6cdc954e8c
Doesn't currently change anything, but would need for some future work here. It uses existing padding in kernel BVH structure, so there is nothing changed memory-wise.
2241 lines
65 KiB
C++
2241 lines
65 KiB
C++
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "bvh.h"
|
|
#include "bvh_build.h"
|
|
|
|
#include "camera.h"
|
|
#include "curves.h"
|
|
#include "device.h"
|
|
#include "graph.h"
|
|
#include "shader.h"
|
|
#include "light.h"
|
|
#include "mesh.h"
|
|
#include "nodes.h"
|
|
#include "object.h"
|
|
#include "scene.h"
|
|
|
|
#include "osl_globals.h"
|
|
|
|
#include "subd_split.h"
|
|
#include "subd_patch_table.h"
|
|
|
|
#include "util_foreach.h"
|
|
#include "util_logging.h"
|
|
#include "util_progress.h"
|
|
#include "util_set.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Triangle */
|
|
|
|
void Mesh::Triangle::bounds_grow(const float3 *verts, BoundBox& bounds) const
|
|
{
|
|
bounds.grow(verts[v[0]]);
|
|
bounds.grow(verts[v[1]]);
|
|
bounds.grow(verts[v[2]]);
|
|
}
|
|
|
|
void Mesh::Triangle::motion_verts(const float3 *verts,
|
|
const float3 *vert_steps,
|
|
size_t num_verts,
|
|
size_t num_steps,
|
|
float time,
|
|
float3 r_verts[3]) const
|
|
{
|
|
/* Figure out which steps we need to fetch and their interpolation factor. */
|
|
const size_t max_step = num_steps - 1;
|
|
const size_t step = min((int)(time * max_step), max_step - 1);
|
|
const float t = time*max_step - step;
|
|
/* Fetch vertex coordinates. */
|
|
float3 curr_verts[3];
|
|
float3 next_verts[3];
|
|
verts_for_step(verts,
|
|
vert_steps,
|
|
num_verts,
|
|
num_steps,
|
|
step,
|
|
curr_verts);
|
|
verts_for_step(verts,
|
|
vert_steps,
|
|
num_verts,
|
|
num_steps,
|
|
step + 1,
|
|
next_verts);
|
|
/* Interpolate between steps. */
|
|
r_verts[0] = (1.0f - t)*curr_verts[0] + t*next_verts[0];
|
|
r_verts[1] = (1.0f - t)*curr_verts[1] + t*next_verts[1];
|
|
r_verts[2] = (1.0f - t)*curr_verts[2] + t*next_verts[2];
|
|
}
|
|
|
|
void Mesh::Triangle::verts_for_step(const float3 *verts,
|
|
const float3 *vert_steps,
|
|
size_t num_verts,
|
|
size_t num_steps,
|
|
size_t step,
|
|
float3 r_verts[3]) const
|
|
{
|
|
const size_t center_step = ((num_steps - 1) / 2);
|
|
if(step == center_step) {
|
|
/* Center step: regular vertex location. */
|
|
r_verts[0] = verts[v[0]];
|
|
r_verts[1] = verts[v[1]];
|
|
r_verts[2] = verts[v[2]];
|
|
}
|
|
else {
|
|
/* Center step not stored in the attribute array array. */
|
|
if(step > center_step) {
|
|
step--;
|
|
}
|
|
size_t offset = step * num_verts;
|
|
r_verts[0] = vert_steps[offset + v[0]];
|
|
r_verts[1] = vert_steps[offset + v[1]];
|
|
r_verts[2] = vert_steps[offset + v[2]];
|
|
}
|
|
}
|
|
|
|
/* Curve */
|
|
|
|
void Mesh::Curve::bounds_grow(const int k, const float3 *curve_keys, const float *curve_radius, BoundBox& bounds) const
|
|
{
|
|
float3 P[4];
|
|
|
|
P[0] = curve_keys[max(first_key + k - 1,first_key)];
|
|
P[1] = curve_keys[first_key + k];
|
|
P[2] = curve_keys[first_key + k + 1];
|
|
P[3] = curve_keys[min(first_key + k + 2, first_key + num_keys - 1)];
|
|
|
|
float3 lower;
|
|
float3 upper;
|
|
|
|
curvebounds(&lower.x, &upper.x, P, 0);
|
|
curvebounds(&lower.y, &upper.y, P, 1);
|
|
curvebounds(&lower.z, &upper.z, P, 2);
|
|
|
|
float mr = max(curve_radius[first_key + k], curve_radius[first_key + k + 1]);
|
|
|
|
bounds.grow(lower, mr);
|
|
bounds.grow(upper, mr);
|
|
}
|
|
|
|
void Mesh::Curve::bounds_grow(const int k,
|
|
const float3 *curve_keys,
|
|
const float *curve_radius,
|
|
const Transform& aligned_space,
|
|
BoundBox& bounds) const
|
|
{
|
|
float3 P[4];
|
|
|
|
P[0] = curve_keys[max(first_key + k - 1,first_key)];
|
|
P[1] = curve_keys[first_key + k];
|
|
P[2] = curve_keys[first_key + k + 1];
|
|
P[3] = curve_keys[min(first_key + k + 2, first_key + num_keys - 1)];
|
|
|
|
P[0] = transform_point(&aligned_space, P[0]);
|
|
P[1] = transform_point(&aligned_space, P[1]);
|
|
P[2] = transform_point(&aligned_space, P[2]);
|
|
P[3] = transform_point(&aligned_space, P[3]);
|
|
|
|
float3 lower;
|
|
float3 upper;
|
|
|
|
curvebounds(&lower.x, &upper.x, P, 0);
|
|
curvebounds(&lower.y, &upper.y, P, 1);
|
|
curvebounds(&lower.z, &upper.z, P, 2);
|
|
|
|
float mr = max(curve_radius[first_key + k], curve_radius[first_key + k + 1]);
|
|
|
|
bounds.grow(lower, mr);
|
|
bounds.grow(upper, mr);
|
|
}
|
|
|
|
void Mesh::Curve::bounds_grow(float4 keys[4], BoundBox& bounds) const
|
|
{
|
|
float3 P[4] = {
|
|
float4_to_float3(keys[0]),
|
|
float4_to_float3(keys[1]),
|
|
float4_to_float3(keys[2]),
|
|
float4_to_float3(keys[3]),
|
|
};
|
|
|
|
float3 lower;
|
|
float3 upper;
|
|
|
|
curvebounds(&lower.x, &upper.x, P, 0);
|
|
curvebounds(&lower.y, &upper.y, P, 1);
|
|
curvebounds(&lower.z, &upper.z, P, 2);
|
|
|
|
float mr = max(keys[1].w, keys[2].w);
|
|
|
|
bounds.grow(lower, mr);
|
|
bounds.grow(upper, mr);
|
|
}
|
|
|
|
void Mesh::Curve::motion_keys(const float3 *curve_keys,
|
|
const float *curve_radius,
|
|
const float3 *key_steps,
|
|
size_t num_curve_keys,
|
|
size_t num_steps,
|
|
float time,
|
|
size_t k0, size_t k1,
|
|
float4 r_keys[2]) const
|
|
{
|
|
/* Figure out which steps we need to fetch and their interpolation factor. */
|
|
const size_t max_step = num_steps - 1;
|
|
const size_t step = min((int)(time * max_step), max_step - 1);
|
|
const float t = time*max_step - step;
|
|
/* Fetch vertex coordinates. */
|
|
float4 curr_keys[2];
|
|
float4 next_keys[2];
|
|
keys_for_step(curve_keys,
|
|
curve_radius,
|
|
key_steps,
|
|
num_curve_keys,
|
|
num_steps,
|
|
step,
|
|
k0, k1,
|
|
curr_keys);
|
|
keys_for_step(curve_keys,
|
|
curve_radius,
|
|
key_steps,
|
|
num_curve_keys,
|
|
num_steps,
|
|
step + 1,
|
|
k0, k1,
|
|
next_keys);
|
|
/* Interpolate between steps. */
|
|
r_keys[0] = (1.0f - t)*curr_keys[0] + t*next_keys[0];
|
|
r_keys[1] = (1.0f - t)*curr_keys[1] + t*next_keys[1];
|
|
}
|
|
|
|
void Mesh::Curve::cardinal_motion_keys(const float3 *curve_keys,
|
|
const float *curve_radius,
|
|
const float3 *key_steps,
|
|
size_t num_curve_keys,
|
|
size_t num_steps,
|
|
float time,
|
|
size_t k0, size_t k1,
|
|
size_t k2, size_t k3,
|
|
float4 r_keys[4]) const
|
|
{
|
|
/* Figure out which steps we need to fetch and their interpolation factor. */
|
|
const size_t max_step = num_steps - 1;
|
|
const size_t step = min((int)(time * max_step), max_step - 1);
|
|
const float t = time*max_step - step;
|
|
/* Fetch vertex coordinates. */
|
|
float4 curr_keys[4];
|
|
float4 next_keys[4];
|
|
cardinal_keys_for_step(curve_keys,
|
|
curve_radius,
|
|
key_steps,
|
|
num_curve_keys,
|
|
num_steps,
|
|
step,
|
|
k0, k1, k2, k3,
|
|
curr_keys);
|
|
cardinal_keys_for_step(curve_keys,
|
|
curve_radius,
|
|
key_steps,
|
|
num_curve_keys,
|
|
num_steps,
|
|
step + 1,
|
|
k0, k1, k2, k3,
|
|
next_keys);
|
|
/* Interpolate between steps. */
|
|
r_keys[0] = (1.0f - t)*curr_keys[0] + t*next_keys[0];
|
|
r_keys[1] = (1.0f - t)*curr_keys[1] + t*next_keys[1];
|
|
r_keys[2] = (1.0f - t)*curr_keys[2] + t*next_keys[2];
|
|
r_keys[3] = (1.0f - t)*curr_keys[3] + t*next_keys[3];
|
|
}
|
|
|
|
void Mesh::Curve::keys_for_step(const float3 *curve_keys,
|
|
const float *curve_radius,
|
|
const float3 *key_steps,
|
|
size_t num_curve_keys,
|
|
size_t num_steps,
|
|
size_t step,
|
|
size_t k0, size_t k1,
|
|
float4 r_keys[2]) const
|
|
{
|
|
k0 = max(k0, 0);
|
|
k1 = min(k1, num_keys - 1);
|
|
const size_t center_step = ((num_steps - 1) / 2);
|
|
if(step == center_step) {
|
|
/* Center step: regular key location. */
|
|
/* TODO(sergey): Consider adding make_float4(float3, float)
|
|
* function.
|
|
*/
|
|
r_keys[0] = make_float4(curve_keys[first_key + k0].x,
|
|
curve_keys[first_key + k0].y,
|
|
curve_keys[first_key + k0].z,
|
|
curve_radius[first_key + k0]);
|
|
r_keys[1] = make_float4(curve_keys[first_key + k1].x,
|
|
curve_keys[first_key + k1].y,
|
|
curve_keys[first_key + k1].z,
|
|
curve_radius[first_key + k1]);
|
|
}
|
|
else {
|
|
/* Center step is not stored in this array. */
|
|
if(step > center_step) {
|
|
step--;
|
|
}
|
|
const size_t offset = first_key + step * num_curve_keys;
|
|
r_keys[0] = make_float4(key_steps[offset + k0].x,
|
|
key_steps[offset + k0].y,
|
|
key_steps[offset + k0].z,
|
|
curve_radius[first_key + k0]);
|
|
r_keys[1] = make_float4(key_steps[offset + k1].x,
|
|
key_steps[offset + k1].y,
|
|
key_steps[offset + k1].z,
|
|
curve_radius[first_key + k1]);
|
|
}
|
|
}
|
|
|
|
void Mesh::Curve::cardinal_keys_for_step(const float3 *curve_keys,
|
|
const float *curve_radius,
|
|
const float3 *key_steps,
|
|
size_t num_curve_keys,
|
|
size_t num_steps,
|
|
size_t step,
|
|
size_t k0, size_t k1,
|
|
size_t k2, size_t k3,
|
|
float4 r_keys[4]) const
|
|
{
|
|
k0 = max(k0, 0);
|
|
k3 = min(k3, num_keys - 1);
|
|
const size_t center_step = ((num_steps - 1) / 2);
|
|
if(step == center_step) {
|
|
/* Center step: regular key location. */
|
|
r_keys[0] = make_float4(curve_keys[first_key + k0].x,
|
|
curve_keys[first_key + k0].y,
|
|
curve_keys[first_key + k0].z,
|
|
curve_radius[first_key + k0]);
|
|
r_keys[1] = make_float4(curve_keys[first_key + k1].x,
|
|
curve_keys[first_key + k1].y,
|
|
curve_keys[first_key + k1].z,
|
|
curve_radius[first_key + k1]);
|
|
r_keys[2] = make_float4(curve_keys[first_key + k2].x,
|
|
curve_keys[first_key + k2].y,
|
|
curve_keys[first_key + k2].z,
|
|
curve_radius[first_key + k2]);
|
|
r_keys[3] = make_float4(curve_keys[first_key + k3].x,
|
|
curve_keys[first_key + k3].y,
|
|
curve_keys[first_key + k3].z,
|
|
curve_radius[first_key + k3]);
|
|
}
|
|
else {
|
|
/* Center step is not stored in this array. */
|
|
if(step > center_step) {
|
|
step--;
|
|
}
|
|
const size_t offset = first_key + step * num_curve_keys;
|
|
r_keys[0] = make_float4(key_steps[offset + k0].x,
|
|
key_steps[offset + k0].y,
|
|
key_steps[offset + k0].z,
|
|
curve_radius[first_key + k0]);
|
|
r_keys[1] = make_float4(key_steps[offset + k1].x,
|
|
key_steps[offset + k1].y,
|
|
key_steps[offset + k1].z,
|
|
curve_radius[first_key + k1]);
|
|
r_keys[2] = make_float4(key_steps[offset + k2].x,
|
|
key_steps[offset + k2].y,
|
|
key_steps[offset + k2].z,
|
|
curve_radius[first_key + k2]);
|
|
r_keys[3] = make_float4(key_steps[offset + k3].x,
|
|
key_steps[offset + k3].y,
|
|
key_steps[offset + k3].z,
|
|
curve_radius[first_key + k3]);
|
|
}
|
|
}
|
|
|
|
/* SubdFace */
|
|
|
|
float3 Mesh::SubdFace::normal(const Mesh *mesh) const
|
|
{
|
|
float3 v0 = mesh->verts[mesh->subd_face_corners[start_corner+0]];
|
|
float3 v1 = mesh->verts[mesh->subd_face_corners[start_corner+1]];
|
|
float3 v2 = mesh->verts[mesh->subd_face_corners[start_corner+2]];
|
|
|
|
return safe_normalize(cross(v1 - v0, v2 - v0));
|
|
}
|
|
|
|
/* Mesh */
|
|
|
|
NODE_DEFINE(Mesh)
|
|
{
|
|
NodeType* type = NodeType::add("mesh", create);
|
|
|
|
SOCKET_UINT(motion_steps, "Motion Steps", 3);
|
|
SOCKET_BOOLEAN(use_motion_blur, "Use Motion Blur", false);
|
|
|
|
SOCKET_INT_ARRAY(triangles, "Triangles", array<int>());
|
|
SOCKET_POINT_ARRAY(verts, "Vertices", array<float3>());
|
|
SOCKET_INT_ARRAY(shader, "Shader", array<int>());
|
|
SOCKET_BOOLEAN_ARRAY(smooth, "Smooth", array<bool>());
|
|
|
|
SOCKET_POINT_ARRAY(curve_keys, "Curve Keys", array<float3>());
|
|
SOCKET_FLOAT_ARRAY(curve_radius, "Curve Radius", array<float>());
|
|
SOCKET_INT_ARRAY(curve_first_key, "Curve First Key", array<int>());
|
|
SOCKET_INT_ARRAY(curve_shader, "Curve Shader", array<int>());
|
|
|
|
return type;
|
|
}
|
|
|
|
Mesh::Mesh()
|
|
: Node(node_type)
|
|
{
|
|
need_update = true;
|
|
need_update_rebuild = false;
|
|
transform_applied = false;
|
|
transform_negative_scaled = false;
|
|
transform_normal = transform_identity();
|
|
bounds = BoundBox::empty;
|
|
|
|
bvh = NULL;
|
|
|
|
tri_offset = 0;
|
|
vert_offset = 0;
|
|
|
|
curve_offset = 0;
|
|
curvekey_offset = 0;
|
|
|
|
patch_offset = 0;
|
|
face_offset = 0;
|
|
corner_offset = 0;
|
|
|
|
num_subd_verts = 0;
|
|
|
|
attributes.triangle_mesh = this;
|
|
curve_attributes.curve_mesh = this;
|
|
subd_attributes.subd_mesh = this;
|
|
|
|
geometry_flags = GEOMETRY_NONE;
|
|
|
|
has_volume = false;
|
|
has_surface_bssrdf = false;
|
|
|
|
num_ngons = 0;
|
|
|
|
subdivision_type = SUBDIVISION_NONE;
|
|
subd_params = NULL;
|
|
|
|
patch_table = NULL;
|
|
}
|
|
|
|
Mesh::~Mesh()
|
|
{
|
|
delete bvh;
|
|
delete patch_table;
|
|
delete subd_params;
|
|
}
|
|
|
|
void Mesh::resize_mesh(int numverts, int numtris)
|
|
{
|
|
verts.resize(numverts);
|
|
triangles.resize(numtris * 3);
|
|
shader.resize(numtris);
|
|
smooth.resize(numtris);
|
|
|
|
if(subd_faces.size()) {
|
|
triangle_patch.resize(numtris);
|
|
vert_patch_uv.resize(numverts);
|
|
}
|
|
|
|
attributes.resize();
|
|
}
|
|
|
|
void Mesh::reserve_mesh(int numverts, int numtris)
|
|
{
|
|
/* reserve space to add verts and triangles later */
|
|
verts.reserve(numverts);
|
|
triangles.reserve(numtris * 3);
|
|
shader.reserve(numtris);
|
|
smooth.reserve(numtris);
|
|
|
|
if(subd_faces.size()) {
|
|
triangle_patch.reserve(numtris);
|
|
vert_patch_uv.reserve(numverts);
|
|
}
|
|
|
|
attributes.resize(true);
|
|
}
|
|
|
|
void Mesh::resize_curves(int numcurves, int numkeys)
|
|
{
|
|
curve_keys.resize(numkeys);
|
|
curve_radius.resize(numkeys);
|
|
curve_first_key.resize(numcurves);
|
|
curve_shader.resize(numcurves);
|
|
|
|
curve_attributes.resize();
|
|
}
|
|
|
|
void Mesh::reserve_curves(int numcurves, int numkeys)
|
|
{
|
|
curve_keys.reserve(numkeys);
|
|
curve_radius.reserve(numkeys);
|
|
curve_first_key.reserve(numcurves);
|
|
curve_shader.reserve(numcurves);
|
|
|
|
curve_attributes.resize(true);
|
|
}
|
|
|
|
void Mesh::resize_subd_faces(int numfaces, int num_ngons_, int numcorners)
|
|
{
|
|
subd_faces.resize(numfaces);
|
|
subd_face_corners.resize(numcorners);
|
|
num_ngons = num_ngons_;
|
|
|
|
subd_attributes.resize();
|
|
}
|
|
|
|
void Mesh::reserve_subd_faces(int numfaces, int num_ngons_, int numcorners)
|
|
{
|
|
subd_faces.reserve(numfaces);
|
|
subd_face_corners.reserve(numcorners);
|
|
num_ngons = num_ngons_;
|
|
|
|
subd_attributes.resize(true);
|
|
}
|
|
|
|
void Mesh::clear()
|
|
{
|
|
/* clear all verts and triangles */
|
|
verts.clear();
|
|
triangles.clear();
|
|
shader.clear();
|
|
smooth.clear();
|
|
|
|
triangle_patch.clear();
|
|
vert_patch_uv.clear();
|
|
|
|
curve_keys.clear();
|
|
curve_radius.clear();
|
|
curve_first_key.clear();
|
|
curve_shader.clear();
|
|
|
|
subd_faces.clear();
|
|
subd_face_corners.clear();
|
|
|
|
num_subd_verts = 0;
|
|
|
|
subd_creases.clear();
|
|
|
|
attributes.clear();
|
|
curve_attributes.clear();
|
|
subd_attributes.clear();
|
|
used_shaders.clear();
|
|
|
|
transform_applied = false;
|
|
transform_negative_scaled = false;
|
|
transform_normal = transform_identity();
|
|
geometry_flags = GEOMETRY_NONE;
|
|
|
|
delete patch_table;
|
|
patch_table = NULL;
|
|
}
|
|
|
|
int Mesh::split_vertex(int vertex)
|
|
{
|
|
/* copy vertex location and vertex attributes */
|
|
add_vertex_slow(verts[vertex]);
|
|
|
|
foreach(Attribute& attr, attributes.attributes) {
|
|
if(attr.element == ATTR_ELEMENT_VERTEX) {
|
|
array<char> tmp(attr.data_sizeof());
|
|
memcpy(tmp.data(), attr.data() + tmp.size()*vertex, tmp.size());
|
|
attr.add(tmp.data());
|
|
}
|
|
}
|
|
|
|
foreach(Attribute& attr, subd_attributes.attributes) {
|
|
if(attr.element == ATTR_ELEMENT_VERTEX) {
|
|
array<char> tmp(attr.data_sizeof());
|
|
memcpy(tmp.data(), attr.data() + tmp.size()*vertex, tmp.size());
|
|
attr.add(tmp.data());
|
|
}
|
|
}
|
|
|
|
return verts.size() - 1;
|
|
}
|
|
|
|
void Mesh::add_vertex(float3 P)
|
|
{
|
|
verts.push_back_reserved(P);
|
|
|
|
if(subd_faces.size()) {
|
|
vert_patch_uv.push_back_reserved(make_float2(0.0f, 0.0f));
|
|
}
|
|
}
|
|
|
|
void Mesh::add_vertex_slow(float3 P)
|
|
{
|
|
verts.push_back_slow(P);
|
|
|
|
if(subd_faces.size()) {
|
|
vert_patch_uv.push_back_slow(make_float2(0.0f, 0.0f));
|
|
}
|
|
}
|
|
|
|
void Mesh::add_triangle(int v0, int v1, int v2, int shader_, bool smooth_)
|
|
{
|
|
triangles.push_back_reserved(v0);
|
|
triangles.push_back_reserved(v1);
|
|
triangles.push_back_reserved(v2);
|
|
shader.push_back_reserved(shader_);
|
|
smooth.push_back_reserved(smooth_);
|
|
|
|
if(subd_faces.size()) {
|
|
triangle_patch.push_back_reserved(-1);
|
|
}
|
|
}
|
|
|
|
void Mesh::add_curve_key(float3 co, float radius)
|
|
{
|
|
curve_keys.push_back_reserved(co);
|
|
curve_radius.push_back_reserved(radius);
|
|
}
|
|
|
|
void Mesh::add_curve(int first_key, int shader)
|
|
{
|
|
curve_first_key.push_back_reserved(first_key);
|
|
curve_shader.push_back_reserved(shader);
|
|
}
|
|
|
|
void Mesh::add_subd_face(int* corners, int num_corners, int shader_, bool smooth_)
|
|
{
|
|
int start_corner = subd_face_corners.size();
|
|
|
|
for(int i = 0; i < num_corners; i++) {
|
|
subd_face_corners.push_back_reserved(corners[i]);
|
|
}
|
|
|
|
int ptex_offset = 0;
|
|
|
|
if(subd_faces.size()) {
|
|
SubdFace& s = subd_faces[subd_faces.size()-1];
|
|
ptex_offset = s.ptex_offset + s.num_ptex_faces();
|
|
}
|
|
|
|
SubdFace face = {start_corner, num_corners, shader_, smooth_, ptex_offset};
|
|
subd_faces.push_back_reserved(face);
|
|
}
|
|
|
|
void Mesh::compute_bounds()
|
|
{
|
|
BoundBox bnds = BoundBox::empty;
|
|
size_t verts_size = verts.size();
|
|
size_t curve_keys_size = curve_keys.size();
|
|
|
|
if(verts_size + curve_keys_size > 0) {
|
|
for(size_t i = 0; i < verts_size; i++)
|
|
bnds.grow(verts[i]);
|
|
|
|
for(size_t i = 0; i < curve_keys_size; i++)
|
|
bnds.grow(curve_keys[i], curve_radius[i]);
|
|
|
|
Attribute *attr = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
|
|
if(use_motion_blur && attr) {
|
|
size_t steps_size = verts.size() * (motion_steps - 1);
|
|
float3 *vert_steps = attr->data_float3();
|
|
|
|
for(size_t i = 0; i < steps_size; i++)
|
|
bnds.grow(vert_steps[i]);
|
|
}
|
|
|
|
Attribute *curve_attr = curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
|
|
if(use_motion_blur && curve_attr) {
|
|
size_t steps_size = curve_keys.size() * (motion_steps - 1);
|
|
float3 *key_steps = curve_attr->data_float3();
|
|
|
|
for(size_t i = 0; i < steps_size; i++)
|
|
bnds.grow(key_steps[i]);
|
|
}
|
|
|
|
if(!bnds.valid()) {
|
|
bnds = BoundBox::empty;
|
|
|
|
/* skip nan or inf coordinates */
|
|
for(size_t i = 0; i < verts_size; i++)
|
|
bnds.grow_safe(verts[i]);
|
|
|
|
for(size_t i = 0; i < curve_keys_size; i++)
|
|
bnds.grow_safe(curve_keys[i], curve_radius[i]);
|
|
|
|
if(use_motion_blur && attr) {
|
|
size_t steps_size = verts.size() * (motion_steps - 1);
|
|
float3 *vert_steps = attr->data_float3();
|
|
|
|
for(size_t i = 0; i < steps_size; i++)
|
|
bnds.grow_safe(vert_steps[i]);
|
|
}
|
|
|
|
if(use_motion_blur && curve_attr) {
|
|
size_t steps_size = curve_keys.size() * (motion_steps - 1);
|
|
float3 *key_steps = curve_attr->data_float3();
|
|
|
|
for(size_t i = 0; i < steps_size; i++)
|
|
bnds.grow_safe(key_steps[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
if(!bnds.valid()) {
|
|
/* empty mesh */
|
|
bnds.grow(make_float3(0.0f, 0.0f, 0.0f));
|
|
}
|
|
|
|
bounds = bnds;
|
|
}
|
|
|
|
static float3 compute_face_normal(const Mesh::Triangle& t, float3 *verts)
|
|
{
|
|
float3 v0 = verts[t.v[0]];
|
|
float3 v1 = verts[t.v[1]];
|
|
float3 v2 = verts[t.v[2]];
|
|
|
|
float3 norm = cross(v1 - v0, v2 - v0);
|
|
float normlen = len(norm);
|
|
|
|
if(normlen == 0.0f)
|
|
return make_float3(1.0f, 0.0f, 0.0f);
|
|
|
|
return norm / normlen;
|
|
}
|
|
|
|
void Mesh::add_face_normals()
|
|
{
|
|
/* don't compute if already there */
|
|
if(attributes.find(ATTR_STD_FACE_NORMAL))
|
|
return;
|
|
|
|
/* get attributes */
|
|
Attribute *attr_fN = attributes.add(ATTR_STD_FACE_NORMAL);
|
|
float3 *fN = attr_fN->data_float3();
|
|
|
|
/* compute face normals */
|
|
size_t triangles_size = num_triangles();
|
|
|
|
if(triangles_size) {
|
|
float3 *verts_ptr = verts.data();
|
|
|
|
for(size_t i = 0; i < triangles_size; i++) {
|
|
fN[i] = compute_face_normal(get_triangle(i), verts_ptr);
|
|
}
|
|
}
|
|
|
|
/* expected to be in local space */
|
|
if(transform_applied) {
|
|
Transform ntfm = transform_inverse(transform_normal);
|
|
|
|
for(size_t i = 0; i < triangles_size; i++)
|
|
fN[i] = normalize(transform_direction(&ntfm, fN[i]));
|
|
}
|
|
}
|
|
|
|
void Mesh::add_vertex_normals()
|
|
{
|
|
bool flip = transform_negative_scaled;
|
|
size_t verts_size = verts.size();
|
|
size_t triangles_size = num_triangles();
|
|
|
|
/* static vertex normals */
|
|
if(!attributes.find(ATTR_STD_VERTEX_NORMAL) && triangles_size) {
|
|
/* get attributes */
|
|
Attribute *attr_fN = attributes.find(ATTR_STD_FACE_NORMAL);
|
|
Attribute *attr_vN = attributes.add(ATTR_STD_VERTEX_NORMAL);
|
|
|
|
float3 *fN = attr_fN->data_float3();
|
|
float3 *vN = attr_vN->data_float3();
|
|
|
|
/* compute vertex normals */
|
|
memset(vN, 0, verts.size()*sizeof(float3));
|
|
|
|
for(size_t i = 0; i < triangles_size; i++) {
|
|
for(size_t j = 0; j < 3; j++) {
|
|
vN[get_triangle(i).v[j]] += fN[i];
|
|
}
|
|
}
|
|
|
|
for(size_t i = 0; i < verts_size; i++) {
|
|
vN[i] = normalize(vN[i]);
|
|
if(flip) {
|
|
vN[i] = -vN[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* motion vertex normals */
|
|
Attribute *attr_mP = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
|
|
Attribute *attr_mN = attributes.find(ATTR_STD_MOTION_VERTEX_NORMAL);
|
|
|
|
if(has_motion_blur() && attr_mP && !attr_mN && triangles_size) {
|
|
/* create attribute */
|
|
attr_mN = attributes.add(ATTR_STD_MOTION_VERTEX_NORMAL);
|
|
|
|
for(int step = 0; step < motion_steps - 1; step++) {
|
|
float3 *mP = attr_mP->data_float3() + step*verts.size();
|
|
float3 *mN = attr_mN->data_float3() + step*verts.size();
|
|
|
|
/* compute */
|
|
memset(mN, 0, verts.size()*sizeof(float3));
|
|
|
|
for(size_t i = 0; i < triangles_size; i++) {
|
|
for(size_t j = 0; j < 3; j++) {
|
|
float3 fN = compute_face_normal(get_triangle(i), mP);
|
|
mN[get_triangle(i).v[j]] += fN;
|
|
}
|
|
}
|
|
|
|
for(size_t i = 0; i < verts_size; i++) {
|
|
mN[i] = normalize(mN[i]);
|
|
if(flip) {
|
|
mN[i] = -mN[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* subd vertex normals */
|
|
if(!subd_attributes.find(ATTR_STD_VERTEX_NORMAL) && subd_faces.size()) {
|
|
/* get attributes */
|
|
Attribute *attr_vN = subd_attributes.add(ATTR_STD_VERTEX_NORMAL);
|
|
float3 *vN = attr_vN->data_float3();
|
|
|
|
/* compute vertex normals */
|
|
memset(vN, 0, verts.size()*sizeof(float3));
|
|
|
|
for(size_t i = 0; i < subd_faces.size(); i++) {
|
|
SubdFace& face = subd_faces[i];
|
|
float3 fN = face.normal(this);
|
|
|
|
for(size_t j = 0; j < face.num_corners; j++) {
|
|
size_t corner = subd_face_corners[face.start_corner+j];
|
|
vN[corner] += fN;
|
|
}
|
|
}
|
|
|
|
for(size_t i = 0; i < verts_size; i++) {
|
|
vN[i] = normalize(vN[i]);
|
|
if(flip) {
|
|
vN[i] = -vN[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void Mesh::add_undisplaced()
|
|
{
|
|
AttributeSet& attrs = (subdivision_type == SUBDIVISION_NONE) ? attributes : subd_attributes;
|
|
|
|
/* don't compute if already there */
|
|
if(attrs.find(ATTR_STD_POSITION_UNDISPLACED)) {
|
|
return;
|
|
}
|
|
|
|
/* get attribute */
|
|
Attribute *attr = attrs.add(ATTR_STD_POSITION_UNDISPLACED);
|
|
attr->flags |= ATTR_SUBDIVIDED;
|
|
|
|
float3 *data = attr->data_float3();
|
|
|
|
/* copy verts */
|
|
size_t size = attr->buffer_size(this, (subdivision_type == SUBDIVISION_NONE) ? ATTR_PRIM_TRIANGLE : ATTR_PRIM_SUBD);
|
|
|
|
/* Center points for ngons aren't stored in Mesh::verts but are included in size since they will be
|
|
* calculated later, we subtract them from size here so we don't have an overflow while copying.
|
|
*/
|
|
size -= num_ngons * attr->data_sizeof();
|
|
|
|
if(size) {
|
|
memcpy(data, verts.data(), size);
|
|
}
|
|
}
|
|
|
|
void Mesh::pack_normals(Scene *scene, uint *tri_shader, float4 *vnormal)
|
|
{
|
|
Attribute *attr_vN = attributes.find(ATTR_STD_VERTEX_NORMAL);
|
|
if(attr_vN == NULL) {
|
|
/* Happens on objects with just hair. */
|
|
return;
|
|
}
|
|
|
|
float3 *vN = attr_vN->data_float3();
|
|
uint shader_id = 0;
|
|
uint last_shader = -1;
|
|
bool last_smooth = false;
|
|
|
|
size_t triangles_size = num_triangles();
|
|
int *shader_ptr = shader.data();
|
|
|
|
bool do_transform = transform_applied;
|
|
Transform ntfm = transform_normal;
|
|
|
|
/* save shader */
|
|
for(size_t i = 0; i < triangles_size; i++) {
|
|
if(shader_ptr[i] != last_shader || last_smooth != smooth[i]) {
|
|
last_shader = shader_ptr[i];
|
|
last_smooth = smooth[i];
|
|
Shader *shader = (last_shader < used_shaders.size()) ?
|
|
used_shaders[last_shader] : scene->default_surface;
|
|
shader_id = scene->shader_manager->get_shader_id(shader, last_smooth);
|
|
}
|
|
|
|
tri_shader[i] = shader_id;
|
|
}
|
|
|
|
size_t verts_size = verts.size();
|
|
|
|
for(size_t i = 0; i < verts_size; i++) {
|
|
float3 vNi = vN[i];
|
|
|
|
if(do_transform)
|
|
vNi = normalize(transform_direction(&ntfm, vNi));
|
|
|
|
vnormal[i] = make_float4(vNi.x, vNi.y, vNi.z, 0.0f);
|
|
}
|
|
}
|
|
|
|
void Mesh::pack_verts(const vector<uint>& tri_prim_index,
|
|
uint4 *tri_vindex,
|
|
uint *tri_patch,
|
|
float2 *tri_patch_uv,
|
|
size_t vert_offset,
|
|
size_t tri_offset)
|
|
{
|
|
size_t verts_size = verts.size();
|
|
|
|
if(verts_size && subd_faces.size()) {
|
|
float2 *vert_patch_uv_ptr = vert_patch_uv.data();
|
|
|
|
for(size_t i = 0; i < verts_size; i++) {
|
|
tri_patch_uv[i] = vert_patch_uv_ptr[i];
|
|
}
|
|
}
|
|
|
|
size_t triangles_size = num_triangles();
|
|
|
|
for(size_t i = 0; i < triangles_size; i++) {
|
|
Triangle t = get_triangle(i);
|
|
tri_vindex[i] = make_uint4(t.v[0] + vert_offset,
|
|
t.v[1] + vert_offset,
|
|
t.v[2] + vert_offset,
|
|
tri_prim_index[i + tri_offset]);
|
|
|
|
tri_patch[i] = (!subd_faces.size()) ? -1 : (triangle_patch[i]*8 + patch_offset);
|
|
}
|
|
}
|
|
|
|
void Mesh::pack_curves(Scene *scene, float4 *curve_key_co, float4 *curve_data, size_t curvekey_offset)
|
|
{
|
|
size_t curve_keys_size = curve_keys.size();
|
|
|
|
/* pack curve keys */
|
|
if(curve_keys_size) {
|
|
float3 *keys_ptr = curve_keys.data();
|
|
float *radius_ptr = curve_radius.data();
|
|
|
|
for(size_t i = 0; i < curve_keys_size; i++)
|
|
curve_key_co[i] = make_float4(keys_ptr[i].x, keys_ptr[i].y, keys_ptr[i].z, radius_ptr[i]);
|
|
}
|
|
|
|
/* pack curve segments */
|
|
size_t curve_num = num_curves();
|
|
|
|
for(size_t i = 0; i < curve_num; i++) {
|
|
Curve curve = get_curve(i);
|
|
int shader_id = curve_shader[i];
|
|
Shader *shader = (shader_id < used_shaders.size()) ?
|
|
used_shaders[shader_id] : scene->default_surface;
|
|
shader_id = scene->shader_manager->get_shader_id(shader, false);
|
|
|
|
curve_data[i] = make_float4(
|
|
__int_as_float(curve.first_key + curvekey_offset),
|
|
__int_as_float(curve.num_keys),
|
|
__int_as_float(shader_id),
|
|
0.0f);
|
|
}
|
|
}
|
|
|
|
void Mesh::pack_patches(uint *patch_data, uint vert_offset, uint face_offset, uint corner_offset)
|
|
{
|
|
size_t num_faces = subd_faces.size();
|
|
int ngons = 0;
|
|
|
|
for(size_t f = 0; f < num_faces; f++) {
|
|
SubdFace face = subd_faces[f];
|
|
|
|
if(face.is_quad()) {
|
|
int c[4];
|
|
memcpy(c, &subd_face_corners[face.start_corner], sizeof(int)*4);
|
|
|
|
*(patch_data++) = c[0] + vert_offset;
|
|
*(patch_data++) = c[1] + vert_offset;
|
|
*(patch_data++) = c[2] + vert_offset;
|
|
*(patch_data++) = c[3] + vert_offset;
|
|
|
|
*(patch_data++) = f+face_offset;
|
|
*(patch_data++) = face.num_corners;
|
|
*(patch_data++) = face.start_corner + corner_offset;
|
|
*(patch_data++) = 0;
|
|
}
|
|
else {
|
|
for(int i = 0; i < face.num_corners; i++) {
|
|
int c[4];
|
|
c[0] = subd_face_corners[face.start_corner + mod(i + 0, face.num_corners)];
|
|
c[1] = subd_face_corners[face.start_corner + mod(i + 1, face.num_corners)];
|
|
c[2] = verts.size() - num_subd_verts + ngons;
|
|
c[3] = subd_face_corners[face.start_corner + mod(i - 1, face.num_corners)];
|
|
|
|
*(patch_data++) = c[0] + vert_offset;
|
|
*(patch_data++) = c[1] + vert_offset;
|
|
*(patch_data++) = c[2] + vert_offset;
|
|
*(patch_data++) = c[3] + vert_offset;
|
|
|
|
*(patch_data++) = f+face_offset;
|
|
*(patch_data++) = face.num_corners | (i << 16);
|
|
*(patch_data++) = face.start_corner + corner_offset;
|
|
*(patch_data++) = subd_face_corners.size() + ngons + corner_offset;
|
|
}
|
|
|
|
ngons++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Mesh::compute_bvh(DeviceScene *dscene,
|
|
SceneParams *params,
|
|
Progress *progress,
|
|
int n,
|
|
int total)
|
|
{
|
|
if(progress->get_cancel())
|
|
return;
|
|
|
|
compute_bounds();
|
|
|
|
if(need_build_bvh()) {
|
|
string msg = "Updating Mesh BVH ";
|
|
if(name == "")
|
|
msg += string_printf("%u/%u", (uint)(n+1), (uint)total);
|
|
else
|
|
msg += string_printf("%s %u/%u", name.c_str(), (uint)(n+1), (uint)total);
|
|
|
|
Object object;
|
|
object.mesh = this;
|
|
|
|
vector<Object*> objects;
|
|
objects.push_back(&object);
|
|
|
|
if(bvh && !need_update_rebuild) {
|
|
progress->set_status(msg, "Refitting BVH");
|
|
bvh->objects = objects;
|
|
bvh->refit(*progress);
|
|
}
|
|
else {
|
|
progress->set_status(msg, "Building BVH");
|
|
|
|
BVHParams bparams;
|
|
bparams.use_spatial_split = params->use_bvh_spatial_split;
|
|
bparams.use_qbvh = params->use_qbvh;
|
|
bparams.use_unaligned_nodes = dscene->data.bvh.have_curves &&
|
|
params->use_bvh_unaligned_nodes;
|
|
bparams.num_motion_triangle_steps = params->num_bvh_time_steps;
|
|
bparams.num_motion_curve_steps = params->num_bvh_time_steps;
|
|
|
|
delete bvh;
|
|
bvh = BVH::create(bparams, objects);
|
|
MEM_GUARDED_CALL(progress, bvh->build, *progress);
|
|
}
|
|
}
|
|
|
|
need_update = false;
|
|
need_update_rebuild = false;
|
|
}
|
|
|
|
void Mesh::tag_update(Scene *scene, bool rebuild)
|
|
{
|
|
need_update = true;
|
|
|
|
if(rebuild) {
|
|
need_update_rebuild = true;
|
|
scene->light_manager->need_update = true;
|
|
}
|
|
else {
|
|
foreach(Shader *shader, used_shaders)
|
|
if(shader->has_surface_emission)
|
|
scene->light_manager->need_update = true;
|
|
}
|
|
|
|
scene->mesh_manager->need_update = true;
|
|
scene->object_manager->need_update = true;
|
|
}
|
|
|
|
bool Mesh::has_motion_blur() const
|
|
{
|
|
return (use_motion_blur &&
|
|
(attributes.find(ATTR_STD_MOTION_VERTEX_POSITION) ||
|
|
curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION)));
|
|
}
|
|
|
|
bool Mesh::has_true_displacement() const
|
|
{
|
|
foreach(Shader *shader, used_shaders) {
|
|
if(shader->has_displacement && shader->displacement_method != DISPLACE_BUMP) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Mesh::need_build_bvh() const
|
|
{
|
|
return !transform_applied || has_surface_bssrdf;
|
|
}
|
|
|
|
bool Mesh::is_instanced() const
|
|
{
|
|
/* Currently we treat subsurface objects as instanced.
|
|
*
|
|
* While it might be not very optimal for ray traversal, it avoids having
|
|
* duplicated BVH in the memory, saving quite some space.
|
|
*/
|
|
return !transform_applied || has_surface_bssrdf;
|
|
}
|
|
|
|
/* Mesh Manager */
|
|
|
|
MeshManager::MeshManager()
|
|
{
|
|
bvh = NULL;
|
|
need_update = true;
|
|
need_flags_update = true;
|
|
}
|
|
|
|
MeshManager::~MeshManager()
|
|
{
|
|
delete bvh;
|
|
}
|
|
|
|
void MeshManager::update_osl_attributes(Device *device, Scene *scene, vector<AttributeRequestSet>& mesh_attributes)
|
|
{
|
|
#ifdef WITH_OSL
|
|
/* for OSL, a hash map is used to lookup the attribute by name. */
|
|
OSLGlobals *og = (OSLGlobals*)device->osl_memory();
|
|
|
|
og->object_name_map.clear();
|
|
og->attribute_map.clear();
|
|
og->object_names.clear();
|
|
|
|
og->attribute_map.resize(scene->objects.size()*ATTR_PRIM_TYPES);
|
|
|
|
for(size_t i = 0; i < scene->objects.size(); i++) {
|
|
/* set object name to object index map */
|
|
Object *object = scene->objects[i];
|
|
og->object_name_map[object->name] = i;
|
|
og->object_names.push_back(object->name);
|
|
|
|
/* set object attributes */
|
|
foreach(ParamValue& attr, object->attributes) {
|
|
OSLGlobals::Attribute osl_attr;
|
|
|
|
osl_attr.type = attr.type();
|
|
osl_attr.desc.element = ATTR_ELEMENT_OBJECT;
|
|
osl_attr.value = attr;
|
|
osl_attr.desc.offset = 0;
|
|
osl_attr.desc.flags = 0;
|
|
|
|
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_TRIANGLE][attr.name()] = osl_attr;
|
|
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][attr.name()] = osl_attr;
|
|
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_SUBD][attr.name()] = osl_attr;
|
|
}
|
|
|
|
/* find mesh attributes */
|
|
size_t j;
|
|
|
|
for(j = 0; j < scene->meshes.size(); j++)
|
|
if(scene->meshes[j] == object->mesh)
|
|
break;
|
|
|
|
AttributeRequestSet& attributes = mesh_attributes[j];
|
|
|
|
/* set object attributes */
|
|
foreach(AttributeRequest& req, attributes.requests) {
|
|
OSLGlobals::Attribute osl_attr;
|
|
|
|
if(req.triangle_desc.element != ATTR_ELEMENT_NONE) {
|
|
osl_attr.desc = req.triangle_desc;
|
|
|
|
if(req.triangle_type == TypeDesc::TypeFloat)
|
|
osl_attr.type = TypeDesc::TypeFloat;
|
|
else if(req.triangle_type == TypeDesc::TypeMatrix)
|
|
osl_attr.type = TypeDesc::TypeMatrix;
|
|
else
|
|
osl_attr.type = TypeDesc::TypeColor;
|
|
|
|
if(req.std != ATTR_STD_NONE) {
|
|
/* if standard attribute, add lookup by geom: name convention */
|
|
ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
|
|
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_TRIANGLE][stdname] = osl_attr;
|
|
}
|
|
else if(req.name != ustring()) {
|
|
/* add lookup by mesh attribute name */
|
|
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_TRIANGLE][req.name] = osl_attr;
|
|
}
|
|
}
|
|
|
|
if(req.curve_desc.element != ATTR_ELEMENT_NONE) {
|
|
osl_attr.desc = req.curve_desc;
|
|
|
|
if(req.curve_type == TypeDesc::TypeFloat)
|
|
osl_attr.type = TypeDesc::TypeFloat;
|
|
else if(req.curve_type == TypeDesc::TypeMatrix)
|
|
osl_attr.type = TypeDesc::TypeMatrix;
|
|
else
|
|
osl_attr.type = TypeDesc::TypeColor;
|
|
|
|
if(req.std != ATTR_STD_NONE) {
|
|
/* if standard attribute, add lookup by geom: name convention */
|
|
ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
|
|
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][stdname] = osl_attr;
|
|
}
|
|
else if(req.name != ustring()) {
|
|
/* add lookup by mesh attribute name */
|
|
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][req.name] = osl_attr;
|
|
}
|
|
}
|
|
|
|
if(req.subd_desc.element != ATTR_ELEMENT_NONE) {
|
|
osl_attr.desc = req.subd_desc;
|
|
|
|
if(req.subd_type == TypeDesc::TypeFloat)
|
|
osl_attr.type = TypeDesc::TypeFloat;
|
|
else if(req.subd_type == TypeDesc::TypeMatrix)
|
|
osl_attr.type = TypeDesc::TypeMatrix;
|
|
else
|
|
osl_attr.type = TypeDesc::TypeColor;
|
|
|
|
if(req.std != ATTR_STD_NONE) {
|
|
/* if standard attribute, add lookup by geom: name convention */
|
|
ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
|
|
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_SUBD][stdname] = osl_attr;
|
|
}
|
|
else if(req.name != ustring()) {
|
|
/* add lookup by mesh attribute name */
|
|
og->attribute_map[i*ATTR_PRIM_TYPES + ATTR_PRIM_SUBD][req.name] = osl_attr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
(void)device;
|
|
(void)scene;
|
|
(void)mesh_attributes;
|
|
#endif
|
|
}
|
|
|
|
void MeshManager::update_svm_attributes(Device *device, DeviceScene *dscene, Scene *scene, vector<AttributeRequestSet>& mesh_attributes)
|
|
{
|
|
/* for SVM, the attributes_map table is used to lookup the offset of an
|
|
* attribute, based on a unique shader attribute id. */
|
|
|
|
/* compute array stride */
|
|
int attr_map_stride = 0;
|
|
|
|
for(size_t i = 0; i < scene->meshes.size(); i++)
|
|
attr_map_stride = max(attr_map_stride, (mesh_attributes[i].size() + 1)*ATTR_PRIM_TYPES);
|
|
|
|
if(attr_map_stride == 0)
|
|
return;
|
|
|
|
/* create attribute map */
|
|
uint4 *attr_map = dscene->attributes_map.resize(attr_map_stride*scene->objects.size());
|
|
memset(attr_map, 0, dscene->attributes_map.size()*sizeof(uint));
|
|
|
|
for(size_t i = 0; i < scene->objects.size(); i++) {
|
|
Object *object = scene->objects[i];
|
|
Mesh *mesh = object->mesh;
|
|
|
|
/* find mesh attributes */
|
|
size_t j;
|
|
|
|
for(j = 0; j < scene->meshes.size(); j++)
|
|
if(scene->meshes[j] == mesh)
|
|
break;
|
|
|
|
AttributeRequestSet& attributes = mesh_attributes[j];
|
|
|
|
/* set object attributes */
|
|
int index = i*attr_map_stride;
|
|
|
|
foreach(AttributeRequest& req, attributes.requests) {
|
|
uint id;
|
|
|
|
if(req.std == ATTR_STD_NONE)
|
|
id = scene->shader_manager->get_attribute_id(req.name);
|
|
else
|
|
id = scene->shader_manager->get_attribute_id(req.std);
|
|
|
|
if(mesh->num_triangles()) {
|
|
attr_map[index].x = id;
|
|
attr_map[index].y = req.triangle_desc.element;
|
|
attr_map[index].z = as_uint(req.triangle_desc.offset);
|
|
|
|
if(req.triangle_type == TypeDesc::TypeFloat)
|
|
attr_map[index].w = NODE_ATTR_FLOAT;
|
|
else if(req.triangle_type == TypeDesc::TypeMatrix)
|
|
attr_map[index].w = NODE_ATTR_MATRIX;
|
|
else
|
|
attr_map[index].w = NODE_ATTR_FLOAT3;
|
|
|
|
attr_map[index].w |= req.triangle_desc.flags << 8;
|
|
}
|
|
|
|
index++;
|
|
|
|
if(mesh->num_curves()) {
|
|
attr_map[index].x = id;
|
|
attr_map[index].y = req.curve_desc.element;
|
|
attr_map[index].z = as_uint(req.curve_desc.offset);
|
|
|
|
if(req.curve_type == TypeDesc::TypeFloat)
|
|
attr_map[index].w = NODE_ATTR_FLOAT;
|
|
else if(req.curve_type == TypeDesc::TypeMatrix)
|
|
attr_map[index].w = NODE_ATTR_MATRIX;
|
|
else
|
|
attr_map[index].w = NODE_ATTR_FLOAT3;
|
|
|
|
attr_map[index].w |= req.curve_desc.flags << 8;
|
|
}
|
|
|
|
index++;
|
|
|
|
if(mesh->subd_faces.size()) {
|
|
attr_map[index].x = id;
|
|
attr_map[index].y = req.subd_desc.element;
|
|
attr_map[index].z = as_uint(req.subd_desc.offset);
|
|
|
|
if(req.subd_type == TypeDesc::TypeFloat)
|
|
attr_map[index].w = NODE_ATTR_FLOAT;
|
|
else if(req.subd_type == TypeDesc::TypeMatrix)
|
|
attr_map[index].w = NODE_ATTR_MATRIX;
|
|
else
|
|
attr_map[index].w = NODE_ATTR_FLOAT3;
|
|
|
|
attr_map[index].w |= req.subd_desc.flags << 8;
|
|
}
|
|
|
|
index++;
|
|
}
|
|
|
|
/* terminator */
|
|
for(int j = 0; j < ATTR_PRIM_TYPES; j++) {
|
|
attr_map[index].x = ATTR_STD_NONE;
|
|
attr_map[index].y = 0;
|
|
attr_map[index].z = 0;
|
|
attr_map[index].w = 0;
|
|
|
|
index++;
|
|
}
|
|
}
|
|
|
|
/* copy to device */
|
|
dscene->data.bvh.attributes_map_stride = attr_map_stride;
|
|
device->tex_alloc("__attributes_map", dscene->attributes_map);
|
|
}
|
|
|
|
static void update_attribute_element_size(Mesh *mesh,
|
|
Attribute *mattr,
|
|
AttributePrimitive prim,
|
|
size_t *attr_float_size,
|
|
size_t *attr_float3_size,
|
|
size_t *attr_uchar4_size)
|
|
{
|
|
if(mattr) {
|
|
size_t size = mattr->element_size(mesh, prim);
|
|
|
|
if(mattr->element == ATTR_ELEMENT_VOXEL) {
|
|
/* pass */
|
|
}
|
|
else if(mattr->element == ATTR_ELEMENT_CORNER_BYTE) {
|
|
*attr_uchar4_size += size;
|
|
}
|
|
else if(mattr->type == TypeDesc::TypeFloat) {
|
|
*attr_float_size += size;
|
|
}
|
|
else if(mattr->type == TypeDesc::TypeMatrix) {
|
|
*attr_float3_size += size * 4;
|
|
}
|
|
else {
|
|
*attr_float3_size += size;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_attribute_element_offset(Mesh *mesh,
|
|
vector<float>& attr_float,
|
|
size_t& attr_float_offset,
|
|
vector<float4>& attr_float3,
|
|
size_t& attr_float3_offset,
|
|
vector<uchar4>& attr_uchar4,
|
|
size_t& attr_uchar4_offset,
|
|
Attribute *mattr,
|
|
AttributePrimitive prim,
|
|
TypeDesc& type,
|
|
AttributeDescriptor& desc)
|
|
{
|
|
if(mattr) {
|
|
/* store element and type */
|
|
desc.element = mattr->element;
|
|
desc.flags = mattr->flags;
|
|
type = mattr->type;
|
|
|
|
/* store attribute data in arrays */
|
|
size_t size = mattr->element_size(mesh, prim);
|
|
|
|
AttributeElement& element = desc.element;
|
|
int& offset = desc.offset;
|
|
|
|
if(mattr->element == ATTR_ELEMENT_VOXEL) {
|
|
/* store slot in offset value */
|
|
VoxelAttribute *voxel_data = mattr->data_voxel();
|
|
offset = voxel_data->slot;
|
|
}
|
|
else if(mattr->element == ATTR_ELEMENT_CORNER_BYTE) {
|
|
uchar4 *data = mattr->data_uchar4();
|
|
offset = attr_uchar4_offset;
|
|
|
|
assert(attr_uchar4.capacity() >= offset + size);
|
|
for(size_t k = 0; k < size; k++) {
|
|
attr_uchar4[offset+k] = data[k];
|
|
}
|
|
attr_uchar4_offset += size;
|
|
}
|
|
else if(mattr->type == TypeDesc::TypeFloat) {
|
|
float *data = mattr->data_float();
|
|
offset = attr_float_offset;
|
|
|
|
assert(attr_float.capacity() >= offset + size);
|
|
for(size_t k = 0; k < size; k++) {
|
|
attr_float[offset+k] = data[k];
|
|
}
|
|
attr_float_offset += size;
|
|
}
|
|
else if(mattr->type == TypeDesc::TypeMatrix) {
|
|
Transform *tfm = mattr->data_transform();
|
|
offset = attr_float3_offset;
|
|
|
|
assert(attr_float3.capacity() >= offset + size * 4);
|
|
for(size_t k = 0; k < size*4; k++) {
|
|
attr_float3[offset+k] = (&tfm->x)[k];
|
|
}
|
|
attr_float3_offset += size * 4;
|
|
}
|
|
else {
|
|
float4 *data = mattr->data_float4();
|
|
offset = attr_float3_offset;
|
|
|
|
assert(attr_float3.capacity() >= offset + size);
|
|
for(size_t k = 0; k < size; k++) {
|
|
attr_float3[offset+k] = data[k];
|
|
}
|
|
attr_float3_offset += size;
|
|
}
|
|
|
|
/* mesh vertex/curve index is global, not per object, so we sneak
|
|
* a correction for that in here */
|
|
if(mesh->subdivision_type == Mesh::SUBDIVISION_CATMULL_CLARK && desc.flags & ATTR_SUBDIVIDED) {
|
|
/* indices for subdivided attributes are retrieved
|
|
* from patch table so no need for correction here*/
|
|
}
|
|
else if(element == ATTR_ELEMENT_VERTEX)
|
|
offset -= mesh->vert_offset;
|
|
else if(element == ATTR_ELEMENT_VERTEX_MOTION)
|
|
offset -= mesh->vert_offset;
|
|
else if(element == ATTR_ELEMENT_FACE) {
|
|
if(prim == ATTR_PRIM_TRIANGLE)
|
|
offset -= mesh->tri_offset;
|
|
else
|
|
offset -= mesh->face_offset;
|
|
}
|
|
else if(element == ATTR_ELEMENT_CORNER || element == ATTR_ELEMENT_CORNER_BYTE) {
|
|
if(prim == ATTR_PRIM_TRIANGLE)
|
|
offset -= 3*mesh->tri_offset;
|
|
else
|
|
offset -= mesh->corner_offset;
|
|
}
|
|
else if(element == ATTR_ELEMENT_CURVE)
|
|
offset -= mesh->curve_offset;
|
|
else if(element == ATTR_ELEMENT_CURVE_KEY)
|
|
offset -= mesh->curvekey_offset;
|
|
else if(element == ATTR_ELEMENT_CURVE_KEY_MOTION)
|
|
offset -= mesh->curvekey_offset;
|
|
}
|
|
else {
|
|
/* attribute not found */
|
|
desc.element = ATTR_ELEMENT_NONE;
|
|
desc.offset = 0;
|
|
}
|
|
}
|
|
|
|
void MeshManager::device_update_attributes(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
|
|
{
|
|
progress.set_status("Updating Mesh", "Computing attributes");
|
|
|
|
/* gather per mesh requested attributes. as meshes may have multiple
|
|
* shaders assigned, this merges the requested attributes that have
|
|
* been set per shader by the shader manager */
|
|
vector<AttributeRequestSet> mesh_attributes(scene->meshes.size());
|
|
|
|
for(size_t i = 0; i < scene->meshes.size(); i++) {
|
|
Mesh *mesh = scene->meshes[i];
|
|
|
|
scene->need_global_attributes(mesh_attributes[i]);
|
|
|
|
foreach(Shader *shader, mesh->used_shaders) {
|
|
mesh_attributes[i].add(shader->attributes);
|
|
}
|
|
}
|
|
|
|
/* mesh attribute are stored in a single array per data type. here we fill
|
|
* those arrays, and set the offset and element type to create attribute
|
|
* maps next */
|
|
|
|
/* Pre-allocate attributes to avoid arrays re-allocation which would
|
|
* take 2x of overall attribute memory usage.
|
|
*/
|
|
size_t attr_float_size = 0;
|
|
size_t attr_float3_size = 0;
|
|
size_t attr_uchar4_size = 0;
|
|
for(size_t i = 0; i < scene->meshes.size(); i++) {
|
|
Mesh *mesh = scene->meshes[i];
|
|
AttributeRequestSet& attributes = mesh_attributes[i];
|
|
foreach(AttributeRequest& req, attributes.requests) {
|
|
Attribute *triangle_mattr = mesh->attributes.find(req);
|
|
Attribute *curve_mattr = mesh->curve_attributes.find(req);
|
|
Attribute *subd_mattr = mesh->subd_attributes.find(req);
|
|
|
|
update_attribute_element_size(mesh,
|
|
triangle_mattr,
|
|
ATTR_PRIM_TRIANGLE,
|
|
&attr_float_size,
|
|
&attr_float3_size,
|
|
&attr_uchar4_size);
|
|
update_attribute_element_size(mesh,
|
|
curve_mattr,
|
|
ATTR_PRIM_CURVE,
|
|
&attr_float_size,
|
|
&attr_float3_size,
|
|
&attr_uchar4_size);
|
|
update_attribute_element_size(mesh,
|
|
subd_mattr,
|
|
ATTR_PRIM_SUBD,
|
|
&attr_float_size,
|
|
&attr_float3_size,
|
|
&attr_uchar4_size);
|
|
}
|
|
}
|
|
|
|
vector<float> attr_float(attr_float_size);
|
|
vector<float4> attr_float3(attr_float3_size);
|
|
vector<uchar4> attr_uchar4(attr_uchar4_size);
|
|
|
|
size_t attr_float_offset = 0;
|
|
size_t attr_float3_offset = 0;
|
|
size_t attr_uchar4_offset = 0;
|
|
|
|
/* Fill in attributes. */
|
|
for(size_t i = 0; i < scene->meshes.size(); i++) {
|
|
Mesh *mesh = scene->meshes[i];
|
|
AttributeRequestSet& attributes = mesh_attributes[i];
|
|
|
|
/* todo: we now store std and name attributes from requests even if
|
|
* they actually refer to the same mesh attributes, optimize */
|
|
foreach(AttributeRequest& req, attributes.requests) {
|
|
Attribute *triangle_mattr = mesh->attributes.find(req);
|
|
Attribute *curve_mattr = mesh->curve_attributes.find(req);
|
|
Attribute *subd_mattr = mesh->subd_attributes.find(req);
|
|
|
|
update_attribute_element_offset(mesh,
|
|
attr_float, attr_float_offset,
|
|
attr_float3, attr_float3_offset,
|
|
attr_uchar4, attr_uchar4_offset,
|
|
triangle_mattr,
|
|
ATTR_PRIM_TRIANGLE,
|
|
req.triangle_type,
|
|
req.triangle_desc);
|
|
|
|
update_attribute_element_offset(mesh,
|
|
attr_float, attr_float_offset,
|
|
attr_float3, attr_float3_offset,
|
|
attr_uchar4, attr_uchar4_offset,
|
|
curve_mattr,
|
|
ATTR_PRIM_CURVE,
|
|
req.curve_type,
|
|
req.curve_desc);
|
|
|
|
update_attribute_element_offset(mesh,
|
|
attr_float, attr_float_offset,
|
|
attr_float3, attr_float3_offset,
|
|
attr_uchar4, attr_uchar4_offset,
|
|
subd_mattr,
|
|
ATTR_PRIM_SUBD,
|
|
req.subd_type,
|
|
req.subd_desc);
|
|
|
|
if(progress.get_cancel()) return;
|
|
}
|
|
}
|
|
|
|
/* create attribute lookup maps */
|
|
if(scene->shader_manager->use_osl())
|
|
update_osl_attributes(device, scene, mesh_attributes);
|
|
|
|
update_svm_attributes(device, dscene, scene, mesh_attributes);
|
|
|
|
if(progress.get_cancel()) return;
|
|
|
|
/* copy to device */
|
|
progress.set_status("Updating Mesh", "Copying Attributes to device");
|
|
|
|
if(attr_float.size()) {
|
|
dscene->attributes_float.copy(&attr_float[0], attr_float.size());
|
|
device->tex_alloc("__attributes_float", dscene->attributes_float);
|
|
}
|
|
if(attr_float3.size()) {
|
|
dscene->attributes_float3.copy(&attr_float3[0], attr_float3.size());
|
|
device->tex_alloc("__attributes_float3", dscene->attributes_float3);
|
|
}
|
|
if(attr_uchar4.size()) {
|
|
dscene->attributes_uchar4.copy(&attr_uchar4[0], attr_uchar4.size());
|
|
device->tex_alloc("__attributes_uchar4", dscene->attributes_uchar4);
|
|
}
|
|
}
|
|
|
|
void MeshManager::mesh_calc_offset(Scene *scene)
|
|
{
|
|
size_t vert_size = 0;
|
|
size_t tri_size = 0;
|
|
|
|
size_t curve_key_size = 0;
|
|
size_t curve_size = 0;
|
|
|
|
size_t patch_size = 0;
|
|
size_t face_size = 0;
|
|
size_t corner_size = 0;
|
|
|
|
foreach(Mesh *mesh, scene->meshes) {
|
|
mesh->vert_offset = vert_size;
|
|
mesh->tri_offset = tri_size;
|
|
|
|
mesh->curvekey_offset = curve_key_size;
|
|
mesh->curve_offset = curve_size;
|
|
|
|
mesh->patch_offset = patch_size;
|
|
mesh->face_offset = face_size;
|
|
mesh->corner_offset = corner_size;
|
|
|
|
vert_size += mesh->verts.size();
|
|
tri_size += mesh->num_triangles();
|
|
|
|
curve_key_size += mesh->curve_keys.size();
|
|
curve_size += mesh->num_curves();
|
|
|
|
if(mesh->subd_faces.size()) {
|
|
Mesh::SubdFace& last = mesh->subd_faces[mesh->subd_faces.size()-1];
|
|
patch_size += (last.ptex_offset + last.num_ptex_faces()) * 8;
|
|
|
|
/* patch tables are stored in same array so include them in patch_size */
|
|
if(mesh->patch_table) {
|
|
mesh->patch_table_offset = patch_size;
|
|
patch_size += mesh->patch_table->total_size();
|
|
}
|
|
}
|
|
face_size += mesh->subd_faces.size();
|
|
corner_size += mesh->subd_face_corners.size();
|
|
}
|
|
}
|
|
|
|
void MeshManager::device_update_mesh(Device *device,
|
|
DeviceScene *dscene,
|
|
Scene *scene,
|
|
bool for_displacement,
|
|
Progress& progress)
|
|
{
|
|
/* Count. */
|
|
size_t vert_size = 0;
|
|
size_t tri_size = 0;
|
|
|
|
size_t curve_key_size = 0;
|
|
size_t curve_size = 0;
|
|
|
|
size_t patch_size = 0;
|
|
|
|
foreach(Mesh *mesh, scene->meshes) {
|
|
vert_size += mesh->verts.size();
|
|
tri_size += mesh->num_triangles();
|
|
|
|
curve_key_size += mesh->curve_keys.size();
|
|
curve_size += mesh->num_curves();
|
|
|
|
if(mesh->subd_faces.size()) {
|
|
Mesh::SubdFace& last = mesh->subd_faces[mesh->subd_faces.size()-1];
|
|
patch_size += (last.ptex_offset + last.num_ptex_faces()) * 8;
|
|
|
|
/* patch tables are stored in same array so include them in patch_size */
|
|
if(mesh->patch_table) {
|
|
mesh->patch_table_offset = patch_size;
|
|
patch_size += mesh->patch_table->total_size();
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Create mapping from triangle to primitive triangle array. */
|
|
vector<uint> tri_prim_index(tri_size);
|
|
if(for_displacement) {
|
|
/* For displacement kernels we do some trickery to make them believe
|
|
* we've got all required data ready. However, that data is different
|
|
* from final render kernels since we don't have BVH yet, so can't
|
|
* really use same semantic of arrays.
|
|
*/
|
|
foreach(Mesh *mesh, scene->meshes) {
|
|
for(size_t i = 0; i < mesh->num_triangles(); ++i) {
|
|
tri_prim_index[i + mesh->tri_offset] = 3 * (i + mesh->tri_offset);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
PackedBVH& pack = bvh->pack;
|
|
for(size_t i = 0; i < pack.prim_index.size(); ++i) {
|
|
if((pack.prim_type[i] & PRIMITIVE_ALL_TRIANGLE) != 0) {
|
|
tri_prim_index[pack.prim_index[i]] = pack.prim_tri_index[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Fill in all the arrays. */
|
|
if(tri_size != 0) {
|
|
/* normals */
|
|
progress.set_status("Updating Mesh", "Computing normals");
|
|
|
|
uint *tri_shader = dscene->tri_shader.resize(tri_size);
|
|
float4 *vnormal = dscene->tri_vnormal.resize(vert_size);
|
|
uint4 *tri_vindex = dscene->tri_vindex.resize(tri_size);
|
|
uint *tri_patch = dscene->tri_patch.resize(tri_size);
|
|
float2 *tri_patch_uv = dscene->tri_patch_uv.resize(vert_size);
|
|
|
|
foreach(Mesh *mesh, scene->meshes) {
|
|
mesh->pack_normals(scene,
|
|
&tri_shader[mesh->tri_offset],
|
|
&vnormal[mesh->vert_offset]);
|
|
mesh->pack_verts(tri_prim_index,
|
|
&tri_vindex[mesh->tri_offset],
|
|
&tri_patch[mesh->tri_offset],
|
|
&tri_patch_uv[mesh->vert_offset],
|
|
mesh->vert_offset,
|
|
mesh->tri_offset);
|
|
if(progress.get_cancel()) return;
|
|
}
|
|
|
|
/* vertex coordinates */
|
|
progress.set_status("Updating Mesh", "Copying Mesh to device");
|
|
|
|
device->tex_alloc("__tri_shader", dscene->tri_shader);
|
|
device->tex_alloc("__tri_vnormal", dscene->tri_vnormal);
|
|
device->tex_alloc("__tri_vindex", dscene->tri_vindex);
|
|
device->tex_alloc("__tri_patch", dscene->tri_patch);
|
|
device->tex_alloc("__tri_patch_uv", dscene->tri_patch_uv);
|
|
}
|
|
|
|
if(curve_size != 0) {
|
|
progress.set_status("Updating Mesh", "Copying Strands to device");
|
|
|
|
float4 *curve_keys = dscene->curve_keys.resize(curve_key_size);
|
|
float4 *curves = dscene->curves.resize(curve_size);
|
|
|
|
foreach(Mesh *mesh, scene->meshes) {
|
|
mesh->pack_curves(scene, &curve_keys[mesh->curvekey_offset], &curves[mesh->curve_offset], mesh->curvekey_offset);
|
|
if(progress.get_cancel()) return;
|
|
}
|
|
|
|
device->tex_alloc("__curve_keys", dscene->curve_keys);
|
|
device->tex_alloc("__curves", dscene->curves);
|
|
}
|
|
|
|
if(patch_size != 0) {
|
|
progress.set_status("Updating Mesh", "Copying Patches to device");
|
|
|
|
uint *patch_data = dscene->patches.resize(patch_size);
|
|
|
|
foreach(Mesh *mesh, scene->meshes) {
|
|
mesh->pack_patches(&patch_data[mesh->patch_offset], mesh->vert_offset, mesh->face_offset, mesh->corner_offset);
|
|
|
|
if(mesh->patch_table) {
|
|
mesh->patch_table->copy_adjusting_offsets(&patch_data[mesh->patch_table_offset], mesh->patch_table_offset);
|
|
}
|
|
|
|
if(progress.get_cancel()) return;
|
|
}
|
|
|
|
device->tex_alloc("__patches", dscene->patches);
|
|
}
|
|
|
|
if(for_displacement) {
|
|
float4 *prim_tri_verts = dscene->prim_tri_verts.resize(tri_size * 3);
|
|
foreach(Mesh *mesh, scene->meshes) {
|
|
for(size_t i = 0; i < mesh->num_triangles(); ++i) {
|
|
Mesh::Triangle t = mesh->get_triangle(i);
|
|
size_t offset = 3 * (i + mesh->tri_offset);
|
|
prim_tri_verts[offset + 0] = float3_to_float4(mesh->verts[t.v[0]]);
|
|
prim_tri_verts[offset + 1] = float3_to_float4(mesh->verts[t.v[1]]);
|
|
prim_tri_verts[offset + 2] = float3_to_float4(mesh->verts[t.v[2]]);
|
|
}
|
|
}
|
|
device->tex_alloc("__prim_tri_verts", dscene->prim_tri_verts);
|
|
}
|
|
}
|
|
|
|
void MeshManager::device_update_bvh(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
|
|
{
|
|
/* bvh build */
|
|
progress.set_status("Updating Scene BVH", "Building");
|
|
|
|
VLOG(1) << (scene->params.use_qbvh ? "Using QBVH optimization structure"
|
|
: "Using regular BVH optimization structure");
|
|
|
|
BVHParams bparams;
|
|
bparams.top_level = true;
|
|
bparams.use_qbvh = scene->params.use_qbvh;
|
|
bparams.use_spatial_split = scene->params.use_bvh_spatial_split;
|
|
bparams.use_unaligned_nodes = dscene->data.bvh.have_curves &&
|
|
scene->params.use_bvh_unaligned_nodes;
|
|
bparams.num_motion_triangle_steps = scene->params.num_bvh_time_steps;
|
|
bparams.num_motion_curve_steps = scene->params.num_bvh_time_steps;
|
|
|
|
delete bvh;
|
|
bvh = BVH::create(bparams, scene->objects);
|
|
bvh->build(progress);
|
|
|
|
if(progress.get_cancel()) return;
|
|
|
|
/* copy to device */
|
|
progress.set_status("Updating Scene BVH", "Copying BVH to device");
|
|
|
|
PackedBVH& pack = bvh->pack;
|
|
|
|
if(pack.nodes.size()) {
|
|
dscene->bvh_nodes.reference((float4*)&pack.nodes[0], pack.nodes.size());
|
|
device->tex_alloc("__bvh_nodes", dscene->bvh_nodes);
|
|
}
|
|
if(pack.leaf_nodes.size()) {
|
|
dscene->bvh_leaf_nodes.reference((float4*)&pack.leaf_nodes[0], pack.leaf_nodes.size());
|
|
device->tex_alloc("__bvh_leaf_nodes", dscene->bvh_leaf_nodes);
|
|
}
|
|
if(pack.object_node.size()) {
|
|
dscene->object_node.reference((uint*)&pack.object_node[0], pack.object_node.size());
|
|
device->tex_alloc("__object_node", dscene->object_node);
|
|
}
|
|
if(pack.prim_tri_index.size()) {
|
|
dscene->prim_tri_index.reference((uint*)&pack.prim_tri_index[0], pack.prim_tri_index.size());
|
|
device->tex_alloc("__prim_tri_index", dscene->prim_tri_index);
|
|
}
|
|
if(pack.prim_tri_verts.size()) {
|
|
dscene->prim_tri_verts.reference((float4*)&pack.prim_tri_verts[0], pack.prim_tri_verts.size());
|
|
device->tex_alloc("__prim_tri_verts", dscene->prim_tri_verts);
|
|
}
|
|
if(pack.prim_type.size()) {
|
|
dscene->prim_type.reference((uint*)&pack.prim_type[0], pack.prim_type.size());
|
|
device->tex_alloc("__prim_type", dscene->prim_type);
|
|
}
|
|
if(pack.prim_visibility.size()) {
|
|
dscene->prim_visibility.reference((uint*)&pack.prim_visibility[0], pack.prim_visibility.size());
|
|
device->tex_alloc("__prim_visibility", dscene->prim_visibility);
|
|
}
|
|
if(pack.prim_index.size()) {
|
|
dscene->prim_index.reference((uint*)&pack.prim_index[0], pack.prim_index.size());
|
|
device->tex_alloc("__prim_index", dscene->prim_index);
|
|
}
|
|
if(pack.prim_object.size()) {
|
|
dscene->prim_object.reference((uint*)&pack.prim_object[0], pack.prim_object.size());
|
|
device->tex_alloc("__prim_object", dscene->prim_object);
|
|
}
|
|
if(pack.prim_time.size()) {
|
|
dscene->prim_time.reference((float2*)&pack.prim_time[0], pack.prim_time.size());
|
|
device->tex_alloc("__prim_time", dscene->prim_time);
|
|
}
|
|
|
|
dscene->data.bvh.root = pack.root_index;
|
|
dscene->data.bvh.use_qbvh = scene->params.use_qbvh;
|
|
dscene->data.bvh.use_bvh_steps = (scene->params.num_bvh_time_steps != 0);
|
|
}
|
|
|
|
void MeshManager::device_update_flags(Device * /*device*/,
|
|
DeviceScene * /*dscene*/,
|
|
Scene * scene,
|
|
Progress& /*progress*/)
|
|
{
|
|
if(!need_update && !need_flags_update) {
|
|
return;
|
|
}
|
|
/* update flags */
|
|
foreach(Mesh *mesh, scene->meshes) {
|
|
mesh->has_volume = false;
|
|
foreach(const Shader *shader, mesh->used_shaders) {
|
|
if(shader->has_volume) {
|
|
mesh->has_volume = true;
|
|
}
|
|
if(shader->has_surface_bssrdf) {
|
|
mesh->has_surface_bssrdf = true;
|
|
}
|
|
}
|
|
}
|
|
need_flags_update = false;
|
|
}
|
|
|
|
void MeshManager::device_update_displacement_images(Device *device,
|
|
DeviceScene *dscene,
|
|
Scene *scene,
|
|
Progress& progress)
|
|
{
|
|
progress.set_status("Updating Displacement Images");
|
|
TaskPool pool;
|
|
ImageManager *image_manager = scene->image_manager;
|
|
set<int> bump_images;
|
|
foreach(Mesh *mesh, scene->meshes) {
|
|
if(mesh->need_update) {
|
|
foreach(Shader *shader, mesh->used_shaders) {
|
|
if(!shader->has_displacement || shader->displacement_method == DISPLACE_BUMP) {
|
|
continue;
|
|
}
|
|
foreach(ShaderNode* node, shader->graph->nodes) {
|
|
if(node->special_type != SHADER_SPECIAL_TYPE_IMAGE_SLOT) {
|
|
continue;
|
|
}
|
|
if(device->info.pack_images) {
|
|
/* If device requires packed images we need to update all
|
|
* images now, even if they're not used for displacement.
|
|
*/
|
|
image_manager->device_update(device,
|
|
dscene,
|
|
scene,
|
|
progress);
|
|
return;
|
|
}
|
|
ImageSlotTextureNode *image_node = static_cast<ImageSlotTextureNode*>(node);
|
|
int slot = image_node->slot;
|
|
if(slot != -1) {
|
|
bump_images.insert(slot);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
foreach(int slot, bump_images) {
|
|
pool.push(function_bind(&ImageManager::device_update_slot,
|
|
image_manager,
|
|
device,
|
|
dscene,
|
|
scene,
|
|
slot,
|
|
&progress));
|
|
}
|
|
pool.wait_work();
|
|
}
|
|
|
|
void MeshManager::device_update(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
|
|
{
|
|
if(!need_update)
|
|
return;
|
|
|
|
VLOG(1) << "Total " << scene->meshes.size() << " meshes.";
|
|
|
|
/* Update normals. */
|
|
foreach(Mesh *mesh, scene->meshes) {
|
|
foreach(Shader *shader, mesh->used_shaders) {
|
|
if(shader->need_update_attributes)
|
|
mesh->need_update = true;
|
|
}
|
|
|
|
if(mesh->need_update) {
|
|
mesh->add_face_normals();
|
|
mesh->add_vertex_normals();
|
|
|
|
if(mesh->need_attribute(scene, ATTR_STD_POSITION_UNDISPLACED)) {
|
|
mesh->add_undisplaced();
|
|
}
|
|
|
|
if(progress.get_cancel()) return;
|
|
}
|
|
}
|
|
|
|
/* Tessellate meshes that are using subdivision */
|
|
size_t total_tess_needed = 0;
|
|
foreach(Mesh *mesh, scene->meshes) {
|
|
if(mesh->need_update &&
|
|
mesh->subdivision_type != Mesh::SUBDIVISION_NONE &&
|
|
mesh->num_subd_verts == 0 &&
|
|
mesh->subd_params)
|
|
{
|
|
total_tess_needed++;
|
|
}
|
|
}
|
|
|
|
size_t i = 0;
|
|
foreach(Mesh *mesh, scene->meshes) {
|
|
if(mesh->need_update &&
|
|
mesh->subdivision_type != Mesh::SUBDIVISION_NONE &&
|
|
mesh->num_subd_verts == 0 &&
|
|
mesh->subd_params)
|
|
{
|
|
string msg = "Tessellating ";
|
|
if(mesh->name == "")
|
|
msg += string_printf("%u/%u", (uint)(i+1), (uint)total_tess_needed);
|
|
else
|
|
msg += string_printf("%s %u/%u", mesh->name.c_str(), (uint)(i+1), (uint)total_tess_needed);
|
|
|
|
progress.set_status("Updating Mesh", msg);
|
|
|
|
DiagSplit dsplit(*mesh->subd_params);
|
|
mesh->tessellate(&dsplit);
|
|
|
|
i++;
|
|
|
|
if(progress.get_cancel()) return;
|
|
}
|
|
}
|
|
|
|
/* Update images needed for true displacement. */
|
|
bool true_displacement_used = false;
|
|
bool old_need_object_flags_update = false;
|
|
foreach(Mesh *mesh, scene->meshes) {
|
|
if(mesh->need_update &&
|
|
mesh->has_true_displacement())
|
|
{
|
|
true_displacement_used = true;
|
|
break;
|
|
}
|
|
}
|
|
if(true_displacement_used) {
|
|
VLOG(1) << "Updating images used for true displacement.";
|
|
device_update_displacement_images(device, dscene, scene, progress);
|
|
old_need_object_flags_update = scene->object_manager->need_flags_update;
|
|
scene->object_manager->device_update_flags(device,
|
|
dscene,
|
|
scene,
|
|
progress,
|
|
false);
|
|
}
|
|
|
|
/* Device update. */
|
|
device_free(device, dscene);
|
|
|
|
mesh_calc_offset(scene);
|
|
if(true_displacement_used) {
|
|
device_update_mesh(device, dscene, scene, true, progress);
|
|
}
|
|
if(progress.get_cancel()) return;
|
|
|
|
/* after mesh data has been copied to device memory we need to update
|
|
* offsets for patch tables as this can't be known before hand */
|
|
scene->object_manager->device_update_patch_map_offsets(device, dscene, scene);
|
|
|
|
device_update_attributes(device, dscene, scene, progress);
|
|
if(progress.get_cancel()) return;
|
|
|
|
/* Update displacement. */
|
|
bool displacement_done = false;
|
|
foreach(Mesh *mesh, scene->meshes) {
|
|
if(mesh->need_update &&
|
|
displace(device, dscene, scene, mesh, progress))
|
|
{
|
|
displacement_done = true;
|
|
}
|
|
}
|
|
|
|
/* TODO: properly handle cancel halfway displacement */
|
|
if(progress.get_cancel()) return;
|
|
|
|
/* Device re-update after displacement. */
|
|
if(displacement_done) {
|
|
device_free(device, dscene);
|
|
|
|
device_update_attributes(device, dscene, scene, progress);
|
|
if(progress.get_cancel()) return;
|
|
}
|
|
|
|
/* Update bvh. */
|
|
size_t num_bvh = 0;
|
|
foreach(Mesh *mesh, scene->meshes) {
|
|
if(mesh->need_update && mesh->need_build_bvh()) {
|
|
num_bvh++;
|
|
}
|
|
}
|
|
|
|
TaskPool pool;
|
|
|
|
i = 0;
|
|
foreach(Mesh *mesh, scene->meshes) {
|
|
if(mesh->need_update) {
|
|
pool.push(function_bind(&Mesh::compute_bvh,
|
|
mesh,
|
|
dscene,
|
|
&scene->params,
|
|
&progress,
|
|
i,
|
|
num_bvh));
|
|
if(mesh->need_build_bvh()) {
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
|
|
TaskPool::Summary summary;
|
|
pool.wait_work(&summary);
|
|
VLOG(2) << "Objects BVH build pool statistics:\n"
|
|
<< summary.full_report();
|
|
|
|
foreach(Shader *shader, scene->shaders) {
|
|
shader->need_update_attributes = false;
|
|
}
|
|
|
|
#ifdef __OBJECT_MOTION__
|
|
Scene::MotionType need_motion = scene->need_motion(device->info.advanced_shading);
|
|
bool motion_blur = need_motion == Scene::MOTION_BLUR;
|
|
#else
|
|
bool motion_blur = false;
|
|
#endif
|
|
|
|
/* Update objects. */
|
|
vector<Object *> volume_objects;
|
|
foreach(Object *object, scene->objects) {
|
|
object->compute_bounds(motion_blur);
|
|
}
|
|
|
|
if(progress.get_cancel()) return;
|
|
|
|
device_update_bvh(device, dscene, scene, progress);
|
|
if(progress.get_cancel()) return;
|
|
|
|
device_update_mesh(device, dscene, scene, false, progress);
|
|
if(progress.get_cancel()) return;
|
|
|
|
need_update = false;
|
|
|
|
if(true_displacement_used) {
|
|
/* Re-tag flags for update, so they're re-evaluated
|
|
* for meshes with correct bounding boxes.
|
|
*
|
|
* This wouldn't cause wrong results, just true
|
|
* displacement might be less optimal ot calculate.
|
|
*/
|
|
scene->object_manager->need_flags_update = old_need_object_flags_update;
|
|
}
|
|
}
|
|
|
|
void MeshManager::device_free(Device *device, DeviceScene *dscene)
|
|
{
|
|
device->tex_free(dscene->bvh_nodes);
|
|
device->tex_free(dscene->bvh_leaf_nodes);
|
|
device->tex_free(dscene->object_node);
|
|
device->tex_free(dscene->prim_tri_verts);
|
|
device->tex_free(dscene->prim_tri_index);
|
|
device->tex_free(dscene->prim_type);
|
|
device->tex_free(dscene->prim_visibility);
|
|
device->tex_free(dscene->prim_index);
|
|
device->tex_free(dscene->prim_object);
|
|
device->tex_free(dscene->prim_time);
|
|
device->tex_free(dscene->tri_shader);
|
|
device->tex_free(dscene->tri_vnormal);
|
|
device->tex_free(dscene->tri_vindex);
|
|
device->tex_free(dscene->tri_patch);
|
|
device->tex_free(dscene->tri_patch_uv);
|
|
device->tex_free(dscene->curves);
|
|
device->tex_free(dscene->curve_keys);
|
|
device->tex_free(dscene->patches);
|
|
device->tex_free(dscene->attributes_map);
|
|
device->tex_free(dscene->attributes_float);
|
|
device->tex_free(dscene->attributes_float3);
|
|
device->tex_free(dscene->attributes_uchar4);
|
|
|
|
dscene->bvh_nodes.clear();
|
|
dscene->object_node.clear();
|
|
dscene->prim_tri_verts.clear();
|
|
dscene->prim_tri_index.clear();
|
|
dscene->prim_type.clear();
|
|
dscene->prim_visibility.clear();
|
|
dscene->prim_index.clear();
|
|
dscene->prim_object.clear();
|
|
dscene->prim_time.clear();
|
|
dscene->tri_shader.clear();
|
|
dscene->tri_vnormal.clear();
|
|
dscene->tri_vindex.clear();
|
|
dscene->tri_patch.clear();
|
|
dscene->tri_patch_uv.clear();
|
|
dscene->curves.clear();
|
|
dscene->curve_keys.clear();
|
|
dscene->patches.clear();
|
|
dscene->attributes_map.clear();
|
|
dscene->attributes_float.clear();
|
|
dscene->attributes_float3.clear();
|
|
dscene->attributes_uchar4.clear();
|
|
|
|
#ifdef WITH_OSL
|
|
OSLGlobals *og = (OSLGlobals*)device->osl_memory();
|
|
|
|
if(og) {
|
|
og->object_name_map.clear();
|
|
og->attribute_map.clear();
|
|
og->object_names.clear();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void MeshManager::tag_update(Scene *scene)
|
|
{
|
|
need_update = true;
|
|
scene->object_manager->need_update = true;
|
|
}
|
|
|
|
bool Mesh::need_attribute(Scene *scene, AttributeStandard std)
|
|
{
|
|
if(std == ATTR_STD_NONE)
|
|
return false;
|
|
|
|
if(scene->need_global_attribute(std))
|
|
return true;
|
|
|
|
foreach(Shader *shader, used_shaders)
|
|
if(shader->attributes.find(std))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Mesh::need_attribute(Scene * /*scene*/, ustring name)
|
|
{
|
|
if(name == ustring())
|
|
return false;
|
|
|
|
foreach(Shader *shader, used_shaders)
|
|
if(shader->attributes.find(name))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|