blender/source/gameengine/GameLogic/SCA_ISensor.h
Benoit Bolsee 67c0b32375 BGE patch: Add level option on sensor and fix sensor reset.
Level option is now available on all sensors but is only implemented on 
mouse and keyboard sensors. The purpose of that option is to make
the sensor react on level rather than edge by default. It's only
applicable to state engine system when there is a state transition:
the sensor will generate a pulse if the condition is met from the
start of the state. Normally, the keyboard sensor generate a pulse
only when the key is pressed and not when the key is already pressed.
This patch allows to select this behavior.
The second part of the patch corrects the reset method for sensors
with inverted output.
2008-06-23 20:26:48 +00:00

149 lines
4.1 KiB
C++

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
* Interface Class for all logic Sensors. Implements
* pulsemode and pulsefrequency, and event suppression.
*/
#ifndef __SCA_ISENSOR
#define __SCA_ISENSOR
#include "SCA_ILogicBrick.h"
/**
* Interface Class for all logic Sensors. Implements
* pulsemode,pulsefrequency */
class SCA_ISensor : public SCA_ILogicBrick
{
Py_Header;
class SCA_EventManager* m_eventmgr;
bool m_triggered;
/** Pulse positive pulses? */
bool m_pos_pulsemode;
/** Pulse negative pulses? */
bool m_neg_pulsemode;
/** Repeat frequency in pulse mode. */
int m_pulse_frequency;
/** Number of ticks since the last positive pulse. */
int m_pos_ticks;
/** Number of ticks since the last negative pulse. */
int m_neg_ticks;
/** invert the output signal*/
bool m_invert;
/** detect level instead of edge*/
bool m_level;
/** Sensor must ignore updates? */
bool m_suspended;
/** number of connections to controller */
int m_links;
/** Pass the activation on to the logic manager.*/
void SignalActivation(class SCA_LogicManager* logicmgr);
public:
SCA_ISensor(SCA_IObject* gameobj,
class SCA_EventManager* eventmgr,
PyTypeObject* T );;
~SCA_ISensor();
virtual void ReParent(SCA_IObject* parent);
/** Because we want sensors to share some behaviour, the Activate has */
/* an implementation on this level. It requires an evaluate on the lower */
/* level of individual sensors. Mapping the old activate()s is easy. */
/* The IsPosTrig() also has to change, to keep things consistent. */
void Activate(class SCA_LogicManager* logicmgr,CValue* event);
virtual bool Evaluate(CValue* event) = 0;
virtual bool IsPositiveTrigger();
virtual void Init();
virtual PyObject* _getattr(const STR_String& attr);
virtual CValue* GetReplica()=0;
/** Set parameters for the pulsing behaviour.
* @param posmode Trigger positive pulses?
* @param negmode Trigger negative pulses?
* @param freq Frequency to use when doing pulsing.
*/
void SetPulseMode(bool posmode,
bool negmode,
int freq);
/** Release sensor
* For property sensor, it is used to release the pre-calculated expression
* so that self references are removed before the sensor itself is released
*/
virtual void Delete() { Release(); }
/** Set inversion of pulses on or off. */
void SetInvert(bool inv);
/** set the level detection on or off */
void SetLevel(bool lvl);
void RegisterToManager();
virtual float GetNumber();
/** Stop sensing for a while. */
void Suspend();
/** Is this sensor switched off? */
bool IsSuspended();
/** Resume sensing. */
void Resume();
void IncLink()
{ m_links++; }
void DecLink();
bool IsNoLink() const
{ return !m_links; }
/* Python functions: */
KX_PYMETHOD_DOC(SCA_ISensor,IsPositive);
KX_PYMETHOD_DOC(SCA_ISensor,GetUsePosPulseMode);
KX_PYMETHOD_DOC(SCA_ISensor,SetUsePosPulseMode);
KX_PYMETHOD_DOC(SCA_ISensor,GetFrequency);
KX_PYMETHOD_DOC(SCA_ISensor,SetFrequency);
KX_PYMETHOD_DOC(SCA_ISensor,GetUseNegPulseMode);
KX_PYMETHOD_DOC(SCA_ISensor,SetUseNegPulseMode);
KX_PYMETHOD_DOC(SCA_ISensor,GetInvert);
KX_PYMETHOD_DOC(SCA_ISensor,SetInvert);
KX_PYMETHOD_DOC(SCA_ISensor,GetLevel);
KX_PYMETHOD_DOC(SCA_ISensor,SetLevel);
};
#endif //__SCA_ISENSOR