blender/release/scripts/modules/bpy_extras/mesh_utils.py

408 lines
13 KiB
Python

# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
def mesh_linked_faces(mesh):
'''
Splits the mesh into connected parts,
these parts are returned as lists of faces.
used for seperating cubes from other mesh elements in the 1 mesh
'''
# Build vert face connectivity
vert_faces = [[] for i in range(len(mesh.vertices))]
for f in mesh.faces:
for v in f.vertices:
vert_faces[v].append(f)
# sort faces into connectivity groups
face_groups = [[f] for f in mesh.faces]
face_mapping = list(range(len(mesh.faces))) # map old, new face location
# Now clump faces iterativly
ok = True
while ok:
ok = False
for i, f in enumerate(mesh.faces):
mapped_index = face_mapping[f.index]
mapped_group = face_groups[mapped_index]
for v in f.vertices:
for nxt_f in vert_faces[v]:
if nxt_f != f:
nxt_mapped_index = face_mapping[nxt_f.index]
# We are not a part of the same group
if mapped_index != nxt_mapped_index:
ok = True
# Assign mapping to this group so they all map to this group
for grp_f in face_groups[nxt_mapped_index]:
face_mapping[grp_f.index] = mapped_index
# Move faces into this group
mapped_group.extend(face_groups[nxt_mapped_index])
# remove reference to the list
face_groups[nxt_mapped_index] = None
# return all face groups that are not null
# this is all the faces that are connected in their own lists.
return [fg for fg in face_groups if fg]
def edge_face_count_dict(mesh):
face_edge_keys = [face.edge_keys for face in mesh.faces]
face_edge_count = {}
for face_keys in face_edge_keys:
for key in face_keys:
try:
face_edge_count[key] += 1
except:
face_edge_count[key] = 1
return face_edge_count
def edge_face_count(mesh):
edge_face_count_dict = edge_face_count_dict(mesh)
return [edge_face_count_dict.get(ed.key, 0) for ed in mesh.edges]
def edge_loops_from_faces(mesh, faces=None, seams=()):
"""
Edge loops defined by faces
Takes me.faces or a list of faces and returns the edge loops
These edge loops are the edges that sit between quads, so they dont touch
1 quad, note: not connected will make 2 edge loops, both only containing 2 edges.
return a list of edge key lists
[ [(0,1), (4, 8), (3,8)], ...]
return a list of edge vertex index lists
"""
OTHER_INDEX = 2, 3, 0, 1 # opposite face index
if faces is None:
faces = mesh.faces
edges = {}
for f in faces:
# if len(f) == 4:
if f.vertices_raw[3] != 0:
edge_keys = f.edge_keys
for i, edkey in enumerate(f.edge_keys):
edges.setdefault(edkey, []).append(edge_keys[OTHER_INDEX[i]])
for edkey in seams:
edges[edkey] = []
# Collect edge loops here
edge_loops = []
for edkey, ed_adj in edges.items():
if 0 < len(ed_adj) < 3: # 1 or 2
# Seek the first edge
context_loop = [edkey, ed_adj[0]]
edge_loops.append(context_loop)
if len(ed_adj) == 2:
other_dir = ed_adj[1]
else:
other_dir = None
ed_adj[:] = []
flipped = False
while 1:
# from knowing the last 2, look for th next.
ed_adj = edges[context_loop[-1]]
if len(ed_adj) != 2:
if other_dir and flipped == False: # the original edge had 2 other edges
flipped = True # only flip the list once
context_loop.reverse()
ed_adj[:] = []
context_loop.append(other_dir) # save 1 lookiup
ed_adj = edges[context_loop[-1]]
if len(ed_adj) != 2:
ed_adj[:] = []
break
else:
ed_adj[:] = []
break
i = ed_adj.index(context_loop[-2])
context_loop.append(ed_adj[not i])
# Dont look at this again
ed_adj[:] = []
return edge_loops
def edge_loops_from_edges(mesh, edges=None):
"""
Edge loops defined by edges
Takes me.edges or a list of edges and returns the edge loops
return a list of vertex indices.
[ [1, 6, 7, 2], ...]
closed loops have matching start and end values.
"""
line_polys = []
# Get edges not used by a face
if edges is None:
edges = mesh.edges
if not hasattr(edges, "pop"):
edges = edges[:]
edge_dict = {ed.key: ed for ed in mesh.edges if ed.select}
while edges:
current_edge = edges.pop()
vert_end, vert_start = current_edge.vertices[:]
line_poly = [vert_start, vert_end]
ok = True
while ok:
ok = False
#for i, ed in enumerate(edges):
i = len(edges)
while i:
i -= 1
ed = edges[i]
v1, v2 = ed.vertices
if v1 == vert_end:
line_poly.append(v2)
vert_end = line_poly[-1]
ok = 1
del edges[i]
# break
elif v2 == vert_end:
line_poly.append(v1)
vert_end = line_poly[-1]
ok = 1
del edges[i]
#break
elif v1 == vert_start:
line_poly.insert(0, v2)
vert_start = line_poly[0]
ok = 1
del edges[i]
# break
elif v2 == vert_start:
line_poly.insert(0, v1)
vert_start = line_poly[0]
ok = 1
del edges[i]
#break
line_polys.append(line_poly)
return line_polys
def ngon_tessellate(from_data, indices, fix_loops=True):
'''
Takes a polyline of indices (fgon)
and returns a list of face indicie lists.
Designed to be used for importers that need indices for an fgon to create from existing verts.
from_data: either a mesh, or a list/tuple of vectors.
indices: a list of indices to use this list is the ordered closed polyline to fill, and can be a subset of the data given.
fix_loops: If this is enabled polylines that use loops to make multiple polylines are delt with correctly.
'''
from mathutils import Vector
vector_to_tuple = Vector.to_tuple
if not indices:
return []
def mlen(co):
return abs(co[0]) + abs(co[1]) + abs(co[2]) # manhatten length of a vector, faster then length
def vert_treplet(v, i):
return v, vector_to_tuple(v, 6), i, mlen(v)
def ed_key_mlen(v1, v2):
if v1[3] > v2[3]:
return v2[1], v1[1]
else:
return v1[1], v2[1]
if not PREF_FIX_LOOPS:
'''
Normal single concave loop filling
'''
if type(from_data) in (tuple, list):
verts = [Vector(from_data[i]) for ii, i in enumerate(indices)]
else:
verts = [from_data.vertices[i].co for ii, i in enumerate(indices)]
for i in range(len(verts) - 1, 0, -1): # same as reversed(xrange(1, len(verts))):
if verts[i][1] == verts[i - 1][0]:
verts.pop(i - 1)
fill = fill_polygon([verts])
else:
'''
Seperate this loop into multiple loops be finding edges that are used twice
This is used by lightwave LWO files a lot
'''
if type(from_data) in (tuple, list):
verts = [vert_treplet(Vector(from_data[i]), ii) for ii, i in enumerate(indices)]
else:
verts = [vert_treplet(from_data.vertices[i].co, ii) for ii, i in enumerate(indices)]
edges = [(i, i - 1) for i in range(len(verts))]
if edges:
edges[0] = (0, len(verts) - 1)
if not verts:
return []
edges_used = set()
edges_doubles = set()
# We need to check if any edges are used twice location based.
for ed in edges:
edkey = ed_key_mlen(verts[ed[0]], verts[ed[1]])
if edkey in edges_used:
edges_doubles.add(edkey)
else:
edges_used.add(edkey)
# Store a list of unconnected loop segments split by double edges.
# will join later
loop_segments = []
v_prev = verts[0]
context_loop = [v_prev]
loop_segments = [context_loop]
for v in verts:
if v != v_prev:
# Are we crossing an edge we removed?
if ed_key_mlen(v, v_prev) in edges_doubles:
context_loop = [v]
loop_segments.append(context_loop)
else:
if context_loop and context_loop[-1][1] == v[1]:
#raise "as"
pass
else:
context_loop.append(v)
v_prev = v
# Now join loop segments
def join_seg(s1, s2):
if s2[-1][1] == s1[0][1]:
s1, s2 = s2, s1
elif s1[-1][1] == s2[0][1]:
pass
else:
return False
# If were stuill here s1 and s2 are 2 segments in the same polyline
s1.pop() # remove the last vert from s1
s1.extend(s2) # add segment 2 to segment 1
if s1[0][1] == s1[-1][1]: # remove endpoints double
s1.pop()
s2[:] = [] # Empty this segment s2 so we dont use it again.
return True
joining_segments = True
while joining_segments:
joining_segments = False
segcount = len(loop_segments)
for j in range(segcount - 1, -1, -1): # reversed(range(segcount)):
seg_j = loop_segments[j]
if seg_j:
for k in range(j - 1, -1, -1): # reversed(range(j)):
if not seg_j:
break
seg_k = loop_segments[k]
if seg_k and join_seg(seg_j, seg_k):
joining_segments = True
loop_list = loop_segments
for verts in loop_list:
while verts and verts[0][1] == verts[-1][1]:
verts.pop()
loop_list = [verts for verts in loop_list if len(verts) > 2]
# DONE DEALING WITH LOOP FIXING
# vert mapping
vert_map = [None] * len(indices)
ii = 0
for verts in loop_list:
if len(verts) > 2:
for i, vert in enumerate(verts):
vert_map[i + ii] = vert[2]
ii += len(verts)
fill = tesselate_polygon([[v[0] for v in loop] for loop in loop_list])
#draw_loops(loop_list)
#raise 'done loop'
# map to original indices
fill = [[vert_map[i] for i in reversed(f)] for f in fill]
if not fill:
print('Warning Cannot scanfill, fallback on a triangle fan.')
fill = [[0, i - 1, i] for i in range(2, len(indices))]
else:
# Use real scanfill.
# See if its flipped the wrong way.
flip = None
for fi in fill:
if flip != None:
break
for i, vi in enumerate(fi):
if vi == 0 and fi[i - 1] == 1:
flip = False
break
elif vi == 1 and fi[i - 1] == 0:
flip = True
break
if not flip:
for i, fi in enumerate(fill):
fill[i] = tuple([ii for ii in reversed(fi)])
return fill