blender/intern/cycles/device/device_opencl.cpp
Campbell Barton 857dedbc58 style cleanup
2012-05-27 00:36:50 +00:00

756 lines
23 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifdef WITH_OPENCL
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "device.h"
#include "device_intern.h"
#include "util_foreach.h"
#include "util_map.h"
#include "util_math.h"
#include "util_md5.h"
#include "util_opencl.h"
#include "util_opengl.h"
#include "util_path.h"
#include "util_time.h"
CCL_NAMESPACE_BEGIN
#define CL_MEM_PTR(p) ((cl_mem)(unsigned long)(p))
class OpenCLDevice : public Device
{
public:
cl_context cxContext;
cl_command_queue cqCommandQueue;
cl_platform_id cpPlatform;
cl_device_id cdDevice;
cl_program cpProgram;
cl_kernel ckPathTraceKernel;
cl_kernel ckFilmConvertKernel;
cl_int ciErr;
map<string, device_vector<uchar>*> const_mem_map;
map<string, device_memory*> mem_map;
device_ptr null_mem;
bool device_initialized;
string platform_name;
const char *opencl_error_string(cl_int err)
{
switch (err) {
case CL_SUCCESS: return "Success!";
case CL_DEVICE_NOT_FOUND: return "Device not found.";
case CL_DEVICE_NOT_AVAILABLE: return "Device not available";
case CL_COMPILER_NOT_AVAILABLE: return "Compiler not available";
case CL_MEM_OBJECT_ALLOCATION_FAILURE: return "Memory object allocation failure";
case CL_OUT_OF_RESOURCES: return "Out of resources";
case CL_OUT_OF_HOST_MEMORY: return "Out of host memory";
case CL_PROFILING_INFO_NOT_AVAILABLE: return "Profiling information not available";
case CL_MEM_COPY_OVERLAP: return "Memory copy overlap";
case CL_IMAGE_FORMAT_MISMATCH: return "Image format mismatch";
case CL_IMAGE_FORMAT_NOT_SUPPORTED: return "Image format not supported";
case CL_BUILD_PROGRAM_FAILURE: return "Program build failure";
case CL_MAP_FAILURE: return "Map failure";
case CL_INVALID_VALUE: return "Invalid value";
case CL_INVALID_DEVICE_TYPE: return "Invalid device type";
case CL_INVALID_PLATFORM: return "Invalid platform";
case CL_INVALID_DEVICE: return "Invalid device";
case CL_INVALID_CONTEXT: return "Invalid context";
case CL_INVALID_QUEUE_PROPERTIES: return "Invalid queue properties";
case CL_INVALID_COMMAND_QUEUE: return "Invalid command queue";
case CL_INVALID_HOST_PTR: return "Invalid host pointer";
case CL_INVALID_MEM_OBJECT: return "Invalid memory object";
case CL_INVALID_IMAGE_FORMAT_DESCRIPTOR: return "Invalid image format descriptor";
case CL_INVALID_IMAGE_SIZE: return "Invalid image size";
case CL_INVALID_SAMPLER: return "Invalid sampler";
case CL_INVALID_BINARY: return "Invalid binary";
case CL_INVALID_BUILD_OPTIONS: return "Invalid build options";
case CL_INVALID_PROGRAM: return "Invalid program";
case CL_INVALID_PROGRAM_EXECUTABLE: return "Invalid program executable";
case CL_INVALID_KERNEL_NAME: return "Invalid kernel name";
case CL_INVALID_KERNEL_DEFINITION: return "Invalid kernel definition";
case CL_INVALID_KERNEL: return "Invalid kernel";
case CL_INVALID_ARG_INDEX: return "Invalid argument index";
case CL_INVALID_ARG_VALUE: return "Invalid argument value";
case CL_INVALID_ARG_SIZE: return "Invalid argument size";
case CL_INVALID_KERNEL_ARGS: return "Invalid kernel arguments";
case CL_INVALID_WORK_DIMENSION: return "Invalid work dimension";
case CL_INVALID_WORK_GROUP_SIZE: return "Invalid work group size";
case CL_INVALID_WORK_ITEM_SIZE: return "Invalid work item size";
case CL_INVALID_GLOBAL_OFFSET: return "Invalid global offset";
case CL_INVALID_EVENT_WAIT_LIST: return "Invalid event wait list";
case CL_INVALID_EVENT: return "Invalid event";
case CL_INVALID_OPERATION: return "Invalid operation";
case CL_INVALID_GL_OBJECT: return "Invalid OpenGL object";
case CL_INVALID_BUFFER_SIZE: return "Invalid buffer size";
case CL_INVALID_MIP_LEVEL: return "Invalid mip-map level";
default: return "Unknown";
}
}
bool opencl_error(cl_int err)
{
if(err != CL_SUCCESS) {
string message = string_printf("OpenCL error (%d): %s", err, opencl_error_string(err));
if(error_msg == "")
error_msg = message;
fprintf(stderr, "%s\n", message.c_str());
return true;
}
return false;
}
void opencl_error(const string& message)
{
if(error_msg == "")
error_msg = message;
fprintf(stderr, "%s\n", message.c_str());
}
void opencl_assert(cl_int err)
{
if(err != CL_SUCCESS) {
string message = string_printf("OpenCL error (%d): %s", err, opencl_error_string(err));
if(error_msg == "")
error_msg = message;
fprintf(stderr, "%s\n", message.c_str());
#ifndef NDEBUG
abort();
#endif
}
}
OpenCLDevice(DeviceInfo& info, bool background_)
{
background = background_;
cpPlatform = NULL;
cxContext = NULL;
cqCommandQueue = NULL;
cpProgram = NULL;
ckPathTraceKernel = NULL;
ckFilmConvertKernel = NULL;
null_mem = 0;
device_initialized = false;
/* setup platform */
cl_uint num_platforms;
ciErr = clGetPlatformIDs(0, NULL, &num_platforms);
if(opencl_error(ciErr))
return;
if(num_platforms == 0) {
opencl_error("OpenCL: no platforms found.");
return;
}
ciErr = clGetPlatformIDs(1, &cpPlatform, NULL);
if(opencl_error(ciErr))
return;
char name[256];
clGetPlatformInfo(cpPlatform, CL_PLATFORM_NAME, sizeof(name), &name, NULL);
platform_name = name;
/* get devices */
vector<cl_device_id> device_ids;
cl_uint num_devices;
if(opencl_error(clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU|CL_DEVICE_TYPE_ACCELERATOR, 0, NULL, &num_devices)))
return;
if(info.num > num_devices) {
if(num_devices == 0)
opencl_error("OpenCL: no devices found.");
else
opencl_error("OpenCL: specified device not found.");
return;
}
device_ids.resize(num_devices);
if(opencl_error(clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU|CL_DEVICE_TYPE_ACCELERATOR, num_devices, &device_ids[0], NULL)))
return;
cdDevice = device_ids[info.num];
/* create context */
cxContext = clCreateContext(0, 1, &cdDevice, NULL, NULL, &ciErr);
if(opencl_error(ciErr))
return;
cqCommandQueue = clCreateCommandQueue(cxContext, cdDevice, 0, &ciErr);
if(opencl_error(ciErr))
return;
null_mem = (device_ptr)clCreateBuffer(cxContext, CL_MEM_READ_ONLY, 1, NULL, &ciErr);
device_initialized = true;
}
bool opencl_version_check()
{
char version[256];
int major, minor, req_major = 1, req_minor = 0;
clGetPlatformInfo(cpPlatform, CL_PLATFORM_VERSION, sizeof(version), &version, NULL);
if(sscanf(version, "OpenCL %d.%d", &major, &minor) < 2) {
opencl_error(string_printf("OpenCL: failed to parse platform version string (%s).", version));
return false;
}
if(!((major == req_major && minor >= req_minor) || (major > req_major))) {
opencl_error(string_printf("OpenCL: platform version 1.1 or later required, found %d.%d", major, minor));
return false;
}
clGetDeviceInfo(cdDevice, CL_DEVICE_OPENCL_C_VERSION, sizeof(version), &version, NULL);
if(sscanf(version, "OpenCL C %d.%d", &major, &minor) < 2) {
opencl_error(string_printf("OpenCL: failed to parse OpenCL C version string (%s).", version));
return false;
}
if(!((major == req_major && minor >= req_minor) || (major > req_major))) {
opencl_error(string_printf("OpenCL: C version 1.1 or later required, found %d.%d", major, minor));
return false;
}
/* we don't check CL_DEVICE_VERSION since for e.g. nvidia sm 1.3 cards this is
1.0 even if the language features are there, just limited shared memory */
return true;
}
bool load_binary(const string& kernel_path, const string& clbin)
{
/* read binary into memory */
vector<uint8_t> binary;
if(!path_read_binary(clbin, binary)) {
opencl_error(string_printf("OpenCL failed to read cached binary %s.", clbin.c_str()));
return false;
}
/* create program */
cl_int status;
size_t size = binary.size();
const uint8_t *bytes = &binary[0];
cpProgram = clCreateProgramWithBinary(cxContext, 1, &cdDevice,
&size, &bytes, &status, &ciErr);
if(opencl_error(status) || opencl_error(ciErr)) {
opencl_error(string_printf("OpenCL failed create program from cached binary %s.", clbin.c_str()));
return false;
}
if(!build_kernel(kernel_path))
return false;
return true;
}
bool save_binary(const string& clbin)
{
size_t size = 0;
clGetProgramInfo(cpProgram, CL_PROGRAM_BINARY_SIZES, sizeof(size_t), &size, NULL);
if(!size)
return false;
vector<uint8_t> binary(size);
uint8_t *bytes = &binary[0];
clGetProgramInfo(cpProgram, CL_PROGRAM_BINARIES, sizeof(uint8_t*), &bytes, NULL);
if(!path_write_binary(clbin, binary)) {
opencl_error(string_printf("OpenCL failed to write cached binary %s.", clbin.c_str()));
return false;
}
return true;
}
string kernel_build_options()
{
string build_options = " -cl-fast-relaxed-math ";
/* Multi Closure for nVidia cards */
if(platform_name == "NVIDIA CUDA")
build_options += "-D__KERNEL_SHADING__ -D__KERNEL_OPENCL_NVIDIA__ -cl-nv-maxrregcount=24 -cl-nv-verbose ";
/* No Float3 for Apple */
else if(platform_name == "Apple")
build_options += "-D__CL_NO_FLOAT3__ -D__KERNEL_OPENCL_APPLE__ ";
/* Basic shading for AMD cards (non Apple) */
else if(platform_name == "AMD Accelerated Parallel Processing")
build_options += "-D__CL_NO_FLOAT3__ -D__KERNEL_OPENCL_AMD__ ";
return build_options;
}
bool build_kernel(const string& kernel_path)
{
string build_options = kernel_build_options();
ciErr = clBuildProgram(cpProgram, 0, NULL, build_options.c_str(), NULL, NULL);
if(ciErr != CL_SUCCESS) {
/* show build errors */
char *build_log;
size_t ret_val_size;
clGetProgramBuildInfo(cpProgram, cdDevice, CL_PROGRAM_BUILD_LOG, 0, NULL, &ret_val_size);
build_log = new char[ret_val_size+1];
clGetProgramBuildInfo(cpProgram, cdDevice, CL_PROGRAM_BUILD_LOG, ret_val_size, build_log, NULL);
build_log[ret_val_size] = '\0';
opencl_error("OpenCL build failed: errors in console");
fprintf(stderr, "%s\n", build_log);
delete[] build_log;
return false;
}
return true;
}
bool compile_kernel(const string& kernel_path, const string& kernel_md5)
{
/* we compile kernels consisting of many files. unfortunately opencl
kernel caches do not seem to recognize changes in included files.
so we force recompile on changes by adding the md5 hash of all files */
string source = "#include \"kernel.cl\" // " + kernel_md5 + "\n";
source = path_source_replace_includes(source, kernel_path);
size_t source_len = source.size();
const char *source_str = source.c_str();
cpProgram = clCreateProgramWithSource(cxContext, 1, &source_str, &source_len, &ciErr);
if(opencl_error(ciErr))
return false;
double starttime = time_dt();
printf("Compiling OpenCL kernel ...\n");
if(!build_kernel(kernel_path))
return false;
printf("Kernel compilation finished in %.2lfs.\n", time_dt() - starttime);
return true;
}
string device_md5_hash()
{
MD5Hash md5;
char version[256], driver[256], name[256], vendor[256];
clGetPlatformInfo(cpPlatform, CL_PLATFORM_VENDOR, sizeof(vendor), &vendor, NULL);
clGetDeviceInfo(cdDevice, CL_DEVICE_VERSION, sizeof(version), &version, NULL);
clGetDeviceInfo(cdDevice, CL_DEVICE_NAME, sizeof(name), &name, NULL);
clGetDeviceInfo(cdDevice, CL_DRIVER_VERSION, sizeof(driver), &driver, NULL);
md5.append((uint8_t*)vendor, strlen(vendor));
md5.append((uint8_t*)version, strlen(version));
md5.append((uint8_t*)name, strlen(name));
md5.append((uint8_t*)driver, strlen(driver));
string options = kernel_build_options();
md5.append((uint8_t*)options.c_str(), options.size());
return md5.get_hex();
}
bool load_kernels(bool experimental)
{
/* verify if device was initialized */
if(!device_initialized) {
fprintf(stderr, "OpenCL: failed to initialize device.\n");
return false;
}
/* verify we have right opencl version */
if(!opencl_version_check())
return false;
/* md5 hash to detect changes */
string kernel_path = path_get("kernel");
string kernel_md5 = path_files_md5_hash(kernel_path);
string device_md5 = device_md5_hash();
/* try to use cache binary */
string clbin = string_printf("cycles_kernel_%s_%s.clbin", device_md5.c_str(), kernel_md5.c_str());
clbin = path_user_get(path_join("cache", clbin));
if(path_exists(clbin)) {
/* if exists already, try use it */
if(!load_binary(kernel_path, clbin))
return false;
}
else {
/* compile kernel */
if(!compile_kernel(kernel_path, kernel_md5))
return false;
/* save binary for reuse */
save_binary(clbin);
}
/* find kernels */
ckPathTraceKernel = clCreateKernel(cpProgram, "kernel_ocl_path_trace", &ciErr);
if(opencl_error(ciErr))
return false;
ckFilmConvertKernel = clCreateKernel(cpProgram, "kernel_ocl_tonemap", &ciErr);
if(opencl_error(ciErr))
return false;
return true;
}
~OpenCLDevice()
{
if(null_mem)
clReleaseMemObject(CL_MEM_PTR(null_mem));
map<string, device_vector<uchar>*>::iterator mt;
for(mt = const_mem_map.begin(); mt != const_mem_map.end(); mt++) {
mem_free(*(mt->second));
delete mt->second;
}
if(ckPathTraceKernel)
clReleaseKernel(ckPathTraceKernel);
if(ckFilmConvertKernel)
clReleaseKernel(ckFilmConvertKernel);
if(cpProgram)
clReleaseProgram(cpProgram);
if(cqCommandQueue)
clReleaseCommandQueue(cqCommandQueue);
if(cxContext)
clReleaseContext(cxContext);
}
void mem_alloc(device_memory& mem, MemoryType type)
{
size_t size = mem.memory_size();
if(type == MEM_READ_ONLY)
mem.device_pointer = (device_ptr)clCreateBuffer(cxContext, CL_MEM_READ_ONLY, size, NULL, &ciErr);
else if(type == MEM_WRITE_ONLY)
mem.device_pointer = (device_ptr)clCreateBuffer(cxContext, CL_MEM_WRITE_ONLY, size, NULL, &ciErr);
else
mem.device_pointer = (device_ptr)clCreateBuffer(cxContext, CL_MEM_READ_WRITE, size, NULL, &ciErr);
opencl_assert(ciErr);
}
void mem_copy_to(device_memory& mem)
{
/* this is blocking */
size_t size = mem.memory_size();
ciErr = clEnqueueWriteBuffer(cqCommandQueue, CL_MEM_PTR(mem.device_pointer), CL_TRUE, 0, size, (void*)mem.data_pointer, 0, NULL, NULL);
opencl_assert(ciErr);
}
void mem_copy_from(device_memory& mem, int y, int w, int h, int elem)
{
size_t offset = elem*y*w;
size_t size = elem*w*h;
ciErr = clEnqueueReadBuffer(cqCommandQueue, CL_MEM_PTR(mem.device_pointer), CL_TRUE, offset, size, (uchar*)mem.data_pointer + offset, 0, NULL, NULL);
opencl_assert(ciErr);
}
void mem_zero(device_memory& mem)
{
if(mem.device_pointer) {
memset((void*)mem.data_pointer, 0, mem.memory_size());
mem_copy_to(mem);
}
}
void mem_free(device_memory& mem)
{
if(mem.device_pointer) {
ciErr = clReleaseMemObject(CL_MEM_PTR(mem.device_pointer));
mem.device_pointer = 0;
opencl_assert(ciErr);
}
}
void const_copy_to(const char *name, void *host, size_t size)
{
if(const_mem_map.find(name) == const_mem_map.end()) {
device_vector<uchar> *data = new device_vector<uchar>();
data->copy((uchar*)host, size);
mem_alloc(*data, MEM_READ_ONLY);
const_mem_map[name] = data;
}
else {
device_vector<uchar> *data = const_mem_map[name];
data->copy((uchar*)host, size);
}
mem_copy_to(*const_mem_map[name]);
}
void tex_alloc(const char *name, device_memory& mem, bool interpolation, bool periodic)
{
mem_alloc(mem, MEM_READ_ONLY);
mem_copy_to(mem);
mem_map[name] = &mem;
}
void tex_free(device_memory& mem)
{
if(mem.data_pointer)
mem_free(mem);
}
size_t global_size_round_up(int group_size, int global_size)
{
int r = global_size % group_size;
return global_size + ((r == 0)? 0: group_size - r);
}
void path_trace(DeviceTask& task)
{
/* cast arguments to cl types */
cl_mem d_data = CL_MEM_PTR(const_mem_map["__data"]->device_pointer);
cl_mem d_buffer = CL_MEM_PTR(task.buffer);
cl_mem d_rng_state = CL_MEM_PTR(task.rng_state);
cl_int d_x = task.x;
cl_int d_y = task.y;
cl_int d_w = task.w;
cl_int d_h = task.h;
cl_int d_sample = task.sample;
cl_int d_offset = task.offset;
cl_int d_stride = task.stride;
/* sample arguments */
int narg = 0;
ciErr = 0;
ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_data), (void*)&d_data);
ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_buffer), (void*)&d_buffer);
ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_rng_state), (void*)&d_rng_state);
#define KERNEL_TEX(type, ttype, name) \
ciErr |= set_kernel_arg_mem(ckPathTraceKernel, &narg, #name);
#include "kernel_textures.h"
ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_sample), (void*)&d_sample);
ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_x), (void*)&d_x);
ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_y), (void*)&d_y);
ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_w), (void*)&d_w);
ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_h), (void*)&d_h);
ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_offset), (void*)&d_offset);
ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_stride), (void*)&d_stride);
opencl_assert(ciErr);
size_t workgroup_size;
clGetKernelWorkGroupInfo(ckPathTraceKernel, cdDevice,
CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &workgroup_size, NULL);
workgroup_size = max(sqrt((double)workgroup_size), 1.0);
size_t local_size[2] = {workgroup_size, workgroup_size};
size_t global_size[2] = {global_size_round_up(local_size[0], d_w), global_size_round_up(local_size[1], d_h)};
/* run kernel */
ciErr = clEnqueueNDRangeKernel(cqCommandQueue, ckPathTraceKernel, 2, NULL, global_size, local_size, 0, NULL, NULL);
opencl_assert(ciErr);
opencl_assert(clFinish(cqCommandQueue));
}
cl_int set_kernel_arg_mem(cl_kernel kernel, int *narg, const char *name)
{
cl_mem ptr;
cl_int err = 0;
if(mem_map.find(name) != mem_map.end()) {
device_memory *mem = mem_map[name];
ptr = CL_MEM_PTR(mem->device_pointer);
}
else {
/* work around NULL not working, even though the spec says otherwise */
ptr = CL_MEM_PTR(null_mem);
}
err |= clSetKernelArg(kernel, (*narg)++, sizeof(ptr), (void*)&ptr);
opencl_assert(err);
return err;
}
void tonemap(DeviceTask& task)
{
/* cast arguments to cl types */
cl_mem d_data = CL_MEM_PTR(const_mem_map["__data"]->device_pointer);
cl_mem d_rgba = CL_MEM_PTR(task.rgba);
cl_mem d_buffer = CL_MEM_PTR(task.buffer);
cl_int d_x = task.x;
cl_int d_y = task.y;
cl_int d_w = task.w;
cl_int d_h = task.h;
cl_int d_sample = task.sample;
cl_int d_resolution = task.resolution;
cl_int d_offset = task.offset;
cl_int d_stride = task.stride;
/* sample arguments */
int narg = 0;
ciErr = 0;
ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_data), (void*)&d_data);
ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_rgba), (void*)&d_rgba);
ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_buffer), (void*)&d_buffer);
#define KERNEL_TEX(type, ttype, name) \
ciErr |= set_kernel_arg_mem(ckFilmConvertKernel, &narg, #name);
#include "kernel_textures.h"
ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_sample), (void*)&d_sample);
ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_resolution), (void*)&d_resolution);
ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_x), (void*)&d_x);
ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_y), (void*)&d_y);
ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_w), (void*)&d_w);
ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_h), (void*)&d_h);
ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_offset), (void*)&d_offset);
ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_stride), (void*)&d_stride);
opencl_assert(ciErr);
size_t workgroup_size;
clGetKernelWorkGroupInfo(ckFilmConvertKernel, cdDevice,
CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &workgroup_size, NULL);
workgroup_size = max(sqrt((double)workgroup_size), 1.0);
size_t local_size[2] = {workgroup_size, workgroup_size};
size_t global_size[2] = {global_size_round_up(local_size[0], d_w), global_size_round_up(local_size[1], d_h)};
/* run kernel */
ciErr = clEnqueueNDRangeKernel(cqCommandQueue, ckFilmConvertKernel, 2, NULL, global_size, local_size, 0, NULL, NULL);
opencl_assert(ciErr);
opencl_assert(clFinish(cqCommandQueue));
}
void task_add(DeviceTask& maintask)
{
list<DeviceTask> tasks;
/* arbitrary limit to work around apple ATI opencl issue */
if(platform_name == "Apple")
maintask.split_max_size(tasks, 76800);
else
tasks.push_back(maintask);
DeviceTask task;
foreach(DeviceTask& task, tasks) {
if(task.type == DeviceTask::TONEMAP)
tonemap(task);
else if(task.type == DeviceTask::PATH_TRACE)
path_trace(task);
}
}
void task_wait()
{
}
void task_cancel()
{
}
};
Device *device_opencl_create(DeviceInfo& info, bool background)
{
return new OpenCLDevice(info, background);
}
void device_opencl_info(vector<DeviceInfo>& devices)
{
vector<cl_device_id> device_ids;
cl_uint num_devices;
cl_platform_id platform_id;
cl_uint num_platforms;
/* get devices */
if(clGetPlatformIDs(0, NULL, &num_platforms) != CL_SUCCESS || num_platforms == 0)
return;
if(clGetPlatformIDs(1, &platform_id, NULL) != CL_SUCCESS)
return;
if(clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_GPU|CL_DEVICE_TYPE_ACCELERATOR, 0, NULL, &num_devices) != CL_SUCCESS)
return;
device_ids.resize(num_devices);
if(clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_GPU|CL_DEVICE_TYPE_ACCELERATOR, num_devices, &device_ids[0], NULL) != CL_SUCCESS)
return;
/* add devices */
for(int num = 0; num < num_devices; num++) {
cl_device_id device_id = device_ids[num];
char name[1024];
if(clGetDeviceInfo(device_id, CL_DEVICE_NAME, sizeof(name), &name, NULL) != CL_SUCCESS)
continue;
DeviceInfo info;
info.type = DEVICE_OPENCL;
info.description = string(name);
info.id = string_printf("OPENCL_%d", num);
info.num = num;
/* we don't know if it's used for display, but assume it is */
info.display_device = true;
info.advanced_shading = false;
info.pack_images = true;
devices.push_back(info);
}
}
CCL_NAMESPACE_END
#endif /* WITH_OPENCL */