3c85e1ca1a
This way, we also save 3/4th of memory for single channel byte textures (e.g. Bump Maps). Note: In order for this to work, the texture *must* have 1 channel only. In Gimp you can e.g. do that via the menu: Image -> Mode -> Grayscale
1110 lines
30 KiB
C++
1110 lines
30 KiB
C++
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "device.h"
|
|
#include "image.h"
|
|
#include "scene.h"
|
|
|
|
#include "util_foreach.h"
|
|
#include "util_path.h"
|
|
#include "util_progress.h"
|
|
#include "util_texture.h"
|
|
|
|
#ifdef WITH_OSL
|
|
#include <OSL/oslexec.h>
|
|
#endif
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
ImageManager::ImageManager(const DeviceInfo& info)
|
|
{
|
|
need_update = true;
|
|
pack_images = false;
|
|
osl_texture_system = NULL;
|
|
animation_frame = 0;
|
|
|
|
/* Set image limits */
|
|
|
|
/* CPU */
|
|
if(info.type == DEVICE_CPU) {
|
|
tex_num_images[IMAGE_DATA_TYPE_BYTE4] = TEX_NUM_BYTE4_IMAGES_CPU;
|
|
tex_num_images[IMAGE_DATA_TYPE_FLOAT4] = TEX_NUM_FLOAT4_IMAGES_CPU;
|
|
tex_num_images[IMAGE_DATA_TYPE_FLOAT] = TEX_NUM_FLOAT_IMAGES_CPU;
|
|
tex_num_images[IMAGE_DATA_TYPE_BYTE] = TEX_NUM_BYTE_IMAGES_CPU;
|
|
tex_image_byte4_start = TEX_IMAGE_BYTE4_START_CPU;
|
|
tex_image_float_start = TEX_IMAGE_FLOAT_START_CPU;
|
|
tex_image_byte_start = TEX_IMAGE_BYTE_START_CPU;
|
|
}
|
|
/* CUDA (Fermi) */
|
|
else if((info.type == DEVICE_CUDA || info.type == DEVICE_MULTI) && !info.extended_images) {
|
|
tex_num_images[IMAGE_DATA_TYPE_BYTE4] = TEX_NUM_BYTE4_IMAGES_CUDA;
|
|
tex_num_images[IMAGE_DATA_TYPE_FLOAT4] = TEX_NUM_FLOAT4_IMAGES_CUDA;
|
|
tex_num_images[IMAGE_DATA_TYPE_FLOAT] = TEX_NUM_FLOAT_IMAGES_CUDA;
|
|
tex_num_images[IMAGE_DATA_TYPE_BYTE] = TEX_NUM_BYTE_IMAGES_CUDA;
|
|
tex_image_byte4_start = TEX_IMAGE_BYTE4_START_CUDA;
|
|
tex_image_float_start = TEX_IMAGE_FLOAT_START_CUDA;
|
|
tex_image_byte_start = TEX_IMAGE_BYTE_START_CUDA;
|
|
}
|
|
/* CUDA (Kepler and above) */
|
|
else if((info.type == DEVICE_CUDA || info.type == DEVICE_MULTI) && info.extended_images) {
|
|
tex_num_images[IMAGE_DATA_TYPE_BYTE4] = TEX_NUM_BYTE4_IMAGES_CUDA_KEPLER;
|
|
tex_num_images[IMAGE_DATA_TYPE_FLOAT4] = TEX_NUM_FLOAT4_IMAGES_CUDA_KEPLER;
|
|
tex_num_images[IMAGE_DATA_TYPE_FLOAT] = TEX_NUM_FLOAT_IMAGES_CUDA_KEPLER;
|
|
tex_num_images[IMAGE_DATA_TYPE_BYTE] = TEX_NUM_BYTE_IMAGES_CUDA_KEPLER;
|
|
tex_image_byte4_start = TEX_IMAGE_BYTE4_START_CUDA_KEPLER;
|
|
tex_image_float_start = TEX_IMAGE_FLOAT_START_CUDA_KEPLER;
|
|
tex_image_byte_start = TEX_IMAGE_BYTE_START_CUDA_KEPLER;
|
|
}
|
|
/* OpenCL */
|
|
else if(info.pack_images) {
|
|
tex_num_images[IMAGE_DATA_TYPE_BYTE4] = TEX_NUM_BYTE4_IMAGES_OPENCL;
|
|
tex_num_images[IMAGE_DATA_TYPE_FLOAT4] = TEX_NUM_FLOAT4_IMAGES_OPENCL;
|
|
tex_num_images[IMAGE_DATA_TYPE_FLOAT] = TEX_NUM_FLOAT_IMAGES_OPENCL;
|
|
tex_num_images[IMAGE_DATA_TYPE_BYTE] = TEX_NUM_BYTE_IMAGES_OPENCL;
|
|
tex_image_byte4_start = TEX_IMAGE_BYTE4_START_OPENCL;
|
|
tex_image_float_start = TEX_IMAGE_FLOAT_START_OPENCL;
|
|
tex_image_byte_start = TEX_IMAGE_BYTE_START_OPENCL;
|
|
}
|
|
/* Should never happen */
|
|
else {
|
|
tex_num_images[IMAGE_DATA_TYPE_BYTE4] = 0;
|
|
tex_num_images[IMAGE_DATA_TYPE_FLOAT4] = 0;
|
|
tex_num_images[IMAGE_DATA_TYPE_FLOAT] = 0;
|
|
tex_num_images[IMAGE_DATA_TYPE_BYTE] = 0;
|
|
tex_image_byte4_start = 0;
|
|
tex_image_float_start = 0;
|
|
tex_image_byte_start = 0;
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
ImageManager::~ImageManager()
|
|
{
|
|
for(size_t type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
|
|
for(size_t slot = 0; slot < images[type].size(); slot++)
|
|
assert(!images[type][slot]);
|
|
}
|
|
}
|
|
|
|
void ImageManager::set_pack_images(bool pack_images_)
|
|
{
|
|
pack_images = pack_images_;
|
|
}
|
|
|
|
void ImageManager::set_osl_texture_system(void *texture_system)
|
|
{
|
|
osl_texture_system = texture_system;
|
|
}
|
|
|
|
bool ImageManager::set_animation_frame_update(int frame)
|
|
{
|
|
if(frame != animation_frame) {
|
|
animation_frame = frame;
|
|
|
|
for(size_t type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
|
|
for(size_t slot = 0; slot < images[type].size(); slot++) {
|
|
if(images[type][slot] && images[type][slot]->animated)
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ImageManager::ImageDataType ImageManager::get_image_metadata(const string& filename,
|
|
void *builtin_data,
|
|
bool& is_linear)
|
|
{
|
|
bool is_float = false;
|
|
is_linear = false;
|
|
int channels = 4;
|
|
|
|
if(builtin_data) {
|
|
if(builtin_image_info_cb) {
|
|
int width, height, depth;
|
|
builtin_image_info_cb(filename, builtin_data, is_float, width, height, depth, channels);
|
|
}
|
|
|
|
if(is_float) {
|
|
is_linear = true;
|
|
|
|
if(channels > 1)
|
|
return IMAGE_DATA_TYPE_FLOAT4;
|
|
else
|
|
return IMAGE_DATA_TYPE_FLOAT;
|
|
}
|
|
else {
|
|
if(channels > 1)
|
|
return IMAGE_DATA_TYPE_BYTE4;
|
|
else
|
|
return IMAGE_DATA_TYPE_BYTE;
|
|
}
|
|
|
|
}
|
|
|
|
ImageInput *in = ImageInput::create(filename);
|
|
|
|
if(in) {
|
|
ImageSpec spec;
|
|
|
|
if(in->open(filename, spec)) {
|
|
/* check the main format, and channel formats;
|
|
* if any take up more than one byte, we'll need a float texture slot */
|
|
if(spec.format.basesize() > 1) {
|
|
is_float = true;
|
|
is_linear = true;
|
|
}
|
|
|
|
for(size_t channel = 0; channel < spec.channelformats.size(); channel++) {
|
|
if(spec.channelformats[channel].basesize() > 1) {
|
|
is_float = true;
|
|
is_linear = true;
|
|
}
|
|
}
|
|
|
|
channels = spec.nchannels;
|
|
|
|
/* basic color space detection, not great but better than nothing
|
|
* before we do OpenColorIO integration */
|
|
if(is_float) {
|
|
string colorspace = spec.get_string_attribute("oiio:ColorSpace");
|
|
|
|
is_linear = !(colorspace == "sRGB" ||
|
|
colorspace == "GammaCorrected" ||
|
|
(colorspace == "" &&
|
|
(strcmp(in->format_name(), "png") == 0 ||
|
|
strcmp(in->format_name(), "tiff") == 0 ||
|
|
strcmp(in->format_name(), "dpx") == 0 ||
|
|
strcmp(in->format_name(), "jpeg2000") == 0)));
|
|
}
|
|
else {
|
|
is_linear = false;
|
|
}
|
|
|
|
in->close();
|
|
}
|
|
|
|
delete in;
|
|
}
|
|
|
|
if(is_float) {
|
|
if(channels > 1)
|
|
return IMAGE_DATA_TYPE_FLOAT4;
|
|
else
|
|
return IMAGE_DATA_TYPE_FLOAT;
|
|
}
|
|
else {
|
|
if(channels > 1)
|
|
return IMAGE_DATA_TYPE_BYTE4;
|
|
else
|
|
return IMAGE_DATA_TYPE_BYTE;
|
|
}
|
|
}
|
|
|
|
/* We use a consecutive slot counting scheme on the devices, in order
|
|
* float4, byte4, float, byte.
|
|
* These functions convert the slot ids from ImageManager "images" ones
|
|
* to device ones and vice versa. */
|
|
int ImageManager::type_index_to_flattened_slot(int slot, ImageDataType type)
|
|
{
|
|
if(type == IMAGE_DATA_TYPE_BYTE4)
|
|
return slot + tex_image_byte4_start;
|
|
else if(type == IMAGE_DATA_TYPE_FLOAT)
|
|
return slot + tex_image_float_start;
|
|
else if(type == IMAGE_DATA_TYPE_BYTE)
|
|
return slot + tex_image_byte_start;
|
|
else
|
|
return slot;
|
|
}
|
|
|
|
int ImageManager::flattened_slot_to_type_index(int flat_slot, ImageDataType *type)
|
|
{
|
|
if(flat_slot >= tex_image_byte_start)
|
|
{
|
|
*type = IMAGE_DATA_TYPE_BYTE;
|
|
return flat_slot - tex_image_byte_start;
|
|
}
|
|
else if(flat_slot >= tex_image_float_start)
|
|
{
|
|
*type = IMAGE_DATA_TYPE_FLOAT;
|
|
return flat_slot - tex_image_float_start;
|
|
}
|
|
else if(flat_slot >= tex_image_byte4_start) {
|
|
*type = IMAGE_DATA_TYPE_BYTE4;
|
|
return flat_slot - tex_image_byte4_start;
|
|
}
|
|
else {
|
|
*type = IMAGE_DATA_TYPE_FLOAT4;
|
|
return flat_slot;
|
|
}
|
|
}
|
|
|
|
string ImageManager::name_from_type(int type)
|
|
{
|
|
if(type == IMAGE_DATA_TYPE_FLOAT4)
|
|
return "float4";
|
|
else if(type == IMAGE_DATA_TYPE_FLOAT)
|
|
return "float";
|
|
else if(type == IMAGE_DATA_TYPE_BYTE)
|
|
return "byte";
|
|
else
|
|
return "byte4";
|
|
}
|
|
|
|
static bool image_equals(ImageManager::Image *image,
|
|
const string& filename,
|
|
void *builtin_data,
|
|
InterpolationType interpolation,
|
|
ExtensionType extension)
|
|
{
|
|
return image->filename == filename &&
|
|
image->builtin_data == builtin_data &&
|
|
image->interpolation == interpolation &&
|
|
image->extension == extension;
|
|
}
|
|
|
|
int ImageManager::add_image(const string& filename,
|
|
void *builtin_data,
|
|
bool animated,
|
|
float frame,
|
|
bool& is_float,
|
|
bool& is_linear,
|
|
InterpolationType interpolation,
|
|
ExtensionType extension,
|
|
bool use_alpha)
|
|
{
|
|
Image *img;
|
|
size_t slot;
|
|
|
|
ImageDataType type = get_image_metadata(filename, builtin_data, is_linear);
|
|
|
|
/* Do we have a float? */
|
|
if(type == IMAGE_DATA_TYPE_FLOAT || type == IMAGE_DATA_TYPE_FLOAT4)
|
|
is_float = true;
|
|
|
|
/* No float and byte textures on GPU yet */
|
|
if(type == IMAGE_DATA_TYPE_FLOAT && tex_num_images[type] == 0)
|
|
type = IMAGE_DATA_TYPE_FLOAT4;
|
|
if(type == IMAGE_DATA_TYPE_BYTE && tex_num_images[type] == 0)
|
|
type = IMAGE_DATA_TYPE_BYTE4;
|
|
|
|
/* Fnd existing image. */
|
|
for(slot = 0; slot < images[type].size(); slot++) {
|
|
img = images[type][slot];
|
|
if(img && image_equals(img,
|
|
filename,
|
|
builtin_data,
|
|
interpolation,
|
|
extension))
|
|
{
|
|
if(img->frame != frame) {
|
|
img->frame = frame;
|
|
img->need_load = true;
|
|
}
|
|
if(img->use_alpha != use_alpha) {
|
|
img->use_alpha = use_alpha;
|
|
img->need_load = true;
|
|
}
|
|
img->users++;
|
|
return type_index_to_flattened_slot(slot, type);
|
|
}
|
|
}
|
|
|
|
/* Find free slot. */
|
|
for(slot = 0; slot < images[type].size(); slot++) {
|
|
if(!images[type][slot])
|
|
break;
|
|
}
|
|
|
|
if(slot == images[type].size()) {
|
|
/* Max images limit reached. */
|
|
if(images[type].size() == tex_num_images[type]) {
|
|
printf("ImageManager::add_image: Reached %s image limit (%d), skipping '%s'\n",
|
|
name_from_type(type).c_str(), tex_num_images[type], filename.c_str());
|
|
return -1;
|
|
}
|
|
|
|
images[type].resize(images[type].size() + 1);
|
|
}
|
|
|
|
/* Add new image. */
|
|
img = new Image();
|
|
img->filename = filename;
|
|
img->builtin_data = builtin_data;
|
|
img->need_load = true;
|
|
img->animated = animated;
|
|
img->frame = frame;
|
|
img->interpolation = interpolation;
|
|
img->extension = extension;
|
|
img->users = 1;
|
|
img->use_alpha = use_alpha;
|
|
|
|
images[type][slot] = img;
|
|
|
|
need_update = true;
|
|
|
|
return type_index_to_flattened_slot(slot, type);
|
|
}
|
|
|
|
void ImageManager::remove_image(int flat_slot)
|
|
{
|
|
ImageDataType type;
|
|
int slot = flattened_slot_to_type_index(flat_slot, &type);
|
|
|
|
Image *image = images[type][slot];
|
|
assert(image && image->users >= 1);
|
|
|
|
/* decrement user count */
|
|
image->users--;
|
|
|
|
/* don't remove immediately, rather do it all together later on. one of
|
|
* the reasons for this is that on shader changes we add and remove nodes
|
|
* that use them, but we do not want to reload the image all the time. */
|
|
if(image->users == 0)
|
|
need_update = true;
|
|
}
|
|
|
|
void ImageManager::remove_image(const string& filename,
|
|
void *builtin_data,
|
|
InterpolationType interpolation,
|
|
ExtensionType extension)
|
|
{
|
|
size_t slot;
|
|
|
|
for(int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
|
|
for(slot = 0; slot < images[type].size(); slot++) {
|
|
if(images[type][slot] && image_equals(images[type][slot],
|
|
filename,
|
|
builtin_data,
|
|
interpolation,
|
|
extension))
|
|
{
|
|
remove_image(type_index_to_flattened_slot(slot, (ImageDataType)type));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* TODO(sergey): Deduplicate with the iteration above, but make it pretty,
|
|
* without bunch of arguments passing around making code readability even
|
|
* more cluttered.
|
|
*/
|
|
void ImageManager::tag_reload_image(const string& filename,
|
|
void *builtin_data,
|
|
InterpolationType interpolation,
|
|
ExtensionType extension)
|
|
{
|
|
for(size_t type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
|
|
for(size_t slot = 0; slot < images[type].size(); slot++) {
|
|
if(images[type][slot] && image_equals(images[type][slot],
|
|
filename,
|
|
builtin_data,
|
|
interpolation,
|
|
extension))
|
|
{
|
|
images[type][slot]->need_load = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ImageManager::file_load_image_generic(Image *img, ImageInput **in, int &width, int &height, int &depth, int &components)
|
|
{
|
|
if(img->filename == "")
|
|
return false;
|
|
|
|
if(!img->builtin_data) {
|
|
/* load image from file through OIIO */
|
|
*in = ImageInput::create(img->filename);
|
|
|
|
if(!*in)
|
|
return false;
|
|
|
|
ImageSpec spec = ImageSpec();
|
|
ImageSpec config = ImageSpec();
|
|
|
|
if(img->use_alpha == false)
|
|
config.attribute("oiio:UnassociatedAlpha", 1);
|
|
|
|
if(!(*in)->open(img->filename, spec, config)) {
|
|
delete *in;
|
|
*in = NULL;
|
|
return false;
|
|
}
|
|
|
|
width = spec.width;
|
|
height = spec.height;
|
|
depth = spec.depth;
|
|
components = spec.nchannels;
|
|
}
|
|
else {
|
|
/* load image using builtin images callbacks */
|
|
if(!builtin_image_info_cb || !builtin_image_pixels_cb)
|
|
return false;
|
|
|
|
bool is_float;
|
|
builtin_image_info_cb(img->filename, img->builtin_data, is_float, width, height, depth, components);
|
|
}
|
|
|
|
/* we only handle certain number of components */
|
|
if(!(components >= 1 && components <= 4)) {
|
|
if(*in) {
|
|
(*in)->close();
|
|
delete *in;
|
|
*in = NULL;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ImageManager::file_load_byte4_image(Image *img, device_vector<uchar4>& tex_img)
|
|
{
|
|
ImageInput *in = NULL;
|
|
int width, height, depth, components;
|
|
|
|
if(!file_load_image_generic(img, &in, width, height, depth, components))
|
|
return false;
|
|
|
|
/* read RGBA pixels */
|
|
uchar *pixels = (uchar*)tex_img.resize(width, height, depth);
|
|
if(pixels == NULL) {
|
|
return false;
|
|
}
|
|
bool cmyk = false;
|
|
|
|
if(in) {
|
|
if(depth <= 1) {
|
|
int scanlinesize = width*components*sizeof(uchar);
|
|
|
|
in->read_image(TypeDesc::UINT8,
|
|
(uchar*)pixels + (((size_t)height)-1)*scanlinesize,
|
|
AutoStride,
|
|
-scanlinesize,
|
|
AutoStride);
|
|
}
|
|
else {
|
|
in->read_image(TypeDesc::UINT8, (uchar*)pixels);
|
|
}
|
|
|
|
cmyk = strcmp(in->format_name(), "jpeg") == 0 && components == 4;
|
|
|
|
in->close();
|
|
delete in;
|
|
}
|
|
else {
|
|
builtin_image_pixels_cb(img->filename, img->builtin_data, pixels);
|
|
}
|
|
|
|
size_t num_pixels = ((size_t)width) * height * depth;
|
|
if(cmyk) {
|
|
/* CMYK */
|
|
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
|
|
pixels[i*4+2] = (pixels[i*4+2]*pixels[i*4+3])/255;
|
|
pixels[i*4+1] = (pixels[i*4+1]*pixels[i*4+3])/255;
|
|
pixels[i*4+0] = (pixels[i*4+0]*pixels[i*4+3])/255;
|
|
pixels[i*4+3] = 255;
|
|
}
|
|
}
|
|
else if(components == 2) {
|
|
/* grayscale + alpha */
|
|
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
|
|
pixels[i*4+3] = pixels[i*2+1];
|
|
pixels[i*4+2] = pixels[i*2+0];
|
|
pixels[i*4+1] = pixels[i*2+0];
|
|
pixels[i*4+0] = pixels[i*2+0];
|
|
}
|
|
}
|
|
else if(components == 3) {
|
|
/* RGB */
|
|
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
|
|
pixels[i*4+3] = 255;
|
|
pixels[i*4+2] = pixels[i*3+2];
|
|
pixels[i*4+1] = pixels[i*3+1];
|
|
pixels[i*4+0] = pixels[i*3+0];
|
|
}
|
|
}
|
|
else if(components == 1) {
|
|
/* grayscale */
|
|
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
|
|
pixels[i*4+3] = 255;
|
|
pixels[i*4+2] = pixels[i];
|
|
pixels[i*4+1] = pixels[i];
|
|
pixels[i*4+0] = pixels[i];
|
|
}
|
|
}
|
|
|
|
if(img->use_alpha == false) {
|
|
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
|
|
pixels[i*4+3] = 255;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ImageManager::file_load_byte_image(Image *img, device_vector<uchar>& tex_img)
|
|
{
|
|
ImageInput *in = NULL;
|
|
int width, height, depth, components;
|
|
|
|
if(!file_load_image_generic(img, &in, width, height, depth, components))
|
|
return false;
|
|
|
|
/* read BW pixels */
|
|
uchar *pixels = (uchar*)tex_img.resize(width, height, depth);
|
|
if(pixels == NULL) {
|
|
return false;
|
|
}
|
|
|
|
if(in) {
|
|
if(depth <= 1) {
|
|
int scanlinesize = width*components*sizeof(uchar);
|
|
|
|
in->read_image(TypeDesc::UINT8,
|
|
(uchar*)pixels + (((size_t)height)-1)*scanlinesize,
|
|
AutoStride,
|
|
-scanlinesize,
|
|
AutoStride);
|
|
}
|
|
else {
|
|
in->read_image(TypeDesc::UINT8, (uchar*)pixels);
|
|
}
|
|
|
|
in->close();
|
|
delete in;
|
|
}
|
|
else {
|
|
builtin_image_pixels_cb(img->filename, img->builtin_data, pixels);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ImageManager::file_load_float4_image(Image *img, device_vector<float4>& tex_img)
|
|
{
|
|
ImageInput *in = NULL;
|
|
int width, height, depth, components;
|
|
|
|
if(!file_load_image_generic(img, &in, width, height, depth, components))
|
|
return false;
|
|
|
|
/* read RGBA pixels */
|
|
float *pixels = (float*)tex_img.resize(width, height, depth);
|
|
if(pixels == NULL) {
|
|
return false;
|
|
}
|
|
bool cmyk = false;
|
|
|
|
if(in) {
|
|
float *readpixels = pixels;
|
|
vector<float> tmppixels;
|
|
|
|
if(components > 4) {
|
|
tmppixels.resize(((size_t)width)*height*components);
|
|
readpixels = &tmppixels[0];
|
|
}
|
|
|
|
if(depth <= 1) {
|
|
int scanlinesize = width*components*sizeof(float);
|
|
|
|
in->read_image(TypeDesc::FLOAT,
|
|
(uchar*)readpixels + (height-1)*scanlinesize,
|
|
AutoStride,
|
|
-scanlinesize,
|
|
AutoStride);
|
|
}
|
|
else {
|
|
in->read_image(TypeDesc::FLOAT, (uchar*)readpixels);
|
|
}
|
|
|
|
if(components > 4) {
|
|
size_t dimensions = ((size_t)width)*height;
|
|
for(size_t i = dimensions-1, pixel = 0; pixel < dimensions; pixel++, i--) {
|
|
pixels[i*4+3] = tmppixels[i*components+3];
|
|
pixels[i*4+2] = tmppixels[i*components+2];
|
|
pixels[i*4+1] = tmppixels[i*components+1];
|
|
pixels[i*4+0] = tmppixels[i*components+0];
|
|
}
|
|
|
|
tmppixels.clear();
|
|
}
|
|
|
|
cmyk = strcmp(in->format_name(), "jpeg") == 0 && components == 4;
|
|
|
|
in->close();
|
|
delete in;
|
|
}
|
|
else {
|
|
builtin_image_float_pixels_cb(img->filename, img->builtin_data, pixels);
|
|
}
|
|
|
|
size_t num_pixels = ((size_t)width) * height * depth;
|
|
if(cmyk) {
|
|
/* CMYK */
|
|
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
|
|
pixels[i*4+3] = 255;
|
|
pixels[i*4+2] = (pixels[i*4+2]*pixels[i*4+3])/255;
|
|
pixels[i*4+1] = (pixels[i*4+1]*pixels[i*4+3])/255;
|
|
pixels[i*4+0] = (pixels[i*4+0]*pixels[i*4+3])/255;
|
|
}
|
|
}
|
|
else if(components == 2) {
|
|
/* grayscale + alpha */
|
|
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
|
|
pixels[i*4+3] = pixels[i*2+1];
|
|
pixels[i*4+2] = pixels[i*2+0];
|
|
pixels[i*4+1] = pixels[i*2+0];
|
|
pixels[i*4+0] = pixels[i*2+0];
|
|
}
|
|
}
|
|
else if(components == 3) {
|
|
/* RGB */
|
|
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
|
|
pixels[i*4+3] = 1.0f;
|
|
pixels[i*4+2] = pixels[i*3+2];
|
|
pixels[i*4+1] = pixels[i*3+1];
|
|
pixels[i*4+0] = pixels[i*3+0];
|
|
}
|
|
}
|
|
else if(components == 1) {
|
|
/* grayscale */
|
|
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
|
|
pixels[i*4+3] = 1.0f;
|
|
pixels[i*4+2] = pixels[i];
|
|
pixels[i*4+1] = pixels[i];
|
|
pixels[i*4+0] = pixels[i];
|
|
}
|
|
}
|
|
|
|
if(img->use_alpha == false) {
|
|
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
|
|
pixels[i*4+3] = 1.0f;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ImageManager::file_load_float_image(Image *img, device_vector<float>& tex_img)
|
|
{
|
|
ImageInput *in = NULL;
|
|
int width, height, depth, components;
|
|
|
|
if(!file_load_image_generic(img, &in, width, height, depth, components))
|
|
return false;
|
|
|
|
/* read BW pixels */
|
|
float *pixels = (float*)tex_img.resize(width, height, depth);
|
|
if(pixels == NULL) {
|
|
return false;
|
|
}
|
|
|
|
if(in) {
|
|
float *readpixels = pixels;
|
|
|
|
if(depth <= 1) {
|
|
int scanlinesize = width*components*sizeof(float);
|
|
|
|
in->read_image(TypeDesc::FLOAT,
|
|
(uchar*)readpixels + (height-1)*scanlinesize,
|
|
AutoStride,
|
|
-scanlinesize,
|
|
AutoStride);
|
|
}
|
|
else {
|
|
in->read_image(TypeDesc::FLOAT, (uchar*)readpixels);
|
|
}
|
|
|
|
in->close();
|
|
delete in;
|
|
}
|
|
else {
|
|
builtin_image_float_pixels_cb(img->filename, img->builtin_data, pixels);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void ImageManager::device_load_image(Device *device, DeviceScene *dscene, ImageDataType type, int slot, Progress *progress)
|
|
{
|
|
if(progress->get_cancel())
|
|
return;
|
|
|
|
Image *img = images[type][slot];
|
|
|
|
if(osl_texture_system && !img->builtin_data)
|
|
return;
|
|
|
|
string filename = path_filename(images[type][slot]->filename);
|
|
progress->set_status("Updating Images", "Loading " + filename);
|
|
|
|
/* Slot assignment */
|
|
int flat_slot = type_index_to_flattened_slot(slot, type);
|
|
|
|
string name;
|
|
if(flat_slot >= 100)
|
|
name = string_printf("__tex_image_%s_%d", name_from_type(type).c_str(), flat_slot);
|
|
else if(flat_slot >= 10)
|
|
name = string_printf("__tex_image_%s_0%d", name_from_type(type).c_str(), flat_slot);
|
|
else
|
|
name = string_printf("__tex_image_%s_00%d", name_from_type(type).c_str(), flat_slot);
|
|
|
|
if(type == IMAGE_DATA_TYPE_FLOAT4) {
|
|
device_vector<float4>& tex_img = dscene->tex_float4_image[slot];
|
|
|
|
if(tex_img.device_pointer) {
|
|
thread_scoped_lock device_lock(device_mutex);
|
|
device->tex_free(tex_img);
|
|
}
|
|
|
|
if(!file_load_float4_image(img, tex_img)) {
|
|
/* on failure to load, we set a 1x1 pixels pink image */
|
|
float *pixels = (float*)tex_img.resize(1, 1);
|
|
|
|
pixels[0] = TEX_IMAGE_MISSING_R;
|
|
pixels[1] = TEX_IMAGE_MISSING_G;
|
|
pixels[2] = TEX_IMAGE_MISSING_B;
|
|
pixels[3] = TEX_IMAGE_MISSING_A;
|
|
}
|
|
|
|
if(!pack_images) {
|
|
thread_scoped_lock device_lock(device_mutex);
|
|
device->tex_alloc(name.c_str(),
|
|
tex_img,
|
|
img->interpolation,
|
|
img->extension);
|
|
}
|
|
}
|
|
else if(type == IMAGE_DATA_TYPE_FLOAT) {
|
|
device_vector<float>& tex_img = dscene->tex_float_image[slot];
|
|
|
|
if(tex_img.device_pointer) {
|
|
thread_scoped_lock device_lock(device_mutex);
|
|
device->tex_free(tex_img);
|
|
}
|
|
|
|
if(!file_load_float_image(img, tex_img)) {
|
|
/* on failure to load, we set a 1x1 pixels pink image */
|
|
float *pixels = (float*)tex_img.resize(1, 1);
|
|
|
|
pixels[0] = TEX_IMAGE_MISSING_R;
|
|
}
|
|
|
|
if(!pack_images) {
|
|
thread_scoped_lock device_lock(device_mutex);
|
|
device->tex_alloc(name.c_str(),
|
|
tex_img,
|
|
img->interpolation,
|
|
img->extension);
|
|
}
|
|
}
|
|
else if(type == IMAGE_DATA_TYPE_BYTE4){
|
|
device_vector<uchar4>& tex_img = dscene->tex_byte4_image[slot];
|
|
|
|
if(tex_img.device_pointer) {
|
|
thread_scoped_lock device_lock(device_mutex);
|
|
device->tex_free(tex_img);
|
|
}
|
|
|
|
if(!file_load_byte4_image(img, tex_img)) {
|
|
/* on failure to load, we set a 1x1 pixels pink image */
|
|
uchar *pixels = (uchar*)tex_img.resize(1, 1);
|
|
|
|
pixels[0] = (TEX_IMAGE_MISSING_R * 255);
|
|
pixels[1] = (TEX_IMAGE_MISSING_G * 255);
|
|
pixels[2] = (TEX_IMAGE_MISSING_B * 255);
|
|
pixels[3] = (TEX_IMAGE_MISSING_A * 255);
|
|
}
|
|
|
|
if(!pack_images) {
|
|
thread_scoped_lock device_lock(device_mutex);
|
|
device->tex_alloc(name.c_str(),
|
|
tex_img,
|
|
img->interpolation,
|
|
img->extension);
|
|
}
|
|
}
|
|
else {
|
|
device_vector<uchar>& tex_img = dscene->tex_byte_image[slot];
|
|
|
|
if(tex_img.device_pointer) {
|
|
thread_scoped_lock device_lock(device_mutex);
|
|
device->tex_free(tex_img);
|
|
}
|
|
|
|
if(!file_load_byte_image(img, tex_img)) {
|
|
/* on failure to load, we set a 1x1 pixels pink image */
|
|
uchar *pixels = (uchar*)tex_img.resize(1, 1);
|
|
|
|
pixels[0] = (TEX_IMAGE_MISSING_R * 255);
|
|
}
|
|
|
|
if(!pack_images) {
|
|
thread_scoped_lock device_lock(device_mutex);
|
|
device->tex_alloc(name.c_str(),
|
|
tex_img,
|
|
img->interpolation,
|
|
img->extension);
|
|
}
|
|
}
|
|
|
|
img->need_load = false;
|
|
}
|
|
|
|
void ImageManager::device_free_image(Device *device, DeviceScene *dscene, ImageDataType type, int slot)
|
|
{
|
|
Image *img = images[type][slot];
|
|
|
|
if(img) {
|
|
if(osl_texture_system && !img->builtin_data) {
|
|
#ifdef WITH_OSL
|
|
ustring filename(images[type][slot]->filename);
|
|
((OSL::TextureSystem*)osl_texture_system)->invalidate(filename);
|
|
#endif
|
|
}
|
|
else if(type == IMAGE_DATA_TYPE_FLOAT4) {
|
|
device_vector<float4>& tex_img = dscene->tex_float4_image[slot];
|
|
|
|
if(tex_img.device_pointer) {
|
|
thread_scoped_lock device_lock(device_mutex);
|
|
device->tex_free(tex_img);
|
|
}
|
|
|
|
tex_img.clear();
|
|
}
|
|
else if(type == IMAGE_DATA_TYPE_FLOAT) {
|
|
device_vector<float>& tex_img = dscene->tex_float_image[slot];
|
|
|
|
if(tex_img.device_pointer) {
|
|
thread_scoped_lock device_lock(device_mutex);
|
|
device->tex_free(tex_img);
|
|
}
|
|
|
|
tex_img.clear();
|
|
}
|
|
else if(type == IMAGE_DATA_TYPE_BYTE4){
|
|
device_vector<uchar4>& tex_img = dscene->tex_byte4_image[slot];
|
|
|
|
if(tex_img.device_pointer) {
|
|
thread_scoped_lock device_lock(device_mutex);
|
|
device->tex_free(tex_img);
|
|
}
|
|
|
|
tex_img.clear();
|
|
}
|
|
else {
|
|
device_vector<uchar>& tex_img = dscene->tex_byte_image[slot];
|
|
|
|
if(tex_img.device_pointer) {
|
|
thread_scoped_lock device_lock(device_mutex);
|
|
device->tex_free(tex_img);
|
|
}
|
|
|
|
tex_img.clear();
|
|
}
|
|
|
|
delete images[type][slot];
|
|
images[type][slot] = NULL;
|
|
}
|
|
}
|
|
|
|
void ImageManager::device_update(Device *device, DeviceScene *dscene, Progress& progress)
|
|
{
|
|
if(!need_update)
|
|
return;
|
|
|
|
TaskPool pool;
|
|
|
|
for(int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
|
|
for(size_t slot = 0; slot < images[type].size(); slot++) {
|
|
if(!images[type][slot])
|
|
continue;
|
|
|
|
if(images[type][slot]->users == 0) {
|
|
device_free_image(device, dscene, (ImageDataType)type, slot);
|
|
}
|
|
else if(images[type][slot]->need_load) {
|
|
if(!osl_texture_system || images[type][slot]->builtin_data)
|
|
pool.push(function_bind(&ImageManager::device_load_image, this, device, dscene, (ImageDataType)type, slot, &progress));
|
|
}
|
|
}
|
|
}
|
|
|
|
pool.wait_work();
|
|
|
|
if(pack_images)
|
|
device_pack_images(device, dscene, progress);
|
|
|
|
need_update = false;
|
|
}
|
|
|
|
void ImageManager::device_update_slot(Device *device,
|
|
DeviceScene *dscene,
|
|
int flat_slot,
|
|
Progress *progress)
|
|
{
|
|
ImageDataType type;
|
|
int slot = flattened_slot_to_type_index(flat_slot, &type);
|
|
|
|
Image *image = images[type][slot];
|
|
assert(image != NULL);
|
|
|
|
if(image->users == 0) {
|
|
device_free_image(device, dscene, type, slot);
|
|
}
|
|
else if(image->need_load) {
|
|
if(!osl_texture_system || image->builtin_data)
|
|
device_load_image(device,
|
|
dscene,
|
|
type,
|
|
slot,
|
|
progress);
|
|
}
|
|
}
|
|
|
|
void ImageManager::device_pack_images(Device *device,
|
|
DeviceScene *dscene,
|
|
Progress& /*progess*/)
|
|
{
|
|
/* For OpenCL, we pack all image textures into a single large texture, and
|
|
* do our own interpolation in the kernel. */
|
|
size_t size = 0, offset = 0;
|
|
ImageDataType type;
|
|
|
|
int info_size = tex_num_images[IMAGE_DATA_TYPE_FLOAT4] + tex_num_images[IMAGE_DATA_TYPE_BYTE4];
|
|
uint4 *info = dscene->tex_image_packed_info.resize(info_size);
|
|
|
|
/* Byte Textures*/
|
|
type = IMAGE_DATA_TYPE_BYTE4;
|
|
|
|
for(size_t slot = 0; slot < images[type].size(); slot++) {
|
|
if(!images[type][slot])
|
|
continue;
|
|
|
|
device_vector<uchar4>& tex_img = dscene->tex_byte4_image[slot];
|
|
size += tex_img.size();
|
|
}
|
|
|
|
uchar4 *pixels_byte = dscene->tex_image_byte4_packed.resize(size);
|
|
|
|
for(size_t slot = 0; slot < images[type].size(); slot++) {
|
|
if(!images[type][slot])
|
|
continue;
|
|
|
|
device_vector<uchar4>& tex_img = dscene->tex_byte4_image[slot];
|
|
|
|
/* The image options are packed
|
|
bit 0 -> periodic
|
|
bit 1 + 2 -> interpolation type */
|
|
uint8_t interpolation = (images[type][slot]->interpolation << 1) + 1;
|
|
info[type_index_to_flattened_slot(slot, type)] = make_uint4(tex_img.data_width, tex_img.data_height, offset, interpolation);
|
|
|
|
memcpy(pixels_byte+offset, (void*)tex_img.data_pointer, tex_img.memory_size());
|
|
offset += tex_img.size();
|
|
}
|
|
|
|
/* Float Textures*/
|
|
type = IMAGE_DATA_TYPE_FLOAT4;
|
|
size = 0, offset = 0;
|
|
|
|
for(size_t slot = 0; slot < images[type].size(); slot++) {
|
|
if(!images[type][slot])
|
|
continue;
|
|
|
|
device_vector<float4>& tex_img = dscene->tex_float4_image[slot];
|
|
size += tex_img.size();
|
|
}
|
|
|
|
float4 *pixels_float = dscene->tex_image_float4_packed.resize(size);
|
|
|
|
for(size_t slot = 0; slot < images[type].size(); slot++) {
|
|
if(!images[type][slot])
|
|
continue;
|
|
|
|
device_vector<float4>& tex_img = dscene->tex_float4_image[slot];
|
|
|
|
/* todo: support 3D textures, only CPU for now */
|
|
|
|
/* The image options are packed
|
|
bit 0 -> periodic
|
|
bit 1 + 2 -> interpolation type */
|
|
uint8_t interpolation = (images[type][slot]->interpolation << 1) + 1;
|
|
info[type_index_to_flattened_slot(slot, type)] = make_uint4(tex_img.data_width, tex_img.data_height, offset, interpolation);
|
|
|
|
memcpy(pixels_float+offset, (void*)tex_img.data_pointer, tex_img.memory_size());
|
|
offset += tex_img.size();
|
|
}
|
|
|
|
if(dscene->tex_image_byte4_packed.size()) {
|
|
if(dscene->tex_image_byte4_packed.device_pointer) {
|
|
thread_scoped_lock device_lock(device_mutex);
|
|
device->tex_free(dscene->tex_image_byte4_packed);
|
|
}
|
|
device->tex_alloc("__tex_image_byte4_packed", dscene->tex_image_byte4_packed);
|
|
}
|
|
if(dscene->tex_image_float4_packed.size()) {
|
|
if(dscene->tex_image_float4_packed.device_pointer) {
|
|
thread_scoped_lock device_lock(device_mutex);
|
|
device->tex_free(dscene->tex_image_float4_packed);
|
|
}
|
|
device->tex_alloc("__tex_image_float4_packed", dscene->tex_image_float4_packed);
|
|
}
|
|
if(dscene->tex_image_packed_info.size()) {
|
|
if(dscene->tex_image_packed_info.device_pointer) {
|
|
thread_scoped_lock device_lock(device_mutex);
|
|
device->tex_free(dscene->tex_image_packed_info);
|
|
}
|
|
device->tex_alloc("__tex_image_packed_info", dscene->tex_image_packed_info);
|
|
}
|
|
}
|
|
|
|
void ImageManager::device_free_builtin(Device *device, DeviceScene *dscene)
|
|
{
|
|
for(int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
|
|
for(size_t slot = 0; slot < images[type].size(); slot++) {
|
|
if(images[type][slot] && images[type][slot]->builtin_data)
|
|
device_free_image(device, dscene, (ImageDataType)type, slot);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ImageManager::device_free(Device *device, DeviceScene *dscene)
|
|
{
|
|
for(int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
|
|
for(size_t slot = 0; slot < images[type].size(); slot++) {
|
|
device_free_image(device, dscene, (ImageDataType)type, slot);
|
|
}
|
|
images[type].clear();
|
|
}
|
|
|
|
device->tex_free(dscene->tex_image_byte4_packed);
|
|
device->tex_free(dscene->tex_image_float4_packed);
|
|
device->tex_free(dscene->tex_image_packed_info);
|
|
|
|
dscene->tex_image_byte4_packed.clear();
|
|
dscene->tex_image_float4_packed.clear();
|
|
dscene->tex_image_packed_info.clear();
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|