blender/intern/cycles/device/device_cpu.cpp
Mai Lavelle 96868a3941 Fix T50888: Numeric overflow in split kernel state buffer size calculation
Overflow led to the state buffer being too small and the split kernel to
get stuck doing nothing forever.
2017-03-11 05:39:28 -05:00

904 lines
23 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <string.h>
/* So ImathMath is included before our kernel_cpu_compat. */
#ifdef WITH_OSL
/* So no context pollution happens from indirectly included windows.h */
# include "util_windows.h"
# include <OSL/oslexec.h>
#endif
#include "device.h"
#include "device_intern.h"
#include "device_split_kernel.h"
#include "kernel.h"
#include "kernel_compat_cpu.h"
#include "kernel_types.h"
#include "split/kernel_split_data.h"
#include "kernel_globals.h"
#include "osl_shader.h"
#include "osl_globals.h"
#include "buffers.h"
#include "util_debug.h"
#include "util_foreach.h"
#include "util_function.h"
#include "util_logging.h"
#include "util_map.h"
#include "util_opengl.h"
#include "util_progress.h"
#include "util_system.h"
#include "util_thread.h"
CCL_NAMESPACE_BEGIN
class CPUDevice;
class CPUSplitKernel : public DeviceSplitKernel {
CPUDevice *device;
public:
explicit CPUSplitKernel(CPUDevice *device);
virtual bool enqueue_split_kernel_data_init(const KernelDimensions& dim,
RenderTile& rtile,
int num_global_elements,
device_memory& kernel_globals,
device_memory& kernel_data_,
device_memory& split_data,
device_memory& ray_state,
device_memory& queue_index,
device_memory& use_queues_flag,
device_memory& work_pool_wgs);
virtual SplitKernelFunction* get_split_kernel_function(string kernel_name, const DeviceRequestedFeatures&);
virtual int2 split_kernel_local_size();
virtual int2 split_kernel_global_size(device_memory& kg, device_memory& data, DeviceTask *task);
virtual uint64_t state_buffer_size(device_memory& kg, device_memory& data, size_t num_threads);
};
class CPUDevice : public Device
{
static unordered_map<string, void*> kernel_functions;
static void register_kernel_function(const char* name, void* func)
{
kernel_functions[name] = func;
}
static const char* get_arch_name()
{
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
return "cpu_avx2";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
return "cpu_avx";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
return "cpu_sse41";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
return "cpu_sse3";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
return "cpu_sse2";
}
else
#endif
{
return "cpu";
}
}
template<typename F>
static F get_kernel_function(string name)
{
name = string("kernel_") + get_arch_name() + "_" + name;
unordered_map<string, void*>::iterator it = kernel_functions.find(name);
if(it == kernel_functions.end()) {
assert(!"kernel function not found");
return NULL;
}
return (F)it->second;
}
friend class CPUSplitKernel;
public:
TaskPool task_pool;
KernelGlobals kernel_globals;
#ifdef WITH_OSL
OSLGlobals osl_globals;
#endif
bool use_split_kernel;
DeviceRequestedFeatures requested_features;
CPUDevice(DeviceInfo& info, Stats &stats, bool background)
: Device(info, stats, background)
{
#ifdef WITH_OSL
kernel_globals.osl = &osl_globals;
#endif
/* do now to avoid thread issues */
system_cpu_support_sse2();
system_cpu_support_sse3();
system_cpu_support_sse41();
system_cpu_support_avx();
system_cpu_support_avx2();
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
VLOG(1) << "Will be using AVX2 kernels.";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
VLOG(1) << "Will be using AVX kernels.";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
VLOG(1) << "Will be using SSE4.1 kernels.";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
VLOG(1) << "Will be using SSE3kernels.";
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
VLOG(1) << "Will be using SSE2 kernels.";
}
else
#endif
{
VLOG(1) << "Will be using regular kernels.";
}
use_split_kernel = DebugFlags().cpu.split_kernel;
if(use_split_kernel) {
VLOG(1) << "Will be using split kernel.";
}
kernel_cpu_register_functions(register_kernel_function);
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
kernel_cpu_sse2_register_functions(register_kernel_function);
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
kernel_cpu_sse3_register_functions(register_kernel_function);
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
kernel_cpu_sse41_register_functions(register_kernel_function);
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
kernel_cpu_avx_register_functions(register_kernel_function);
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
kernel_cpu_avx2_register_functions(register_kernel_function);
#endif
}
~CPUDevice()
{
task_pool.stop();
}
virtual bool show_samples() const
{
return (TaskScheduler::num_threads() == 1);
}
void mem_alloc(const char *name, device_memory& mem, MemoryType /*type*/)
{
if(name) {
VLOG(1) << "Buffer allocate: " << name << ", "
<< string_human_readable_number(mem.memory_size()) << " bytes. ("
<< string_human_readable_size(mem.memory_size()) << ")";
}
mem.device_pointer = mem.data_pointer;
if(!mem.device_pointer) {
mem.device_pointer = (device_ptr)malloc(mem.memory_size());
}
mem.device_size = mem.memory_size();
stats.mem_alloc(mem.device_size);
}
void mem_copy_to(device_memory& /*mem*/)
{
/* no-op */
}
void mem_copy_from(device_memory& /*mem*/,
int /*y*/, int /*w*/, int /*h*/,
int /*elem*/)
{
/* no-op */
}
void mem_zero(device_memory& mem)
{
memset((void*)mem.device_pointer, 0, mem.memory_size());
}
void mem_free(device_memory& mem)
{
if(mem.device_pointer) {
if(!mem.data_pointer) {
free((void*)mem.device_pointer);
}
mem.device_pointer = 0;
stats.mem_free(mem.device_size);
mem.device_size = 0;
}
}
void const_copy_to(const char *name, void *host, size_t size)
{
kernel_const_copy(&kernel_globals, name, host, size);
}
void tex_alloc(const char *name,
device_memory& mem,
InterpolationType interpolation,
ExtensionType extension)
{
VLOG(1) << "Texture allocate: " << name << ", "
<< string_human_readable_number(mem.memory_size()) << " bytes. ("
<< string_human_readable_size(mem.memory_size()) << ")";
kernel_tex_copy(&kernel_globals,
name,
mem.data_pointer,
mem.data_width,
mem.data_height,
mem.data_depth,
interpolation,
extension);
mem.device_pointer = mem.data_pointer;
mem.device_size = mem.memory_size();
stats.mem_alloc(mem.device_size);
}
void tex_free(device_memory& mem)
{
if(mem.device_pointer) {
mem.device_pointer = 0;
stats.mem_free(mem.device_size);
mem.device_size = 0;
}
}
void *osl_memory()
{
#ifdef WITH_OSL
return &osl_globals;
#else
return NULL;
#endif
}
void thread_run(DeviceTask *task)
{
if(task->type == DeviceTask::PATH_TRACE) {
if(!use_split_kernel) {
thread_path_trace(*task);
}
else {
thread_path_trace_split(*task);
}
}
else if(task->type == DeviceTask::FILM_CONVERT)
thread_film_convert(*task);
else if(task->type == DeviceTask::SHADER)
thread_shader(*task);
}
class CPUDeviceTask : public DeviceTask {
public:
CPUDeviceTask(CPUDevice *device, DeviceTask& task)
: DeviceTask(task)
{
run = function_bind(&CPUDevice::thread_run, device, this);
}
};
void thread_path_trace(DeviceTask& task)
{
if(task_pool.canceled()) {
if(task.need_finish_queue == false)
return;
}
KernelGlobals kg = thread_kernel_globals_init();
RenderTile tile;
void(*path_trace_kernel)(KernelGlobals*, float*, unsigned int*, int, int, int, int, int);
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
path_trace_kernel = kernel_cpu_avx2_path_trace;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
path_trace_kernel = kernel_cpu_avx_path_trace;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
path_trace_kernel = kernel_cpu_sse41_path_trace;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
path_trace_kernel = kernel_cpu_sse3_path_trace;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
path_trace_kernel = kernel_cpu_sse2_path_trace;
}
else
#endif
{
path_trace_kernel = kernel_cpu_path_trace;
}
while(task.acquire_tile(this, tile)) {
float *render_buffer = (float*)tile.buffer;
uint *rng_state = (uint*)tile.rng_state;
int start_sample = tile.start_sample;
int end_sample = tile.start_sample + tile.num_samples;
for(int sample = start_sample; sample < end_sample; sample++) {
if(task.get_cancel() || task_pool.canceled()) {
if(task.need_finish_queue == false)
break;
}
for(int y = tile.y; y < tile.y + tile.h; y++) {
for(int x = tile.x; x < tile.x + tile.w; x++) {
path_trace_kernel(&kg, render_buffer, rng_state,
sample, x, y, tile.offset, tile.stride);
}
}
tile.sample = sample + 1;
task.update_progress(&tile, tile.w*tile.h);
}
task.release_tile(tile);
if(task_pool.canceled()) {
if(task.need_finish_queue == false)
break;
}
}
thread_kernel_globals_free(&kg);
}
void thread_path_trace_split(DeviceTask& task)
{
if(task_pool.canceled()) {
if(task.need_finish_queue == false)
return;
}
RenderTile tile;
CPUSplitKernel split_kernel(this);
/* allocate buffer for kernel globals */
device_memory kgbuffer;
kgbuffer.resize(sizeof(KernelGlobals));
mem_alloc("kernel_globals", kgbuffer, MEM_READ_WRITE);
KernelGlobals *kg = (KernelGlobals*)kgbuffer.device_pointer;
*kg = thread_kernel_globals_init();
requested_features.max_closure = MAX_CLOSURE;
if(!split_kernel.load_kernels(requested_features)) {
thread_kernel_globals_free((KernelGlobals*)kgbuffer.device_pointer);
mem_free(kgbuffer);
return;
}
while(task.acquire_tile(this, tile)) {
device_memory data;
split_kernel.path_trace(&task, tile, kgbuffer, data);
task.release_tile(tile);
if(task_pool.canceled()) {
if(task.need_finish_queue == false)
break;
}
}
thread_kernel_globals_free((KernelGlobals*)kgbuffer.device_pointer);
mem_free(kgbuffer);
}
void thread_film_convert(DeviceTask& task)
{
float sample_scale = 1.0f/(task.sample + 1);
if(task.rgba_half) {
void(*convert_to_half_float_kernel)(KernelGlobals *, uchar4 *, float *, float, int, int, int, int);
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
convert_to_half_float_kernel = kernel_cpu_avx2_convert_to_half_float;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
convert_to_half_float_kernel = kernel_cpu_avx_convert_to_half_float;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
convert_to_half_float_kernel = kernel_cpu_sse41_convert_to_half_float;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
convert_to_half_float_kernel = kernel_cpu_sse3_convert_to_half_float;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
convert_to_half_float_kernel = kernel_cpu_sse2_convert_to_half_float;
}
else
#endif
{
convert_to_half_float_kernel = kernel_cpu_convert_to_half_float;
}
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
convert_to_half_float_kernel(&kernel_globals, (uchar4*)task.rgba_half, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
else {
void(*convert_to_byte_kernel)(KernelGlobals *, uchar4 *, float *, float, int, int, int, int);
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
convert_to_byte_kernel = kernel_cpu_avx2_convert_to_byte;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
convert_to_byte_kernel = kernel_cpu_avx_convert_to_byte;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
convert_to_byte_kernel = kernel_cpu_sse41_convert_to_byte;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
convert_to_byte_kernel = kernel_cpu_sse3_convert_to_byte;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
convert_to_byte_kernel = kernel_cpu_sse2_convert_to_byte;
}
else
#endif
{
convert_to_byte_kernel = kernel_cpu_convert_to_byte;
}
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
convert_to_byte_kernel(&kernel_globals, (uchar4*)task.rgba_byte, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
}
void thread_shader(DeviceTask& task)
{
KernelGlobals kg = kernel_globals;
#ifdef WITH_OSL
OSLShader::thread_init(&kg, &kernel_globals, &osl_globals);
#endif
void(*shader_kernel)(KernelGlobals*, uint4*, float4*, float*, int, int, int, int, int);
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
shader_kernel = kernel_cpu_avx2_shader;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
shader_kernel = kernel_cpu_avx_shader;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
shader_kernel = kernel_cpu_sse41_shader;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
shader_kernel = kernel_cpu_sse3_shader;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
shader_kernel = kernel_cpu_sse2_shader;
}
else
#endif
{
shader_kernel = kernel_cpu_shader;
}
for(int sample = 0; sample < task.num_samples; sample++) {
for(int x = task.shader_x; x < task.shader_x + task.shader_w; x++)
shader_kernel(&kg,
(uint4*)task.shader_input,
(float4*)task.shader_output,
(float*)task.shader_output_luma,
task.shader_eval_type,
task.shader_filter,
x,
task.offset,
sample);
if(task.get_cancel() || task_pool.canceled())
break;
task.update_progress(NULL);
}
#ifdef WITH_OSL
OSLShader::thread_free(&kg);
#endif
}
int get_split_task_count(DeviceTask& task)
{
if(task.type == DeviceTask::SHADER)
return task.get_subtask_count(TaskScheduler::num_threads(), 256);
else
return task.get_subtask_count(TaskScheduler::num_threads());
}
void task_add(DeviceTask& task)
{
/* split task into smaller ones */
list<DeviceTask> tasks;
if(task.type == DeviceTask::SHADER)
task.split(tasks, TaskScheduler::num_threads(), 256);
else
task.split(tasks, TaskScheduler::num_threads());
foreach(DeviceTask& task, tasks)
task_pool.push(new CPUDeviceTask(this, task));
}
void task_wait()
{
task_pool.wait_work();
}
void task_cancel()
{
task_pool.cancel();
}
protected:
inline KernelGlobals thread_kernel_globals_init()
{
KernelGlobals kg = kernel_globals;
kg.transparent_shadow_intersections = NULL;
const int decoupled_count = sizeof(kg.decoupled_volume_steps) /
sizeof(*kg.decoupled_volume_steps);
for(int i = 0; i < decoupled_count; ++i) {
kg.decoupled_volume_steps[i] = NULL;
}
kg.decoupled_volume_steps_index = 0;
#ifdef WITH_OSL
OSLShader::thread_init(&kg, &kernel_globals, &osl_globals);
#endif
return kg;
}
inline void thread_kernel_globals_free(KernelGlobals *kg)
{
if(kg == NULL) {
return;
}
if(kg->transparent_shadow_intersections != NULL) {
free(kg->transparent_shadow_intersections);
}
const int decoupled_count = sizeof(kg->decoupled_volume_steps) /
sizeof(*kg->decoupled_volume_steps);
for(int i = 0; i < decoupled_count; ++i) {
if(kg->decoupled_volume_steps[i] != NULL) {
free(kg->decoupled_volume_steps[i]);
}
}
#ifdef WITH_OSL
OSLShader::thread_free(kg);
#endif
}
virtual bool load_kernels(DeviceRequestedFeatures& requested_features_) {
requested_features = requested_features_;
return true;
}
};
/* split kernel */
class CPUSplitKernelFunction : public SplitKernelFunction {
public:
CPUDevice* device;
void (*func)(KernelGlobals *kg, KernelData *data);
CPUSplitKernelFunction(CPUDevice* device) : device(device), func(NULL) {}
~CPUSplitKernelFunction() {}
virtual bool enqueue(const KernelDimensions& dim, device_memory& kernel_globals, device_memory& data)
{
if(!func) {
return false;
}
KernelGlobals *kg = (KernelGlobals*)kernel_globals.device_pointer;
kg->global_size = make_int2(dim.global_size[0], dim.global_size[1]);
for(int y = 0; y < dim.global_size[1]; y++) {
for(int x = 0; x < dim.global_size[0]; x++) {
kg->global_id = make_int2(x, y);
func(kg, (KernelData*)data.device_pointer);
}
}
return true;
}
};
CPUSplitKernel::CPUSplitKernel(CPUDevice *device) : DeviceSplitKernel(device), device(device)
{
}
bool CPUSplitKernel::enqueue_split_kernel_data_init(const KernelDimensions& dim,
RenderTile& rtile,
int num_global_elements,
device_memory& kernel_globals,
device_memory& data,
device_memory& split_data,
device_memory& ray_state,
device_memory& queue_index,
device_memory& use_queues_flags,
device_memory& work_pool_wgs)
{
typedef void(*data_init_t)(KernelGlobals *kg,
ccl_constant KernelData *data,
ccl_global void *split_data_buffer,
int num_elements,
ccl_global char *ray_state,
ccl_global uint *rng_state,
int start_sample,
int end_sample,
int sx, int sy, int sw, int sh, int offset, int stride,
ccl_global int *Queue_index,
int queuesize,
ccl_global char *use_queues_flag,
ccl_global unsigned int *work_pool_wgs,
unsigned int num_samples,
ccl_global float *buffer);
data_init_t data_init;
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2()) {
data_init = kernel_cpu_avx2_data_init;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx()) {
data_init = kernel_cpu_avx_data_init;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41()) {
data_init = kernel_cpu_sse41_data_init;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3()) {
data_init = kernel_cpu_sse3_data_init;
}
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2()) {
data_init = kernel_cpu_sse2_data_init;
}
else
#endif
{
data_init = kernel_cpu_data_init;
}
KernelGlobals *kg = (KernelGlobals*)kernel_globals.device_pointer;
kg->global_size = make_int2(dim.global_size[0], dim.global_size[1]);
for(int y = 0; y < dim.global_size[1]; y++) {
for(int x = 0; x < dim.global_size[0]; x++) {
kg->global_id = make_int2(x, y);
data_init((KernelGlobals*)kernel_globals.device_pointer,
(KernelData*)data.device_pointer,
(void*)split_data.device_pointer,
num_global_elements,
(char*)ray_state.device_pointer,
(uint*)rtile.rng_state,
rtile.start_sample,
rtile.start_sample + rtile.num_samples,
rtile.x,
rtile.y,
rtile.w,
rtile.h,
rtile.offset,
rtile.stride,
(int*)queue_index.device_pointer,
dim.global_size[0] * dim.global_size[1],
(char*)use_queues_flags.device_pointer,
(uint*)work_pool_wgs.device_pointer,
rtile.num_samples,
(float*)rtile.buffer);
}
}
return true;
}
SplitKernelFunction* CPUSplitKernel::get_split_kernel_function(string kernel_name, const DeviceRequestedFeatures&)
{
CPUSplitKernelFunction *kernel = new CPUSplitKernelFunction(device);
kernel->func = device->get_kernel_function<void(*)(KernelGlobals*, KernelData*)>(kernel_name);
if(!kernel->func) {
delete kernel;
return NULL;
}
return kernel;
}
int2 CPUSplitKernel::split_kernel_local_size()
{
return make_int2(1, 1);
}
int2 CPUSplitKernel::split_kernel_global_size(device_memory& /*kg*/, device_memory& /*data*/, DeviceTask *task) {
/* TODO(mai): this needs investigation but cpu gives incorrect render if global size doesnt match tile size */
return task->requested_tile_size;
}
uint64_t CPUSplitKernel::state_buffer_size(device_memory& kernel_globals, device_memory& /*data*/, size_t num_threads) {
KernelGlobals *kg = (KernelGlobals*)kernel_globals.device_pointer;
return split_data_buffer_size(kg, num_threads);
}
unordered_map<string, void*> CPUDevice::kernel_functions;
Device *device_cpu_create(DeviceInfo& info, Stats &stats, bool background)
{
return new CPUDevice(info, stats, background);
}
void device_cpu_info(vector<DeviceInfo>& devices)
{
DeviceInfo info;
info.type = DEVICE_CPU;
info.description = system_cpu_brand_string();
info.id = "CPU";
info.num = 0;
info.advanced_shading = true;
info.pack_images = false;
devices.insert(devices.begin(), info);
}
string device_cpu_capabilities(void)
{
string capabilities = "";
capabilities += system_cpu_support_sse2() ? "SSE2 " : "";
capabilities += system_cpu_support_sse3() ? "SSE3 " : "";
capabilities += system_cpu_support_sse41() ? "SSE41 " : "";
capabilities += system_cpu_support_avx() ? "AVX " : "";
capabilities += system_cpu_support_avx2() ? "AVX2" : "";
if(capabilities[capabilities.size() - 1] == ' ')
capabilities.resize(capabilities.size() - 1);
return capabilities;
}
CCL_NAMESPACE_END