_to", convert_to);
compiler.add(this, "node_vector_transform");
}
/* BumpNode */
BumpNode::BumpNode()
: ShaderNode("bump")
{
invert = false;
/* this input is used by the user, but after graph transform it is no longer
* used and moved to sampler center/x/y instead */
add_input("Height", SHADER_SOCKET_FLOAT);
add_input("SampleCenter", SHADER_SOCKET_FLOAT);
add_input("SampleX", SHADER_SOCKET_FLOAT);
add_input("SampleY", SHADER_SOCKET_FLOAT);
add_input("Normal", SHADER_SOCKET_NORMAL, ShaderInput::NORMAL);
add_input("Strength", SHADER_SOCKET_FLOAT, 1.0f);
add_input("Distance", SHADER_SOCKET_FLOAT, 0.1f);
add_output("Normal", SHADER_SOCKET_NORMAL);
}
void BumpNode::compile(SVMCompiler& compiler)
{
ShaderInput *center_in = input("SampleCenter");
ShaderInput *dx_in = input("SampleX");
ShaderInput *dy_in = input("SampleY");
ShaderInput *normal_in = input("Normal");
ShaderInput *strength_in = input("Strength");
ShaderInput *distance_in = input("Distance");
ShaderOutput *normal_out = output("Normal");
compiler.stack_assign(center_in);
compiler.stack_assign(dx_in);
compiler.stack_assign(dy_in);
compiler.stack_assign(strength_in);
compiler.stack_assign(distance_in);
compiler.stack_assign(normal_out);
if(normal_in->link)
compiler.stack_assign(normal_in);
/* pack all parameters in the node */
compiler.add_node(NODE_SET_BUMP,
compiler.encode_uchar4(normal_in->stack_offset, distance_in->stack_offset, invert),
compiler.encode_uchar4(center_in->stack_offset, dx_in->stack_offset,
dy_in->stack_offset, strength_in->stack_offset),
normal_out->stack_offset);
}
void BumpNode::compile(OSLCompiler& compiler)
{
compiler.parameter("invert", invert);
compiler.add(this, "node_bump");
}
/* RGBCurvesNode */
RGBCurvesNode::RGBCurvesNode()
: ShaderNode("rgb_curves")
{
add_input("Fac", SHADER_SOCKET_FLOAT);
add_input("Color", SHADER_SOCKET_COLOR);
add_output("Color", SHADER_SOCKET_COLOR);
}
void RGBCurvesNode::compile(SVMCompiler& compiler)
{
ShaderInput *fac_in = input("Fac");
ShaderInput *color_in = input("Color");
ShaderOutput *color_out = output("Color");
compiler.stack_assign(fac_in);
compiler.stack_assign(color_in);
compiler.stack_assign(color_out);
compiler.add_node(NODE_RGB_CURVES, fac_in->stack_offset, color_in->stack_offset, color_out->stack_offset);
compiler.add_array(curves, RAMP_TABLE_SIZE);
}
void RGBCurvesNode::compile(OSLCompiler& compiler)
{
float ramp[RAMP_TABLE_SIZE][3];
for (int i = 0; i < RAMP_TABLE_SIZE; ++i) {
ramp[i][0] = curves[i].x;
ramp[i][1] = curves[i].y;
ramp[i][2] = curves[i].z;
}
compiler.parameter_color_array("ramp", ramp, RAMP_TABLE_SIZE);
compiler.add(this, "node_rgb_curves");
}
/* VectorCurvesNode */
VectorCurvesNode::VectorCurvesNode()
: ShaderNode("vector_curves")
{
add_input("Fac", SHADER_SOCKET_FLOAT);
add_input("Vector", SHADER_SOCKET_VECTOR);
add_output("Vector", SHADER_SOCKET_VECTOR);
}
void VectorCurvesNode::compile(SVMCompiler& compiler)
{
ShaderInput *fac_in = input("Fac");
ShaderInput *vector_in = input("Vector");
ShaderOutput *vector_out = output("Vector");
compiler.stack_assign(fac_in);
compiler.stack_assign(vector_in);
compiler.stack_assign(vector_out);
compiler.add_node(NODE_VECTOR_CURVES, fac_in->stack_offset, vector_in->stack_offset, vector_out->stack_offset);
compiler.add_array(curves, RAMP_TABLE_SIZE);
}
void VectorCurvesNode::compile(OSLCompiler& compiler)
{
float ramp[RAMP_TABLE_SIZE][3];
for (int i = 0; i < RAMP_TABLE_SIZE; ++i) {
ramp[i][0] = curves[i].x;
ramp[i][1] = curves[i].y;
ramp[i][2] = curves[i].z;
}
compiler.parameter_color_array("ramp", ramp, RAMP_TABLE_SIZE);
compiler.add(this, "node_vector_curves");
}
/* RGBRampNode */
RGBRampNode::RGBRampNode()
: ShaderNode("rgb_ramp")
{
add_input("Fac", SHADER_SOCKET_FLOAT);
add_output("Color", SHADER_SOCKET_COLOR);
add_output("Alpha", SHADER_SOCKET_FLOAT);
interpolate = true;
}
void RGBRampNode::compile(SVMCompiler& compiler)
{
ShaderInput *fac_in = input("Fac");
ShaderOutput *color_out = output("Color");
ShaderOutput *alpha_out = output("Alpha");
compiler.stack_assign(fac_in);
if(!color_out->links.empty())
compiler.stack_assign(color_out);
if(!alpha_out->links.empty())
compiler.stack_assign(alpha_out);
compiler.add_node(NODE_RGB_RAMP,
compiler.encode_uchar4(
fac_in->stack_offset,
color_out->stack_offset,
alpha_out->stack_offset),
interpolate);
compiler.add_array(ramp, RAMP_TABLE_SIZE);
}
void RGBRampNode::compile(OSLCompiler& compiler)
{
/* OSL shader only takes separate RGB and A array, split the RGBA base array */
/* NB: cycles float3 type is actually 4 floats! need to use an explicit array */
float ramp_color[RAMP_TABLE_SIZE][3];
float ramp_alpha[RAMP_TABLE_SIZE];
for (int i = 0; i < RAMP_TABLE_SIZE; ++i) {
ramp_color[i][0] = ramp[i].x;
ramp_color[i][1] = ramp[i].y;
ramp_color[i][2] = ramp[i].z;
ramp_alpha[i] = ramp[i].w;
}
compiler.parameter_color_array("ramp_color", ramp_color, RAMP_TABLE_SIZE);
compiler.parameter_array("ramp_alpha", ramp_alpha, RAMP_TABLE_SIZE);
compiler.parameter("ramp_interpolate", interpolate);
compiler.add(this, "node_rgb_ramp");
}
/* Set Normal Node */
SetNormalNode::SetNormalNode()
: ShaderNode("set_normal")
{
add_input("Direction", SHADER_SOCKET_VECTOR);
add_output("Normal", SHADER_SOCKET_NORMAL);
}
void SetNormalNode::compile(SVMCompiler& compiler)
{
ShaderInput *direction_in = input("Direction");
ShaderOutput *normal_out = output("Normal");
compiler.stack_assign(direction_in);
compiler.stack_assign(normal_out);
compiler.add_node(NODE_CLOSURE_SET_NORMAL, direction_in->stack_offset, normal_out->stack_offset);
}
void SetNormalNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_set_normal");
}
/* OSLScriptNode */
OSLScriptNode::OSLScriptNode()
: ShaderNode("osl_script")
{
special_type = SHADER_SPECIAL_TYPE_SCRIPT;
}
void OSLScriptNode::compile(SVMCompiler& /*compiler*/)
{
/* doesn't work for SVM, obviously ... */
}
void OSLScriptNode::compile(OSLCompiler& compiler)
{
/* XXX fix for #36790:
* point and normal parameters are reflected as generic SOCK_VECTOR sockets
* on the node. Socket fixed input values need to be copied explicitly here for
* vector sockets, otherwise OSL will reject the value due to mismatching type.
*/
foreach(ShaderInput *input, this->inputs) {
if(!input->link) {
/* no need for compatible_name here, OSL parameter names are always unique */
string param_name(input->name);
switch(input->type) {
case SHADER_SOCKET_VECTOR:
compiler.parameter_point(param_name.c_str(), input->value);
compiler.parameter_normal(param_name.c_str(), input->value);
break;
default:
break;
}
}
}
if(!filepath.empty())
compiler.add(this, filepath.c_str(), true);
else
compiler.add(this, bytecode_hash.c_str(), false);
}
/* Normal Map */
static ShaderEnum normal_map_space_init()
{
ShaderEnum enm;
enm.insert("Tangent", NODE_NORMAL_MAP_TANGENT);
enm.insert("Object", NODE_NORMAL_MAP_OBJECT);
enm.insert("World", NODE_NORMAL_MAP_WORLD);
enm.insert("Blender Object", NODE_NORMAL_MAP_BLENDER_OBJECT);
enm.insert("Blender World", NODE_NORMAL_MAP_BLENDER_WORLD);
return enm;
}
ShaderEnum NormalMapNode::space_enum = normal_map_space_init();
NormalMapNode::NormalMapNode()
: ShaderNode("normal_map")
{
space = ustring("Tangent");
attribute = ustring("");
add_input("NormalIn", SHADER_SOCKET_NORMAL, ShaderInput::NORMAL, ShaderInput::USE_OSL);
add_input("Strength", SHADER_SOCKET_FLOAT, 1.0f);
add_input("Color", SHADER_SOCKET_COLOR);
add_output("Normal", SHADER_SOCKET_NORMAL);
}
void NormalMapNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
if(shader->has_surface && space == ustring("Tangent")) {
if(attribute == ustring("")) {
attributes->add(ATTR_STD_UV_TANGENT);
attributes->add(ATTR_STD_UV_TANGENT_SIGN);
}
else {
attributes->add(ustring((string(attribute.c_str()) + ".tangent").c_str()));
attributes->add(ustring((string(attribute.c_str()) + ".tangent_sign").c_str()));
}
attributes->add(ATTR_STD_VERTEX_NORMAL);
}
ShaderNode::attributes(shader, attributes);
}
void NormalMapNode::compile(SVMCompiler& compiler)
{
ShaderInput *color_in = input("Color");
ShaderInput *strength_in = input("Strength");
ShaderOutput *normal_out = output("Normal");
int attr = 0, attr_sign = 0;
if(space == ustring("Tangent")) {
if(attribute == ustring("")) {
attr = compiler.attribute(ATTR_STD_UV_TANGENT);
attr_sign = compiler.attribute(ATTR_STD_UV_TANGENT_SIGN);
}
else {
attr = compiler.attribute(ustring((string(attribute.c_str()) + ".tangent").c_str()));
attr_sign = compiler.attribute(ustring((string(attribute.c_str()) + ".tangent_sign").c_str()));
}
}
compiler.stack_assign(color_in);
compiler.stack_assign(strength_in);
compiler.stack_assign(normal_out);
compiler.add_node(NODE_NORMAL_MAP,
compiler.encode_uchar4(
color_in->stack_offset,
strength_in->stack_offset,
normal_out->stack_offset,
space_enum[space]),
attr, attr_sign);
}
void NormalMapNode::compile(OSLCompiler& compiler)
{
if(space == ustring("Tangent")) {
if(attribute == ustring("")) {
compiler.parameter("attr_name", ustring("geom:tangent"));
compiler.parameter("attr_sign_name", ustring("geom:tangent_sign"));
}
else {
compiler.parameter("attr_name", ustring((string(attribute.c_str()) + ".tangent").c_str()));
compiler.parameter("attr_sign_name", ustring((string(attribute.c_str()) + ".tangent_sign").c_str()));
}
}
compiler.parameter("space", space);
compiler.add(this, "node_normal_map");
}
/* Tangent */
static ShaderEnum tangent_direction_type_init()
{
ShaderEnum enm;
enm.insert("Radial", NODE_TANGENT_RADIAL);
enm.insert("UV Map", NODE_TANGENT_UVMAP);
return enm;
}
static ShaderEnum tangent_axis_init()
{
ShaderEnum enm;
enm.insert("X", NODE_TANGENT_AXIS_X);
enm.insert("Y", NODE_TANGENT_AXIS_Y);
enm.insert("Z", NODE_TANGENT_AXIS_Z);
return enm;
}
ShaderEnum TangentNode::direction_type_enum = tangent_direction_type_init();
ShaderEnum TangentNode::axis_enum = tangent_axis_init();
TangentNode::TangentNode()
: ShaderNode("tangent")
{
direction_type = ustring("Radial");
axis = ustring("X");
attribute = ustring("");
add_input("NormalIn", SHADER_SOCKET_NORMAL, ShaderInput::NORMAL, ShaderInput::USE_OSL);
add_output("Tangent", SHADER_SOCKET_NORMAL);
}
void TangentNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
if(shader->has_surface) {
if(direction_type == ustring("UV Map")) {
if(attribute == ustring(""))
attributes->add(ATTR_STD_UV_TANGENT);
else
attributes->add(ustring((string(attribute.c_str()) + ".tangent").c_str()));
}
else
attributes->add(ATTR_STD_GENERATED);
}
ShaderNode::attributes(shader, attributes);
}
void TangentNode::compile(SVMCompiler& compiler)
{
ShaderOutput *tangent_out = output("Tangent");
int attr;
if(direction_type == ustring("UV Map")) {
if(attribute == ustring(""))
attr = compiler.attribute(ATTR_STD_UV_TANGENT);
else
attr = compiler.attribute(ustring((string(attribute.c_str()) + ".tangent").c_str()));
}
else
attr = compiler.attribute(ATTR_STD_GENERATED);
compiler.stack_assign(tangent_out);
compiler.add_node(NODE_TANGENT,
compiler.encode_uchar4(
tangent_out->stack_offset,
direction_type_enum[direction_type],
axis_enum[axis]), attr);
}
void TangentNode::compile(OSLCompiler& compiler)
{
if(direction_type == ustring("UV Map")) {
if(attribute == ustring(""))
compiler.parameter("attr_name", ustring("geom:tangent"));
else
compiler.parameter("attr_name", ustring((string(attribute.c_str()) + ".tangent").c_str()));
}
compiler.parameter("direction_type", direction_type);
compiler.parameter("axis", axis);
compiler.add(this, "node_tangent");
}
CCL_NAMESPACE_END