blender/intern/quadriflow/quadriflow_capi.cpp
Campbell Barton 59a7095f79 Cleanup: use consistent copyright location, move descriptions
Order copyright immediately after the license block,
this was done almost everywhere with a few exceptions.

Remove authors from a few files (we had already removed "Contributors"
section however with old patches being applied this gets added back in).

Also move descriptive text into the doxygen comment block under \file.
In some cases remove the text as it was accidentally copied.
2022-02-09 16:00:16 +11:00

237 lines
6.5 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright 2019 Blender Foundation. All rights reserved.
*/
#include <unordered_map>
#include "MEM_guardedalloc.h"
#include "config.hpp"
#include "field-math.hpp"
#include "loader.hpp"
#include "optimizer.hpp"
#include "parametrizer.hpp"
#include "quadriflow_capi.hpp"
using namespace qflow;
struct ObjVertex {
uint32_t p = (uint32_t)-1;
uint32_t n = (uint32_t)-1;
uint32_t uv = (uint32_t)-1;
ObjVertex()
{
}
ObjVertex(uint32_t pi)
{
p = pi;
}
bool operator==(const ObjVertex &v) const
{
return v.p == p && v.n == n && v.uv == uv;
}
};
struct ObjVertexHash {
std::size_t operator()(const ObjVertex &v) const
{
size_t hash = std::hash<uint32_t>()(v.p);
hash = hash * 37 + std::hash<uint32_t>()(v.uv);
hash = hash * 37 + std::hash<uint32_t>()(v.n);
return hash;
}
};
typedef std::unordered_map<ObjVertex, uint32_t, ObjVertexHash> VertexMap;
static int check_if_canceled(float progress,
void (*update_cb)(void *, float progress, int *cancel),
void *update_cb_data)
{
int cancel = 0;
update_cb(update_cb_data, progress, &cancel);
return cancel;
}
void QFLOW_quadriflow_remesh(QuadriflowRemeshData *qrd,
void (*update_cb)(void *, float progress, int *cancel),
void *update_cb_data)
{
Parametrizer field;
VertexMap vertexMap;
/* Get remeshing parameters. */
int faces = qrd->target_faces;
if (qrd->preserve_sharp) {
field.flag_preserve_sharp = 1;
}
if (qrd->preserve_boundary) {
field.flag_preserve_boundary = 1;
}
if (qrd->adaptive_scale) {
field.flag_adaptive_scale = 1;
}
if (qrd->minimum_cost_flow) {
field.flag_minimum_cost_flow = 1;
}
if (qrd->aggresive_sat) {
field.flag_aggresive_sat = 1;
}
if (qrd->rng_seed) {
field.hierarchy.rng_seed = qrd->rng_seed;
}
if (check_if_canceled(0.0f, update_cb, update_cb_data) != 0) {
return;
}
/* Copy mesh to quadriflow data structures. */
std::vector<Vector3d> positions;
std::vector<uint32_t> indices;
std::vector<ObjVertex> vertices;
for (int i = 0; i < qrd->totverts; i++) {
Vector3d v(qrd->verts[i * 3], qrd->verts[i * 3 + 1], qrd->verts[i * 3 + 2]);
positions.push_back(v);
}
for (int q = 0; q < qrd->totfaces; q++) {
Vector3i f(qrd->faces[q * 3], qrd->faces[q * 3 + 1], qrd->faces[q * 3 + 2]);
ObjVertex tri[6];
int nVertices = 3;
tri[0] = ObjVertex(f[0]);
tri[1] = ObjVertex(f[1]);
tri[2] = ObjVertex(f[2]);
for (int i = 0; i < nVertices; ++i) {
const ObjVertex &v = tri[i];
VertexMap::const_iterator it = vertexMap.find(v);
if (it == vertexMap.end()) {
vertexMap[v] = (uint32_t)vertices.size();
indices.push_back((uint32_t)vertices.size());
vertices.push_back(v);
}
else {
indices.push_back(it->second);
}
}
}
field.F.resize(3, indices.size() / 3);
memcpy(field.F.data(), indices.data(), sizeof(uint32_t) * indices.size());
field.V.resize(3, vertices.size());
for (uint32_t i = 0; i < vertices.size(); ++i) {
field.V.col(i) = positions.at(vertices[i].p);
}
if (check_if_canceled(0.1f, update_cb, update_cb_data)) {
return;
}
/* Start processing the input mesh data */
field.NormalizeMesh();
field.Initialize(faces);
if (check_if_canceled(0.2f, update_cb, update_cb_data)) {
return;
}
/* Setup mesh boundary constraints if needed */
if (field.flag_preserve_boundary) {
Hierarchy &mRes = field.hierarchy;
mRes.clearConstraints();
for (uint32_t i = 0; i < 3 * mRes.mF.cols(); ++i) {
if (mRes.mE2E[i] == -1) {
uint32_t i0 = mRes.mF(i % 3, i / 3);
uint32_t i1 = mRes.mF((i + 1) % 3, i / 3);
Vector3d p0 = mRes.mV[0].col(i0), p1 = mRes.mV[0].col(i1);
Vector3d edge = p1 - p0;
if (edge.squaredNorm() > 0) {
edge.normalize();
mRes.mCO[0].col(i0) = p0;
mRes.mCO[0].col(i1) = p1;
mRes.mCQ[0].col(i0) = mRes.mCQ[0].col(i1) = edge;
mRes.mCQw[0][i0] = mRes.mCQw[0][i1] = mRes.mCOw[0][i0] = mRes.mCOw[0][i1] = 1.0;
}
}
}
mRes.propagateConstraints();
}
/* Optimize the mesh field orientations (tangental field etc) */
Optimizer::optimize_orientations(field.hierarchy);
field.ComputeOrientationSingularities();
if (check_if_canceled(0.3f, update_cb, update_cb_data)) {
return;
}
if (field.flag_adaptive_scale == 1) {
field.EstimateSlope();
}
if (check_if_canceled(0.4f, update_cb, update_cb_data)) {
return;
}
Optimizer::optimize_scale(field.hierarchy, field.rho, field.flag_adaptive_scale);
field.flag_adaptive_scale = 1;
Optimizer::optimize_positions(field.hierarchy, field.flag_adaptive_scale);
field.ComputePositionSingularities();
if (check_if_canceled(0.5f, update_cb, update_cb_data)) {
return;
}
/* Compute the final quad geomtry using a maxflow solver */
field.ComputeIndexMap();
if (check_if_canceled(0.9f, update_cb, update_cb_data)) {
return;
}
/* Get the output mesh data */
qrd->out_totverts = field.O_compact.size();
qrd->out_totfaces = field.F_compact.size();
qrd->out_verts = (float *)MEM_malloc_arrayN(qrd->out_totverts, sizeof(float[3]), __func__);
qrd->out_faces = (int *)MEM_malloc_arrayN(qrd->out_totfaces, sizeof(int[4]), __func__);
for (int i = 0; i < qrd->out_totverts; i++) {
auto t = field.O_compact[i] * field.normalize_scale + field.normalize_offset;
qrd->out_verts[i * 3] = t[0];
qrd->out_verts[i * 3 + 1] = t[1];
qrd->out_verts[i * 3 + 2] = t[2];
}
for (int i = 0; i < qrd->out_totfaces; i++) {
qrd->out_faces[i * 4] = field.F_compact[i][0];
qrd->out_faces[i * 4 + 1] = field.F_compact[i][1];
qrd->out_faces[i * 4 + 2] = field.F_compact[i][2];
qrd->out_faces[i * 4 + 3] = field.F_compact[i][3];
}
}