blender/intern/cycles/render/image.cpp

687 lines
16 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
#include "device.h"
#include "image.h"
#include "scene.h"
#include "util_foreach.h"
#include "util_image.h"
#include "util_path.h"
#include "util_progress.h"
#ifdef WITH_OSL
#include <OSL/oslexec.h>
#endif
CCL_NAMESPACE_BEGIN
ImageManager::ImageManager()
{
need_update = true;
pack_images = false;
osl_texture_system = NULL;
animation_frame = 0;
tex_num_images = TEX_NUM_IMAGES;
tex_num_float_images = TEX_NUM_FLOAT_IMAGES;
tex_image_byte_start = TEX_IMAGE_BYTE_START;
}
ImageManager::~ImageManager()
{
for(size_t slot = 0; slot < images.size(); slot++)
assert(!images[slot]);
for(size_t slot = 0; slot < float_images.size(); slot++)
assert(!float_images[slot]);
}
void ImageManager::set_pack_images(bool pack_images_)
{
pack_images = pack_images_;
}
void ImageManager::set_osl_texture_system(void *texture_system)
{
osl_texture_system = texture_system;
}
void ImageManager::set_extended_image_limits(void)
{
tex_num_images = TEX_EXTENDED_NUM_IMAGES;
tex_num_float_images = TEX_EXTENDED_NUM_FLOAT_IMAGES;
tex_image_byte_start = TEX_EXTENDED_IMAGE_BYTE_START;
}
bool ImageManager::set_animation_frame_update(int frame)
{
if(frame != animation_frame) {
animation_frame = frame;
for(size_t slot = 0; slot < images.size(); slot++)
if(images[slot] && images[slot]->animated)
return true;
for(size_t slot = 0; slot < float_images.size(); slot++)
if(float_images[slot] && float_images[slot]->animated)
return true;
}
return false;
}
bool ImageManager::is_float_image(const string& filename, void *builtin_data, bool& is_linear)
{
bool is_float = false;
is_linear = false;
if(builtin_data) {
if(builtin_image_info_cb) {
int width, height, channels;
builtin_image_info_cb(filename, builtin_data, is_float, width, height, channels);
}
if(is_float)
is_linear = true;
return is_float;
}
ImageInput *in = ImageInput::create(filename);
if(in) {
ImageSpec spec;
if(in->open(filename, spec)) {
/* check the main format, and channel formats;
* if any take up more than one byte, we'll need a float texture slot */
if(spec.format.basesize() > 1) {
is_float = true;
is_linear = true;
}
for(size_t channel = 0; channel < spec.channelformats.size(); channel++) {
if(spec.channelformats[channel].basesize() > 1) {
is_float = true;
is_linear = true;
}
}
/* basic color space detection, not great but better than nothing
* before we do OpenColorIO integration */
if(is_float) {
string colorspace = spec.get_string_attribute("oiio:ColorSpace");
is_linear = !(colorspace == "sRGB" ||
colorspace == "GammaCorrected" ||
(colorspace == "" &&
(strcmp(in->format_name(), "png") == 0 ||
strcmp(in->format_name(), "tiff") == 0 ||
strcmp(in->format_name(), "jpeg2000") == 0)));
}
else {
is_linear = false;
}
in->close();
}
delete in;
}
return is_float;
}
int ImageManager::add_image(const string& filename, void *builtin_data, bool animated, bool& is_float, bool& is_linear)
{
Image *img;
size_t slot;
/* load image info and find out if we need a float texture */
is_float = (pack_images)? false: is_float_image(filename, builtin_data, is_linear);
if(is_float) {
/* find existing image */
for(slot = 0; slot < float_images.size(); slot++) {
if(float_images[slot] && float_images[slot]->filename == filename) {
float_images[slot]->users++;
return slot;
}
}
/* find free slot */
for(slot = 0; slot < float_images.size(); slot++) {
if(!float_images[slot])
break;
}
if(slot == float_images.size()) {
/* max images limit reached */
if(float_images.size() == TEX_NUM_FLOAT_IMAGES) {
printf("ImageManager::add_image: float image limit reached %d, skipping '%s'\n",
tex_num_float_images, filename.c_str());
return -1;
}
float_images.resize(float_images.size() + 1);
}
/* add new image */
img = new Image();
img->filename = filename;
img->builtin_data = builtin_data;
img->need_load = true;
img->animated = animated;
img->users = 1;
float_images[slot] = img;
}
else {
for(slot = 0; slot < images.size(); slot++) {
if(images[slot] && images[slot]->filename == filename) {
images[slot]->users++;
return slot+tex_image_byte_start;
}
}
/* find free slot */
for(slot = 0; slot < images.size(); slot++) {
if(!images[slot])
break;
}
if(slot == images.size()) {
/* max images limit reached */
if(images.size() == tex_num_images) {
printf("ImageManager::add_image: byte image limit reached %d, skipping '%s'\n",
tex_num_images, filename.c_str());
return -1;
}
images.resize(images.size() + 1);
}
/* add new image */
img = new Image();
img->filename = filename;
img->builtin_data = builtin_data;
img->need_load = true;
img->animated = animated;
img->users = 1;
images[slot] = img;
slot += tex_image_byte_start;
}
need_update = true;
return slot;
}
void ImageManager::remove_image(const string& filename, void *builtin_data)
{
size_t slot;
for(slot = 0; slot < images.size(); slot++) {
if(images[slot] && images[slot]->filename == filename && images[slot]->builtin_data == builtin_data) {
/* decrement user count */
images[slot]->users--;
assert(images[slot]->users >= 0);
/* don't remove immediately, rather do it all together later on. one of
* the reasons for this is that on shader changes we add and remove nodes
* that use them, but we do not want to reload the image all the time. */
if(images[slot]->users == 0)
need_update = true;
break;
}
}
if(slot == images.size()) {
/* see if it's in a float texture slot */
for(slot = 0; slot < float_images.size(); slot++) {
if(float_images[slot] && float_images[slot]->filename == filename && float_images[slot]->builtin_data == builtin_data) {
/* decrement user count */
float_images[slot]->users--;
assert(float_images[slot]->users >= 0);
/* don't remove immediately, rather do it all together later on. one of
* the reasons for this is that on shader changes we add and remove nodes
* that use them, but we do not want to reload the image all the time. */
if(float_images[slot]->users == 0)
need_update = true;
break;
}
}
}
}
bool ImageManager::file_load_image(Image *img, device_vector<uchar4>& tex_img)
{
if(img->filename == "")
return false;
ImageInput *in = NULL;
int width, height, components;
if(!img->builtin_data) {
/* load image from file through OIIO */
in = ImageInput::create(img->filename);
if(!in)
return false;
ImageSpec spec;
if(!in->open(img->filename, spec)) {
delete in;
return false;
}
width = spec.width;
height = spec.height;
components = spec.nchannels;
}
else {
/* load image using builtin images callbacks */
if(!builtin_image_info_cb || !builtin_image_pixels_cb)
return false;
bool is_float;
builtin_image_info_cb(img->filename, img->builtin_data, is_float, width, height, components);
}
/* we only handle certain number of components */
if(!(components >= 1 && components <= 4)) {
if(in) {
in->close();
delete in;
}
return false;
}
/* read RGBA pixels */
uchar *pixels = (uchar*)tex_img.resize(width, height);
int scanlinesize = width*components*sizeof(uchar);
if(in) {
in->read_image(TypeDesc::UINT8,
(uchar*)pixels + (height-1)*scanlinesize,
AutoStride,
-scanlinesize,
AutoStride);
in->close();
delete in;
}
else {
builtin_image_pixels_cb(img->filename, img->builtin_data, pixels);
}
if(components == 2) {
for(int i = width*height-1; i >= 0; i--) {
pixels[i*4+3] = pixels[i*2+1];
pixels[i*4+2] = pixels[i*2+0];
pixels[i*4+1] = pixels[i*2+0];
pixels[i*4+0] = pixels[i*2+0];
}
}
else if(components == 3) {
for(int i = width*height-1; i >= 0; i--) {
pixels[i*4+3] = 255;
pixels[i*4+2] = pixels[i*3+2];
pixels[i*4+1] = pixels[i*3+1];
pixels[i*4+0] = pixels[i*3+0];
}
}
else if(components == 1) {
for(int i = width*height-1; i >= 0; i--) {
pixels[i*4+3] = 255;
pixels[i*4+2] = pixels[i];
pixels[i*4+1] = pixels[i];
pixels[i*4+0] = pixels[i];
}
}
return true;
}
bool ImageManager::file_load_float_image(Image *img, device_vector<float4>& tex_img)
{
if(img->filename == "")
return false;
ImageInput *in = NULL;
int width, height, components;
if(!img->builtin_data) {
/* load image from file through OIIO */
in = ImageInput::create(img->filename);
if(!in)
return false;
ImageSpec spec;
if(!in->open(img->filename, spec)) {
delete in;
return false;
}
/* we only handle certain number of components */
width = spec.width;
height = spec.height;
components = spec.nchannels;
}
else {
/* load image using builtin images callbacks */
if(!builtin_image_info_cb || !builtin_image_float_pixels_cb)
return false;
bool is_float;
builtin_image_info_cb(img->filename, img->builtin_data, is_float, width, height, components);
}
if(!(components >= 1 && components <= 4)) {
if(in) {
in->close();
delete in;
}
return false;
}
/* read RGBA pixels */
float *pixels = (float*)tex_img.resize(width, height);
int scanlinesize = width*components*sizeof(float);
if(in) {
in->read_image(TypeDesc::FLOAT,
(uchar*)pixels + (height-1)*scanlinesize,
AutoStride,
-scanlinesize,
AutoStride);
in->close();
delete in;
}
else {
builtin_image_float_pixels_cb(img->filename, img->builtin_data, pixels);
}
if(components == 2) {
for(int i = width*height-1; i >= 0; i--) {
pixels[i*4+3] = pixels[i*2+1];
pixels[i*4+2] = pixels[i*2+0];
pixels[i*4+1] = pixels[i*2+0];
pixels[i*4+0] = pixels[i*2+0];
}
}
else if(components == 3) {
for(int i = width*height-1; i >= 0; i--) {
pixels[i*4+3] = 1.0f;
pixels[i*4+2] = pixels[i*3+2];
pixels[i*4+1] = pixels[i*3+1];
pixels[i*4+0] = pixels[i*3+0];
}
}
else if(components == 1) {
for(int i = width*height-1; i >= 0; i--) {
pixels[i*4+3] = 1.0f;
pixels[i*4+2] = pixels[i];
pixels[i*4+1] = pixels[i];
pixels[i*4+0] = pixels[i];
}
}
return true;
}
void ImageManager::device_load_image(Device *device, DeviceScene *dscene, int slot, Progress *progress)
{
if(progress->get_cancel())
return;
if(osl_texture_system)
return;
Image *img;
bool is_float;
if(slot >= tex_image_byte_start) {
img = images[slot - tex_image_byte_start];
is_float = false;
}
else {
img = float_images[slot];
is_float = true;
}
if(is_float) {
string filename = path_filename(float_images[slot]->filename);
progress->set_status("Updating Images", "Loading " + filename);
device_vector<float4>& tex_img = dscene->tex_float_image[slot];
if(tex_img.device_pointer) {
thread_scoped_lock device_lock(device_mutex);
device->tex_free(tex_img);
}
if(!file_load_float_image(img, tex_img)) {
/* on failure to load, we set a 1x1 pixels pink image */
float *pixels = (float*)tex_img.resize(1, 1);
pixels[0] = TEX_IMAGE_MISSING_R;
pixels[1] = TEX_IMAGE_MISSING_G;
pixels[2] = TEX_IMAGE_MISSING_B;
pixels[3] = TEX_IMAGE_MISSING_A;
}
string name;
if(slot >= 10) name = string_printf("__tex_image_float_0%d", slot);
else name = string_printf("__tex_image_float_00%d", slot);
if(!pack_images) {
thread_scoped_lock device_lock(device_mutex);
device->tex_alloc(name.c_str(), tex_img, true, true);
}
}
else {
string filename = path_filename(images[slot - tex_image_byte_start]->filename);
progress->set_status("Updating Images", "Loading " + filename);
device_vector<uchar4>& tex_img = dscene->tex_image[slot - tex_image_byte_start];
if(tex_img.device_pointer) {
thread_scoped_lock device_lock(device_mutex);
device->tex_free(tex_img);
}
if(!file_load_image(img, tex_img)) {
/* on failure to load, we set a 1x1 pixels pink image */
uchar *pixels = (uchar*)tex_img.resize(1, 1);
pixels[0] = (TEX_IMAGE_MISSING_R * 255);
pixels[1] = (TEX_IMAGE_MISSING_G * 255);
pixels[2] = (TEX_IMAGE_MISSING_B * 255);
pixels[3] = (TEX_IMAGE_MISSING_A * 255);
}
string name;
if(slot >= 10) name = string_printf("__tex_image_0%d", slot);
else name = string_printf("__tex_image_00%d", slot);
if(!pack_images) {
thread_scoped_lock device_lock(device_mutex);
device->tex_alloc(name.c_str(), tex_img, true, true);
}
}
img->need_load = false;
}
void ImageManager::device_free_image(Device *device, DeviceScene *dscene, int slot)
{
Image *img;
bool is_float;
if(slot >= tex_image_byte_start) {
img = images[slot - tex_image_byte_start];
is_float = false;
}
else {
img = float_images[slot];
is_float = true;
}
if(img) {
if(osl_texture_system) {
#ifdef WITH_OSL
ustring filename(images[slot]->filename);
((OSL::TextureSystem*)osl_texture_system)->invalidate(filename);
#endif
}
else if(is_float) {
device_vector<float4>& tex_img = dscene->tex_float_image[slot];
if(tex_img.device_pointer) {
thread_scoped_lock device_lock(device_mutex);
device->tex_free(tex_img);
}
tex_img.clear();
delete float_images[slot];
float_images[slot] = NULL;
}
else {
device_vector<uchar4>& tex_img = dscene->tex_image[slot - tex_image_byte_start];
if(tex_img.device_pointer) {
thread_scoped_lock device_lock(device_mutex);
device->tex_free(tex_img);
}
tex_img.clear();
delete images[slot - tex_image_byte_start];
images[slot - tex_image_byte_start] = NULL;
}
}
}
void ImageManager::device_update(Device *device, DeviceScene *dscene, Progress& progress)
{
if(!need_update)
return;
TaskPool pool;
for(size_t slot = 0; slot < images.size(); slot++) {
if(!images[slot])
continue;
if(images[slot]->users == 0) {
device_free_image(device, dscene, slot + tex_image_byte_start);
}
else if(images[slot]->need_load) {
if(!osl_texture_system)
pool.push(function_bind(&ImageManager::device_load_image, this, device, dscene, slot + tex_image_byte_start, &progress));
}
}
for(size_t slot = 0; slot < float_images.size(); slot++) {
if(!float_images[slot])
continue;
if(float_images[slot]->users == 0) {
device_free_image(device, dscene, slot);
}
else if(float_images[slot]->need_load) {
if(!osl_texture_system)
pool.push(function_bind(&ImageManager::device_load_image, this, device, dscene, slot, &progress));
}
}
pool.wait_work();
if(pack_images)
device_pack_images(device, dscene, progress);
need_update = false;
}
void ImageManager::device_pack_images(Device *device, DeviceScene *dscene, Progress& progess)
{
/* for OpenCL, we pack all image textures inside a single big texture, and
* will do our own interpolation in the kernel */
size_t size = 0;
for(size_t slot = 0; slot < images.size(); slot++) {
if(!images[slot])
continue;
device_vector<uchar4>& tex_img = dscene->tex_image[slot];
size += tex_img.size();
}
uint4 *info = dscene->tex_image_packed_info.resize(images.size());
uchar4 *pixels = dscene->tex_image_packed.resize(size);
size_t offset = 0;
for(size_t slot = 0; slot < images.size(); slot++) {
if(!images[slot])
continue;
device_vector<uchar4>& tex_img = dscene->tex_image[slot];
info[slot] = make_uint4(tex_img.data_width, tex_img.data_height, offset, 1);
memcpy(pixels+offset, (void*)tex_img.data_pointer, tex_img.memory_size());
offset += tex_img.size();
}
if(dscene->tex_image_packed.size())
device->tex_alloc("__tex_image_packed", dscene->tex_image_packed);
if(dscene->tex_image_packed_info.size())
device->tex_alloc("__tex_image_packed_info", dscene->tex_image_packed_info);
}
void ImageManager::device_free(Device *device, DeviceScene *dscene)
{
for(size_t slot = 0; slot < images.size(); slot++)
device_free_image(device, dscene, slot + tex_image_byte_start);
for(size_t slot = 0; slot < float_images.size(); slot++)
device_free_image(device, dscene, slot);
device->tex_free(dscene->tex_image_packed);
device->tex_free(dscene->tex_image_packed_info);
dscene->tex_image_packed.clear();
dscene->tex_image_packed_info.clear();
images.clear();
float_images.clear();
}
CCL_NAMESPACE_END