blender/source/gameengine/Ketsji/BL_Texture.cpp
Sergey Sharybin 5c6f6301b0 Image thread safe improvements
This commit makes BKE_image_acquire_ibuf referencing result, which means once
some area requested for image buffer, it'll be guaranteed this buffer wouldn't
be freed by image signal.

To de-reference buffer BKE_image_release_ibuf should now always be used.

To make referencing working correct we can not rely on result of
image_get_ibuf_threadsafe called outside from thread lock. This is so because
we need to guarantee getting image buffer from list of loaded buffers and it's
referencing happens atomic. Without lock here it is possible that between call
of image_get_ibuf_threadsafe and referencing the buffer IMA_SIGNAL_FREE would
be called. Image signal handling too is blocking now to prevent such a
situation.

Threads are locking by spinlock, which are faster than mutexes. There were some
slowdown reports in the past about render slowdown when using OSX on Xeon CPU.
It shouldn't happen with spin locks, but more tests on different hardware would
be really welcome. So far can not see speed regressions on own computers.

This commit also removes BKE_image_get_ibuf, because it was not so intuitive
when get_ibuf and acquire_ibuf should be used.

Thanks to Ton and Brecht for discussion/review :)
2012-11-15 15:59:58 +00:00

722 lines
17 KiB
C++

/** \file gameengine/Ketsji/BL_Texture.cpp
* \ingroup ketsji
*/
// ------------------------------------
#include "GL/glew.h"
#include <iostream>
#include <map>
#include <stdlib.h>
#include "BL_Material.h"
#include "BL_Texture.h"
#include "MT_assert.h"
#include "DNA_texture_types.h"
#include "DNA_image_types.h"
#include "IMB_imbuf_types.h"
#include "BKE_image.h"
#include "BLI_blenlib.h"
#include "RAS_OpenGLRasterizer/RAS_GLExtensionManager.h"
#include "RAS_ICanvas.h"
#include "RAS_Rect.h"
#include "KX_GameObject.h"
#define spit(x) std::cout << x << std::endl;
#include "MEM_guardedalloc.h"
#include "GPU_draw.h"
#include "GPU_extensions.h"
extern "C" {
// envmaps
#include "IMB_imbuf.h"
void my_envmap_split_ima(EnvMap *env, ImBuf *ibuf);
void my_free_envmapdata(EnvMap *env);
}
// (n&(n-1)) zeros the least significant bit of n
static int is_power_of_2_i(int num)
{
return ((num)&(num-1))==0;
}
static int power_of_2_min_i(int num)
{
while (!is_power_of_2_i(num))
num= num&(num-1);
return num;
}
// Place holder for a full texture manager
class BL_TextureObject
{
public:
unsigned int gl_texture;
void* ref_buffer;
};
typedef std::map<char*, BL_TextureObject> BL_TextureMap;
static BL_TextureMap g_textureManager;
BL_Texture::BL_Texture()
: mTexture(0),
mOk(0),
mNeedsDeleted(0),
mType(0),
mUnit(0),
mEnvState(0)
{
// --
}
BL_Texture::~BL_Texture()
{
// --
}
void BL_Texture::DeleteTex()
{
if ( mNeedsDeleted ) {
glDeleteTextures(1, (GLuint*)&mTexture);
mNeedsDeleted = 0;
mOk = 0;
}
if (mEnvState) {
glDeleteLists((GLuint)mEnvState, 1);
mEnvState =0;
}
if (mDisableState) {
glDeleteLists((GLuint)mDisableState, 1);
mDisableState =0;
}
g_textureManager.clear();
}
bool BL_Texture::InitFromImage(int unit, Image *img, bool mipmap)
{
ImBuf *ibuf;
if (!img || img->ok==0)
{
mOk = false;
return mOk;
}
ibuf= BKE_image_acquire_ibuf(img, NULL, NULL);
if (ibuf==NULL)
{
img->ok = 0;
mOk = false;
return mOk;
}
mipmap = mipmap && GPU_get_mipmap();
mTexture = img->bindcode;
mType = GL_TEXTURE_2D;
mUnit = unit;
ActivateUnit(mUnit);
if (mTexture != 0) {
glBindTexture(GL_TEXTURE_2D, mTexture );
Validate();
BKE_image_release_ibuf(img, ibuf, NULL);
return mOk;
}
// look for an existing gl image
BL_TextureMap::iterator mapLook = g_textureManager.find(img->id.name);
if (mapLook != g_textureManager.end())
{
if (mapLook->second.gl_texture != 0)
{
mTexture = mapLook->second.gl_texture;
glBindTexture(GL_TEXTURE_2D, mTexture);
mOk = IsValid();
BKE_image_release_ibuf(img, ibuf, NULL);
return mOk;
}
}
mNeedsDeleted = 1;
glGenTextures(1, (GLuint*)&mTexture);
#ifdef WITH_DDS
if (ibuf->ftype & DDS)
InitGLCompressedTex(ibuf, mipmap);
else
InitGLTex(ibuf->rect, ibuf->x, ibuf->y, mipmap);
#else
InitGLTex(ibuf->rect, ibuf->x, ibuf->y, mipmap);
#endif
// track created units
BL_TextureObject obj;
obj.gl_texture = mTexture;
obj.ref_buffer = img;
g_textureManager.insert(std::pair<char*, BL_TextureObject>((char*)img->id.name, obj));
glDisable(GL_TEXTURE_2D);
ActivateUnit(0);
Validate();
BKE_image_release_ibuf(img, ibuf, NULL);
return mOk;
}
void BL_Texture::InitGLTex(unsigned int *pix,int x,int y,bool mipmap)
{
if (!GPU_non_power_of_two_support() && (!is_power_of_2_i(x) || !is_power_of_2_i(y)) ) {
InitNonPow2Tex(pix, x,y,mipmap);
return;
}
glBindTexture(GL_TEXTURE_2D, mTexture );
if ( mipmap ) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
gluBuild2DMipmaps( GL_TEXTURE_2D, GL_RGBA, x, y, GL_RGBA, GL_UNSIGNED_BYTE, pix );
}
else {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA, x, y, 0, GL_RGBA, GL_UNSIGNED_BYTE, pix );
}
if (GLEW_EXT_texture_filter_anisotropic)
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, GPU_get_anisotropic());
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
}
void BL_Texture::InitGLCompressedTex(ImBuf *ibuf, bool mipmap)
{
#ifndef WITH_DDS
// Fall back to uncompressed if DDS isn't enabled
InitGLTex(ibuf->rect, ibuf->x, ibuf->y, mipmap);
return;
#else
glBindTexture(GL_TEXTURE_2D, mTexture);
if (GPU_upload_dxt_texture(ibuf) == 0) {
InitGLTex(ibuf->rect, ibuf->x, ibuf->y, mipmap);
return;
}
#endif
}
void BL_Texture::InitNonPow2Tex(unsigned int *pix,int x,int y,bool mipmap)
{
int nx= power_of_2_min_i(x);
int ny= power_of_2_min_i(y);
unsigned int *newPixels = (unsigned int *)malloc(nx*ny*sizeof(unsigned int));
gluScaleImage(GL_RGBA, x, y, GL_UNSIGNED_BYTE, pix, nx,ny, GL_UNSIGNED_BYTE, newPixels);
glBindTexture(GL_TEXTURE_2D, mTexture );
if ( mipmap ) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
gluBuild2DMipmaps( GL_TEXTURE_2D, GL_RGBA, nx, ny, GL_RGBA, GL_UNSIGNED_BYTE, newPixels );
}
else {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA, nx, ny, 0, GL_RGBA, GL_UNSIGNED_BYTE, newPixels );
}
if (GLEW_EXT_texture_filter_anisotropic)
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, GPU_get_anisotropic());
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
free(newPixels);
}
bool BL_Texture::InitCubeMap(int unit, EnvMap *cubemap)
{
if (!GLEW_ARB_texture_cube_map)
{
spit("cubemaps not supported");
mOk = false;
return mOk;
}
else if (!cubemap || cubemap->ima->ok==0)
{
mOk = false;
return mOk;
}
ImBuf *ibuf= BKE_image_acquire_ibuf(cubemap->ima, NULL, NULL);
if (ibuf==0)
{
cubemap->ima->ok = 0;
mOk = false;
return mOk;
}
mNeedsDeleted = 1;
mType = GL_TEXTURE_CUBE_MAP_ARB;
mTexture = 0;
mUnit = unit;
ActivateUnit(mUnit);
BL_TextureMap::iterator mapLook = g_textureManager.find(cubemap->ima->id.name);
if (mapLook != g_textureManager.end())
{
if (mapLook->second.gl_texture != 0 && mapLook->second.ref_buffer == cubemap->ima)
{
mTexture = mapLook->second.gl_texture;
glBindTexture(GL_TEXTURE_CUBE_MAP_ARB, mTexture);
mOk = IsValid();
BKE_image_release_ibuf(cubemap->ima, ibuf, NULL);
return mOk;
}
}
glGenTextures(1, (GLuint*)&mTexture);
glBindTexture(GL_TEXTURE_CUBE_MAP_ARB, mTexture);
// track created units
BL_TextureObject obj;
obj.gl_texture = mTexture;
obj.ref_buffer = cubemap->ima;
g_textureManager.insert(std::pair<char*, BL_TextureObject>((char*)cubemap->ima->id.name, obj));
bool needs_split = false;
if (!cubemap->cube[0])
{
needs_split = true;
spit ("Re-Generating texture buffer");
}
if (needs_split)
my_envmap_split_ima(cubemap, ibuf);
if (!is_power_of_2_i(cubemap->cube[0]->x) || !is_power_of_2_i(cubemap->cube[0]->y))
{
spit("invalid envmap size please render with CubeRes @ power of two");
my_free_envmapdata(cubemap);
mOk = false;
BKE_image_release_ibuf(cubemap->ima, ibuf, NULL);
return mOk;
}
#define SetCubeMapFace(face, num) \
glTexImage2D(face, 0,GL_RGBA, \
cubemap->cube[num]->x, \
cubemap->cube[num]->y, \
0, GL_RGBA, GL_UNSIGNED_BYTE, \
cubemap->cube[num]->rect)
SetCubeMapFace(GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB, 5);
SetCubeMapFace(GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB, 3);
SetCubeMapFace(GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB, 0);
SetCubeMapFace(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB, 1);
SetCubeMapFace(GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB, 2);
SetCubeMapFace(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB, 4);
glTexParameteri( GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE );
glTexParameteri( GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE );
if (GLEW_VERSION_1_2)
glTexParameteri( GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE );
if (needs_split)
my_free_envmapdata(cubemap);
glDisable(GL_TEXTURE_CUBE_MAP_ARB);
ActivateUnit(0);
mOk = IsValid();
BKE_image_release_ibuf(cubemap->ima, ibuf, NULL);
return mOk;
}
bool BL_Texture::IsValid()
{
return (mTexture!= 0)?glIsTexture(mTexture)!=0:false;
}
void BL_Texture::Validate()
{
mOk = IsValid();
}
bool BL_Texture::Ok()
{
return (mTexture!= 0);
}
unsigned int BL_Texture::GetTextureType() const
{
return mType;
}
int BL_Texture::GetMaxUnits()
{
GLint unit=0;
if (GLEW_ARB_multitexture) {
glGetIntegerv(GL_MAX_TEXTURE_UNITS_ARB, &unit);
return (MAXTEX>=unit?unit:MAXTEX);
}
return 0;
}
void BL_Texture::ActivateFirst()
{
if (GLEW_ARB_multitexture)
glActiveTextureARB(GL_TEXTURE0_ARB);
}
void BL_Texture::ActivateUnit(int unit)
{
if (GLEW_ARB_multitexture)
if (unit <= MAXTEX)
glActiveTextureARB(GL_TEXTURE0_ARB+unit);
}
void BL_Texture::DisableUnit()
{
if (GLEW_ARB_multitexture)
glActiveTextureARB(GL_TEXTURE0_ARB+mUnit);
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
if (GLEW_ARB_texture_cube_map && glIsEnabled(GL_TEXTURE_CUBE_MAP_ARB))
glDisable(GL_TEXTURE_CUBE_MAP_ARB);
else
{
if (glIsEnabled(GL_TEXTURE_2D))
glDisable(GL_TEXTURE_2D);
}
glDisable(GL_TEXTURE_GEN_S);
glDisable(GL_TEXTURE_GEN_T);
glDisable(GL_TEXTURE_GEN_R);
glDisable(GL_TEXTURE_GEN_Q);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE );
}
void BL_Texture::DisableAllTextures()
{
for (int i=0; i<MAXTEX; i++) {
if (GLEW_ARB_multitexture)
glActiveTextureARB(GL_TEXTURE0_ARB+i);
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glDisable(GL_TEXTURE_2D);
glDisable(GL_TEXTURE_GEN_S);
glDisable(GL_TEXTURE_GEN_T);
glDisable(GL_TEXTURE_GEN_R);
glDisable(GL_TEXTURE_GEN_Q);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE );
}
if (GLEW_ARB_multitexture)
glActiveTextureARB(GL_TEXTURE0_ARB);
}
void BL_Texture::ActivateTexture()
{
if (GLEW_ARB_multitexture)
glActiveTextureARB(GL_TEXTURE0_ARB+mUnit);
if (mType == GL_TEXTURE_CUBE_MAP_ARB && GLEW_ARB_texture_cube_map)
{
glBindTexture( GL_TEXTURE_CUBE_MAP_ARB, mTexture );
glEnable(GL_TEXTURE_CUBE_MAP_ARB);
}
else {
if (GLEW_ARB_texture_cube_map )
glDisable(GL_TEXTURE_CUBE_MAP_ARB);
glBindTexture( GL_TEXTURE_2D, mTexture );
glEnable(GL_TEXTURE_2D);
}
}
void BL_Texture::SetMapping(int mode)
{
if (!(mode &USEREFL)) {
glDisable(GL_TEXTURE_GEN_S);
glDisable(GL_TEXTURE_GEN_T);
glDisable(GL_TEXTURE_GEN_R);
glDisable(GL_TEXTURE_GEN_Q);
return;
}
if ( mType == GL_TEXTURE_CUBE_MAP_ARB &&
GLEW_ARB_texture_cube_map &&
mode &USEREFL)
{
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_ARB );
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_ARB );
glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_ARB );
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);
glDisable(GL_TEXTURE_GEN_Q);
return;
}
else
{
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP );
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP );
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glDisable(GL_TEXTURE_GEN_R);
glDisable(GL_TEXTURE_GEN_Q);
}
}
void BL_Texture::setTexEnv(BL_Material *mat, bool modulate)
{
if (modulate || !GLEW_ARB_texture_env_combine) {
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE );
return;
}
if (glIsList(mEnvState))
{
glCallList(mEnvState);
return;
}
if (!mEnvState)
mEnvState = glGenLists(1);
glNewList(mEnvState, GL_COMPILE_AND_EXECUTE);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_ARB );
GLfloat blend_operand = GL_SRC_COLOR;
GLfloat blend_operand_prev = GL_SRC_COLOR;
GLfloat alphaOp = GL_SRC_ALPHA;
GLenum combiner = GL_COMBINE_RGB_ARB;
GLenum source0 = GL_SOURCE0_RGB_ARB;
GLenum source1 = GL_SOURCE1_RGB_ARB;
GLenum source2 = GL_SOURCE2_RGB_ARB;
GLenum op0 = GL_OPERAND0_RGB_ARB;
GLenum op1 = GL_OPERAND1_RGB_ARB;
GLenum op2 = GL_OPERAND2_RGB_ARB;
// switch to alpha combiners
if ( mat->flag[mUnit] &TEXALPHA ) {
combiner = GL_COMBINE_ALPHA_ARB;
source0 = GL_SOURCE0_ALPHA_ARB;
source1 = GL_SOURCE1_ALPHA_ARB;
source2 = GL_SOURCE2_ALPHA_ARB;
op0 = GL_OPERAND0_ALPHA_ARB;
op1 = GL_OPERAND1_ALPHA_ARB;
op2 = GL_OPERAND2_ALPHA_ARB;
blend_operand = GL_SRC_ALPHA;
blend_operand_prev = GL_SRC_ALPHA;
// invert
if (mat->flag[mUnit] &TEXNEG) {
blend_operand_prev = GL_ONE_MINUS_SRC_ALPHA;
blend_operand = GL_ONE_MINUS_SRC_ALPHA;
}
}
else {
if (mat->flag[mUnit] &TEXNEG) {
blend_operand_prev=GL_ONE_MINUS_SRC_COLOR;
blend_operand = GL_ONE_MINUS_SRC_COLOR;
}
}
bool using_alpha = false;
if (mat->flag[mUnit] &USEALPHA) {
alphaOp = GL_ONE_MINUS_SRC_ALPHA;
using_alpha=true;
}
else if (mat->flag[mUnit] &USENEGALPHA) {
alphaOp = GL_SRC_ALPHA;
using_alpha = true;
}
switch (mat->blend_mode[mUnit]) {
case BLEND_MIX:
{
// ------------------------------
if (!using_alpha) {
GLfloat base_col[4];
base_col[0] = base_col[1] = base_col[2] = 0.f;
base_col[3] = 1.f-mat->color_blend[mUnit];
glTexEnvfv( GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR,base_col );
}
glTexEnvf( GL_TEXTURE_ENV, combiner, GL_INTERPOLATE_ARB);
glTexEnvf( GL_TEXTURE_ENV, source0, GL_PREVIOUS_ARB);
glTexEnvf( GL_TEXTURE_ENV, op0, blend_operand_prev );
glTexEnvf( GL_TEXTURE_ENV, source1, GL_TEXTURE );
glTexEnvf( GL_TEXTURE_ENV, op1, blend_operand);
if (!using_alpha)
glTexEnvf( GL_TEXTURE_ENV, source2, GL_CONSTANT_ARB );
else
glTexEnvf( GL_TEXTURE_ENV, source2, GL_TEXTURE );
glTexEnvf( GL_TEXTURE_ENV, op2, alphaOp);
}break;
case BLEND_MUL:
{
// ------------------------------
glTexEnvf( GL_TEXTURE_ENV, combiner, GL_MODULATE);
glTexEnvf( GL_TEXTURE_ENV, source0, GL_PREVIOUS_ARB);
glTexEnvf( GL_TEXTURE_ENV, op0, blend_operand_prev);
glTexEnvf( GL_TEXTURE_ENV, source1, GL_TEXTURE );
if (using_alpha)
glTexEnvf( GL_TEXTURE_ENV, op1, alphaOp);
else
glTexEnvf( GL_TEXTURE_ENV, op1, blend_operand);
}break;
case BLEND_ADD:
{
// ------------------------------
glTexEnvf( GL_TEXTURE_ENV, combiner, GL_ADD_SIGNED_ARB);
glTexEnvf( GL_TEXTURE_ENV, source0, GL_PREVIOUS_ARB );
glTexEnvf( GL_TEXTURE_ENV, op0, blend_operand_prev );
glTexEnvf( GL_TEXTURE_ENV, source1, GL_TEXTURE );
if (using_alpha)
glTexEnvf( GL_TEXTURE_ENV, op1, alphaOp);
else
glTexEnvf( GL_TEXTURE_ENV, op1, blend_operand);
}break;
case BLEND_SUB:
{
// ------------------------------
glTexEnvf( GL_TEXTURE_ENV, combiner, GL_SUBTRACT_ARB);
glTexEnvf( GL_TEXTURE_ENV, source0, GL_PREVIOUS_ARB );
glTexEnvf( GL_TEXTURE_ENV, op0, blend_operand_prev );
glTexEnvf( GL_TEXTURE_ENV, source1, GL_TEXTURE );
glTexEnvf( GL_TEXTURE_ENV, op1, blend_operand);
}break;
case BLEND_SCR:
{
// ------------------------------
glTexEnvf( GL_TEXTURE_ENV, combiner, GL_ADD);
glTexEnvf( GL_TEXTURE_ENV, source0, GL_PREVIOUS_ARB );
glTexEnvf( GL_TEXTURE_ENV, op0, blend_operand_prev );
glTexEnvf( GL_TEXTURE_ENV, source1, GL_TEXTURE );
if (using_alpha)
glTexEnvf( GL_TEXTURE_ENV, op1, alphaOp);
else
glTexEnvf( GL_TEXTURE_ENV, op1, blend_operand);
} break;
}
glTexEnvf( GL_TEXTURE_ENV, GL_RGB_SCALE_ARB, 1.0);
glEndList();
}
int BL_Texture::GetPow2(int n)
{
if (!is_power_of_2_i(n))
n = power_of_2_min_i(n);
return n;
}
void BL_Texture::SplitEnvMap(EnvMap *map)
{
if (!map || !map->ima || (map->ima && !map->ima->ok)) return;
ImBuf *ibuf= BKE_image_acquire_ibuf(map->ima, NULL, NULL);
if (ibuf) {
my_envmap_split_ima(map, ibuf);
BKE_image_release_ibuf(map->ima, ibuf, NULL);
}
}
unsigned int BL_Texture::mDisableState = 0;
extern "C" {
void my_envmap_split_ima(EnvMap *env, ImBuf *ibuf)
{
int dx, part;
my_free_envmapdata(env);
dx= ibuf->y;
dx/= 2;
if (3*dx != ibuf->x) {
printf("Incorrect envmap size\n");
env->ok= 0;
env->ima->ok= 0;
}
else {
for (part=0; part<6; part++) {
env->cube[part] = IMB_allocImBuf(dx, dx, 24, IB_rect);
}
IMB_rectcpy(env->cube[0], ibuf,
0, 0, 0, 0, dx, dx);
IMB_rectcpy(env->cube[1], ibuf,
0, 0, dx, 0, dx, dx);
IMB_rectcpy(env->cube[2], ibuf,
0, 0, 2*dx, 0, dx, dx);
IMB_rectcpy(env->cube[3], ibuf,
0, 0, 0, dx, dx, dx);
IMB_rectcpy(env->cube[4], ibuf,
0, 0, dx, dx, dx, dx);
IMB_rectcpy(env->cube[5], ibuf,
0, 0, 2*dx, dx, dx, dx);
env->ok= 2;// ENV_OSA
}
}
void my_free_envmapdata(EnvMap *env)
{
unsigned int part;
for (part=0; part<6; part++) {
ImBuf *ibuf= env->cube[part];
if (ibuf) {
IMB_freeImBuf(ibuf);
env->cube[part] = NULL;
}
}
env->ok= 0;
}
} // extern C