blender/intern/cycles/kernel/shaders/node_noise.h
OmarSquircleArt 23564583a4 Shading: Extend Noise node to other dimenstions.
This patch extends perlin noise to operate in 1D, 2D, 3D, and 4D
space. The noise code has also been refactored to be more readable.

The Color output and distortion patterns changed, so this patch
breaks backward compatibility. This is due to the fact that we
now use random offsets as noise seeds, as opposed to swizzling
and constants offsets.

Reviewers: brecht, JacquesLucke

Differential Revision: https://developer.blender.org/D5560
2019-09-04 17:54:32 +02:00

199 lines
4.7 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "vector2.h"
#include "vector4.h"
#define vector3 point
float safe_noise(float p)
{
float f = noise("noise", p);
if (isinf(f))
return 0.5;
return f;
}
float safe_noise(vector2 p)
{
float f = noise("noise", p.x, p.y);
if (isinf(f))
return 0.5;
return f;
}
float safe_noise(vector3 p)
{
float f = noise("noise", p);
if (isinf(f))
return 0.5;
return f;
}
float safe_noise(vector4 p)
{
float f = noise("noise", vector3(p.x, p.y, p.z), p.w);
if (isinf(f))
return 0.5;
return f;
}
float safe_snoise(float p)
{
float f = noise("snoise", p);
if (isinf(f))
return 0.0;
return f;
}
float safe_snoise(vector2 p)
{
float f = noise("snoise", p.x, p.y);
if (isinf(f))
return 0.0;
return f;
}
float safe_snoise(vector3 p)
{
float f = noise("snoise", p);
if (isinf(f))
return 0.0;
return f;
}
float safe_snoise(vector4 p)
{
float f = noise("snoise", vector3(p.x, p.y, p.z), p.w);
if (isinf(f))
return 0.0;
return f;
}
/* The fractal_noise functions are all exactly the same except for the input type. */
float fractal_noise(float p, float details)
{
float fscale = 1.0;
float amp = 1.0;
float sum = 0.0;
float octaves = clamp(details, 0.0, 16.0);
int n = (int)octaves;
for (int i = 0; i <= n; i++) {
float t = safe_noise(fscale * p);
sum += t * amp;
amp *= 0.5;
fscale *= 2.0;
}
float rmd = octaves - floor(octaves);
if (rmd != 0.0) {
float t = safe_noise(fscale * p);
float sum2 = sum + t * amp;
sum *= ((float)(1 << n) / (float)((1 << (n + 1)) - 1));
sum2 *= ((float)(1 << (n + 1)) / (float)((1 << (n + 2)) - 1));
return (1.0 - rmd) * sum + rmd * sum2;
}
else {
sum *= ((float)(1 << n) / (float)((1 << (n + 1)) - 1));
return sum;
}
}
/* The fractal_noise functions are all exactly the same except for the input type. */
float fractal_noise(vector2 p, float details)
{
float fscale = 1.0;
float amp = 1.0;
float sum = 0.0;
float octaves = clamp(details, 0.0, 16.0);
int n = (int)octaves;
for (int i = 0; i <= n; i++) {
float t = safe_noise(fscale * p);
sum += t * amp;
amp *= 0.5;
fscale *= 2.0;
}
float rmd = octaves - floor(octaves);
if (rmd != 0.0) {
float t = safe_noise(fscale * p);
float sum2 = sum + t * amp;
sum *= ((float)(1 << n) / (float)((1 << (n + 1)) - 1));
sum2 *= ((float)(1 << (n + 1)) / (float)((1 << (n + 2)) - 1));
return (1.0 - rmd) * sum + rmd * sum2;
}
else {
sum *= ((float)(1 << n) / (float)((1 << (n + 1)) - 1));
return sum;
}
}
/* The fractal_noise functions are all exactly the same except for the input type. */
float fractal_noise(vector3 p, float details)
{
float fscale = 1.0;
float amp = 1.0;
float sum = 0.0;
float octaves = clamp(details, 0.0, 16.0);
int n = (int)octaves;
for (int i = 0; i <= n; i++) {
float t = safe_noise(fscale * p);
sum += t * amp;
amp *= 0.5;
fscale *= 2.0;
}
float rmd = octaves - floor(octaves);
if (rmd != 0.0) {
float t = safe_noise(fscale * p);
float sum2 = sum + t * amp;
sum *= ((float)(1 << n) / (float)((1 << (n + 1)) - 1));
sum2 *= ((float)(1 << (n + 1)) / (float)((1 << (n + 2)) - 1));
return (1.0 - rmd) * sum + rmd * sum2;
}
else {
sum *= ((float)(1 << n) / (float)((1 << (n + 1)) - 1));
return sum;
}
}
/* The fractal_noise functions are all exactly the same except for the input type. */
float fractal_noise(vector4 p, float details)
{
float fscale = 1.0;
float amp = 1.0;
float sum = 0.0;
float octaves = clamp(details, 0.0, 16.0);
int n = (int)octaves;
for (int i = 0; i <= n; i++) {
float t = safe_noise(fscale * p);
sum += t * amp;
amp *= 0.5;
fscale *= 2.0;
}
float rmd = octaves - floor(octaves);
if (rmd != 0.0) {
float t = safe_noise(fscale * p);
float sum2 = sum + t * amp;
sum *= ((float)(1 << n) / (float)((1 << (n + 1)) - 1));
sum2 *= ((float)(1 << (n + 1)) / (float)((1 << (n + 2)) - 1));
return (1.0 - rmd) * sum + rmd * sum2;
}
else {
sum *= ((float)(1 << n) / (float)((1 << (n + 1)) - 1));
return sum;
}
}
#undef vector3