blender/intern/cycles/render/image.cpp
Thomas Dinges 3c85e1ca1a Cycles: Add support for single channel byte textures.
This way, we also save 3/4th of memory for single channel byte textures (e.g. Bump Maps).

Note: In order for this to work, the texture *must* have 1 channel only.
In Gimp you can e.g. do that via the menu: Image -> Mode -> Grayscale
2016-05-12 14:51:42 +02:00

1110 lines
30 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "device.h"
#include "image.h"
#include "scene.h"
#include "util_foreach.h"
#include "util_path.h"
#include "util_progress.h"
#include "util_texture.h"
#ifdef WITH_OSL
#include <OSL/oslexec.h>
#endif
CCL_NAMESPACE_BEGIN
ImageManager::ImageManager(const DeviceInfo& info)
{
need_update = true;
pack_images = false;
osl_texture_system = NULL;
animation_frame = 0;
/* Set image limits */
/* CPU */
if(info.type == DEVICE_CPU) {
tex_num_images[IMAGE_DATA_TYPE_BYTE4] = TEX_NUM_BYTE4_IMAGES_CPU;
tex_num_images[IMAGE_DATA_TYPE_FLOAT4] = TEX_NUM_FLOAT4_IMAGES_CPU;
tex_num_images[IMAGE_DATA_TYPE_FLOAT] = TEX_NUM_FLOAT_IMAGES_CPU;
tex_num_images[IMAGE_DATA_TYPE_BYTE] = TEX_NUM_BYTE_IMAGES_CPU;
tex_image_byte4_start = TEX_IMAGE_BYTE4_START_CPU;
tex_image_float_start = TEX_IMAGE_FLOAT_START_CPU;
tex_image_byte_start = TEX_IMAGE_BYTE_START_CPU;
}
/* CUDA (Fermi) */
else if((info.type == DEVICE_CUDA || info.type == DEVICE_MULTI) && !info.extended_images) {
tex_num_images[IMAGE_DATA_TYPE_BYTE4] = TEX_NUM_BYTE4_IMAGES_CUDA;
tex_num_images[IMAGE_DATA_TYPE_FLOAT4] = TEX_NUM_FLOAT4_IMAGES_CUDA;
tex_num_images[IMAGE_DATA_TYPE_FLOAT] = TEX_NUM_FLOAT_IMAGES_CUDA;
tex_num_images[IMAGE_DATA_TYPE_BYTE] = TEX_NUM_BYTE_IMAGES_CUDA;
tex_image_byte4_start = TEX_IMAGE_BYTE4_START_CUDA;
tex_image_float_start = TEX_IMAGE_FLOAT_START_CUDA;
tex_image_byte_start = TEX_IMAGE_BYTE_START_CUDA;
}
/* CUDA (Kepler and above) */
else if((info.type == DEVICE_CUDA || info.type == DEVICE_MULTI) && info.extended_images) {
tex_num_images[IMAGE_DATA_TYPE_BYTE4] = TEX_NUM_BYTE4_IMAGES_CUDA_KEPLER;
tex_num_images[IMAGE_DATA_TYPE_FLOAT4] = TEX_NUM_FLOAT4_IMAGES_CUDA_KEPLER;
tex_num_images[IMAGE_DATA_TYPE_FLOAT] = TEX_NUM_FLOAT_IMAGES_CUDA_KEPLER;
tex_num_images[IMAGE_DATA_TYPE_BYTE] = TEX_NUM_BYTE_IMAGES_CUDA_KEPLER;
tex_image_byte4_start = TEX_IMAGE_BYTE4_START_CUDA_KEPLER;
tex_image_float_start = TEX_IMAGE_FLOAT_START_CUDA_KEPLER;
tex_image_byte_start = TEX_IMAGE_BYTE_START_CUDA_KEPLER;
}
/* OpenCL */
else if(info.pack_images) {
tex_num_images[IMAGE_DATA_TYPE_BYTE4] = TEX_NUM_BYTE4_IMAGES_OPENCL;
tex_num_images[IMAGE_DATA_TYPE_FLOAT4] = TEX_NUM_FLOAT4_IMAGES_OPENCL;
tex_num_images[IMAGE_DATA_TYPE_FLOAT] = TEX_NUM_FLOAT_IMAGES_OPENCL;
tex_num_images[IMAGE_DATA_TYPE_BYTE] = TEX_NUM_BYTE_IMAGES_OPENCL;
tex_image_byte4_start = TEX_IMAGE_BYTE4_START_OPENCL;
tex_image_float_start = TEX_IMAGE_FLOAT_START_OPENCL;
tex_image_byte_start = TEX_IMAGE_BYTE_START_OPENCL;
}
/* Should never happen */
else {
tex_num_images[IMAGE_DATA_TYPE_BYTE4] = 0;
tex_num_images[IMAGE_DATA_TYPE_FLOAT4] = 0;
tex_num_images[IMAGE_DATA_TYPE_FLOAT] = 0;
tex_num_images[IMAGE_DATA_TYPE_BYTE] = 0;
tex_image_byte4_start = 0;
tex_image_float_start = 0;
tex_image_byte_start = 0;
assert(0);
}
}
ImageManager::~ImageManager()
{
for(size_t type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for(size_t slot = 0; slot < images[type].size(); slot++)
assert(!images[type][slot]);
}
}
void ImageManager::set_pack_images(bool pack_images_)
{
pack_images = pack_images_;
}
void ImageManager::set_osl_texture_system(void *texture_system)
{
osl_texture_system = texture_system;
}
bool ImageManager::set_animation_frame_update(int frame)
{
if(frame != animation_frame) {
animation_frame = frame;
for(size_t type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for(size_t slot = 0; slot < images[type].size(); slot++) {
if(images[type][slot] && images[type][slot]->animated)
return true;
}
}
}
return false;
}
ImageManager::ImageDataType ImageManager::get_image_metadata(const string& filename,
void *builtin_data,
bool& is_linear)
{
bool is_float = false;
is_linear = false;
int channels = 4;
if(builtin_data) {
if(builtin_image_info_cb) {
int width, height, depth;
builtin_image_info_cb(filename, builtin_data, is_float, width, height, depth, channels);
}
if(is_float) {
is_linear = true;
if(channels > 1)
return IMAGE_DATA_TYPE_FLOAT4;
else
return IMAGE_DATA_TYPE_FLOAT;
}
else {
if(channels > 1)
return IMAGE_DATA_TYPE_BYTE4;
else
return IMAGE_DATA_TYPE_BYTE;
}
}
ImageInput *in = ImageInput::create(filename);
if(in) {
ImageSpec spec;
if(in->open(filename, spec)) {
/* check the main format, and channel formats;
* if any take up more than one byte, we'll need a float texture slot */
if(spec.format.basesize() > 1) {
is_float = true;
is_linear = true;
}
for(size_t channel = 0; channel < spec.channelformats.size(); channel++) {
if(spec.channelformats[channel].basesize() > 1) {
is_float = true;
is_linear = true;
}
}
channels = spec.nchannels;
/* basic color space detection, not great but better than nothing
* before we do OpenColorIO integration */
if(is_float) {
string colorspace = spec.get_string_attribute("oiio:ColorSpace");
is_linear = !(colorspace == "sRGB" ||
colorspace == "GammaCorrected" ||
(colorspace == "" &&
(strcmp(in->format_name(), "png") == 0 ||
strcmp(in->format_name(), "tiff") == 0 ||
strcmp(in->format_name(), "dpx") == 0 ||
strcmp(in->format_name(), "jpeg2000") == 0)));
}
else {
is_linear = false;
}
in->close();
}
delete in;
}
if(is_float) {
if(channels > 1)
return IMAGE_DATA_TYPE_FLOAT4;
else
return IMAGE_DATA_TYPE_FLOAT;
}
else {
if(channels > 1)
return IMAGE_DATA_TYPE_BYTE4;
else
return IMAGE_DATA_TYPE_BYTE;
}
}
/* We use a consecutive slot counting scheme on the devices, in order
* float4, byte4, float, byte.
* These functions convert the slot ids from ImageManager "images" ones
* to device ones and vice versa. */
int ImageManager::type_index_to_flattened_slot(int slot, ImageDataType type)
{
if(type == IMAGE_DATA_TYPE_BYTE4)
return slot + tex_image_byte4_start;
else if(type == IMAGE_DATA_TYPE_FLOAT)
return slot + tex_image_float_start;
else if(type == IMAGE_DATA_TYPE_BYTE)
return slot + tex_image_byte_start;
else
return slot;
}
int ImageManager::flattened_slot_to_type_index(int flat_slot, ImageDataType *type)
{
if(flat_slot >= tex_image_byte_start)
{
*type = IMAGE_DATA_TYPE_BYTE;
return flat_slot - tex_image_byte_start;
}
else if(flat_slot >= tex_image_float_start)
{
*type = IMAGE_DATA_TYPE_FLOAT;
return flat_slot - tex_image_float_start;
}
else if(flat_slot >= tex_image_byte4_start) {
*type = IMAGE_DATA_TYPE_BYTE4;
return flat_slot - tex_image_byte4_start;
}
else {
*type = IMAGE_DATA_TYPE_FLOAT4;
return flat_slot;
}
}
string ImageManager::name_from_type(int type)
{
if(type == IMAGE_DATA_TYPE_FLOAT4)
return "float4";
else if(type == IMAGE_DATA_TYPE_FLOAT)
return "float";
else if(type == IMAGE_DATA_TYPE_BYTE)
return "byte";
else
return "byte4";
}
static bool image_equals(ImageManager::Image *image,
const string& filename,
void *builtin_data,
InterpolationType interpolation,
ExtensionType extension)
{
return image->filename == filename &&
image->builtin_data == builtin_data &&
image->interpolation == interpolation &&
image->extension == extension;
}
int ImageManager::add_image(const string& filename,
void *builtin_data,
bool animated,
float frame,
bool& is_float,
bool& is_linear,
InterpolationType interpolation,
ExtensionType extension,
bool use_alpha)
{
Image *img;
size_t slot;
ImageDataType type = get_image_metadata(filename, builtin_data, is_linear);
/* Do we have a float? */
if(type == IMAGE_DATA_TYPE_FLOAT || type == IMAGE_DATA_TYPE_FLOAT4)
is_float = true;
/* No float and byte textures on GPU yet */
if(type == IMAGE_DATA_TYPE_FLOAT && tex_num_images[type] == 0)
type = IMAGE_DATA_TYPE_FLOAT4;
if(type == IMAGE_DATA_TYPE_BYTE && tex_num_images[type] == 0)
type = IMAGE_DATA_TYPE_BYTE4;
/* Fnd existing image. */
for(slot = 0; slot < images[type].size(); slot++) {
img = images[type][slot];
if(img && image_equals(img,
filename,
builtin_data,
interpolation,
extension))
{
if(img->frame != frame) {
img->frame = frame;
img->need_load = true;
}
if(img->use_alpha != use_alpha) {
img->use_alpha = use_alpha;
img->need_load = true;
}
img->users++;
return type_index_to_flattened_slot(slot, type);
}
}
/* Find free slot. */
for(slot = 0; slot < images[type].size(); slot++) {
if(!images[type][slot])
break;
}
if(slot == images[type].size()) {
/* Max images limit reached. */
if(images[type].size() == tex_num_images[type]) {
printf("ImageManager::add_image: Reached %s image limit (%d), skipping '%s'\n",
name_from_type(type).c_str(), tex_num_images[type], filename.c_str());
return -1;
}
images[type].resize(images[type].size() + 1);
}
/* Add new image. */
img = new Image();
img->filename = filename;
img->builtin_data = builtin_data;
img->need_load = true;
img->animated = animated;
img->frame = frame;
img->interpolation = interpolation;
img->extension = extension;
img->users = 1;
img->use_alpha = use_alpha;
images[type][slot] = img;
need_update = true;
return type_index_to_flattened_slot(slot, type);
}
void ImageManager::remove_image(int flat_slot)
{
ImageDataType type;
int slot = flattened_slot_to_type_index(flat_slot, &type);
Image *image = images[type][slot];
assert(image && image->users >= 1);
/* decrement user count */
image->users--;
/* don't remove immediately, rather do it all together later on. one of
* the reasons for this is that on shader changes we add and remove nodes
* that use them, but we do not want to reload the image all the time. */
if(image->users == 0)
need_update = true;
}
void ImageManager::remove_image(const string& filename,
void *builtin_data,
InterpolationType interpolation,
ExtensionType extension)
{
size_t slot;
for(int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for(slot = 0; slot < images[type].size(); slot++) {
if(images[type][slot] && image_equals(images[type][slot],
filename,
builtin_data,
interpolation,
extension))
{
remove_image(type_index_to_flattened_slot(slot, (ImageDataType)type));
return;
}
}
}
}
/* TODO(sergey): Deduplicate with the iteration above, but make it pretty,
* without bunch of arguments passing around making code readability even
* more cluttered.
*/
void ImageManager::tag_reload_image(const string& filename,
void *builtin_data,
InterpolationType interpolation,
ExtensionType extension)
{
for(size_t type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for(size_t slot = 0; slot < images[type].size(); slot++) {
if(images[type][slot] && image_equals(images[type][slot],
filename,
builtin_data,
interpolation,
extension))
{
images[type][slot]->need_load = true;
break;
}
}
}
}
bool ImageManager::file_load_image_generic(Image *img, ImageInput **in, int &width, int &height, int &depth, int &components)
{
if(img->filename == "")
return false;
if(!img->builtin_data) {
/* load image from file through OIIO */
*in = ImageInput::create(img->filename);
if(!*in)
return false;
ImageSpec spec = ImageSpec();
ImageSpec config = ImageSpec();
if(img->use_alpha == false)
config.attribute("oiio:UnassociatedAlpha", 1);
if(!(*in)->open(img->filename, spec, config)) {
delete *in;
*in = NULL;
return false;
}
width = spec.width;
height = spec.height;
depth = spec.depth;
components = spec.nchannels;
}
else {
/* load image using builtin images callbacks */
if(!builtin_image_info_cb || !builtin_image_pixels_cb)
return false;
bool is_float;
builtin_image_info_cb(img->filename, img->builtin_data, is_float, width, height, depth, components);
}
/* we only handle certain number of components */
if(!(components >= 1 && components <= 4)) {
if(*in) {
(*in)->close();
delete *in;
*in = NULL;
}
return false;
}
return true;
}
bool ImageManager::file_load_byte4_image(Image *img, device_vector<uchar4>& tex_img)
{
ImageInput *in = NULL;
int width, height, depth, components;
if(!file_load_image_generic(img, &in, width, height, depth, components))
return false;
/* read RGBA pixels */
uchar *pixels = (uchar*)tex_img.resize(width, height, depth);
if(pixels == NULL) {
return false;
}
bool cmyk = false;
if(in) {
if(depth <= 1) {
int scanlinesize = width*components*sizeof(uchar);
in->read_image(TypeDesc::UINT8,
(uchar*)pixels + (((size_t)height)-1)*scanlinesize,
AutoStride,
-scanlinesize,
AutoStride);
}
else {
in->read_image(TypeDesc::UINT8, (uchar*)pixels);
}
cmyk = strcmp(in->format_name(), "jpeg") == 0 && components == 4;
in->close();
delete in;
}
else {
builtin_image_pixels_cb(img->filename, img->builtin_data, pixels);
}
size_t num_pixels = ((size_t)width) * height * depth;
if(cmyk) {
/* CMYK */
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i*4+2] = (pixels[i*4+2]*pixels[i*4+3])/255;
pixels[i*4+1] = (pixels[i*4+1]*pixels[i*4+3])/255;
pixels[i*4+0] = (pixels[i*4+0]*pixels[i*4+3])/255;
pixels[i*4+3] = 255;
}
}
else if(components == 2) {
/* grayscale + alpha */
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i*4+3] = pixels[i*2+1];
pixels[i*4+2] = pixels[i*2+0];
pixels[i*4+1] = pixels[i*2+0];
pixels[i*4+0] = pixels[i*2+0];
}
}
else if(components == 3) {
/* RGB */
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i*4+3] = 255;
pixels[i*4+2] = pixels[i*3+2];
pixels[i*4+1] = pixels[i*3+1];
pixels[i*4+0] = pixels[i*3+0];
}
}
else if(components == 1) {
/* grayscale */
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i*4+3] = 255;
pixels[i*4+2] = pixels[i];
pixels[i*4+1] = pixels[i];
pixels[i*4+0] = pixels[i];
}
}
if(img->use_alpha == false) {
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i*4+3] = 255;
}
}
return true;
}
bool ImageManager::file_load_byte_image(Image *img, device_vector<uchar>& tex_img)
{
ImageInput *in = NULL;
int width, height, depth, components;
if(!file_load_image_generic(img, &in, width, height, depth, components))
return false;
/* read BW pixels */
uchar *pixels = (uchar*)tex_img.resize(width, height, depth);
if(pixels == NULL) {
return false;
}
if(in) {
if(depth <= 1) {
int scanlinesize = width*components*sizeof(uchar);
in->read_image(TypeDesc::UINT8,
(uchar*)pixels + (((size_t)height)-1)*scanlinesize,
AutoStride,
-scanlinesize,
AutoStride);
}
else {
in->read_image(TypeDesc::UINT8, (uchar*)pixels);
}
in->close();
delete in;
}
else {
builtin_image_pixels_cb(img->filename, img->builtin_data, pixels);
}
return true;
}
bool ImageManager::file_load_float4_image(Image *img, device_vector<float4>& tex_img)
{
ImageInput *in = NULL;
int width, height, depth, components;
if(!file_load_image_generic(img, &in, width, height, depth, components))
return false;
/* read RGBA pixels */
float *pixels = (float*)tex_img.resize(width, height, depth);
if(pixels == NULL) {
return false;
}
bool cmyk = false;
if(in) {
float *readpixels = pixels;
vector<float> tmppixels;
if(components > 4) {
tmppixels.resize(((size_t)width)*height*components);
readpixels = &tmppixels[0];
}
if(depth <= 1) {
int scanlinesize = width*components*sizeof(float);
in->read_image(TypeDesc::FLOAT,
(uchar*)readpixels + (height-1)*scanlinesize,
AutoStride,
-scanlinesize,
AutoStride);
}
else {
in->read_image(TypeDesc::FLOAT, (uchar*)readpixels);
}
if(components > 4) {
size_t dimensions = ((size_t)width)*height;
for(size_t i = dimensions-1, pixel = 0; pixel < dimensions; pixel++, i--) {
pixels[i*4+3] = tmppixels[i*components+3];
pixels[i*4+2] = tmppixels[i*components+2];
pixels[i*4+1] = tmppixels[i*components+1];
pixels[i*4+0] = tmppixels[i*components+0];
}
tmppixels.clear();
}
cmyk = strcmp(in->format_name(), "jpeg") == 0 && components == 4;
in->close();
delete in;
}
else {
builtin_image_float_pixels_cb(img->filename, img->builtin_data, pixels);
}
size_t num_pixels = ((size_t)width) * height * depth;
if(cmyk) {
/* CMYK */
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i*4+3] = 255;
pixels[i*4+2] = (pixels[i*4+2]*pixels[i*4+3])/255;
pixels[i*4+1] = (pixels[i*4+1]*pixels[i*4+3])/255;
pixels[i*4+0] = (pixels[i*4+0]*pixels[i*4+3])/255;
}
}
else if(components == 2) {
/* grayscale + alpha */
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i*4+3] = pixels[i*2+1];
pixels[i*4+2] = pixels[i*2+0];
pixels[i*4+1] = pixels[i*2+0];
pixels[i*4+0] = pixels[i*2+0];
}
}
else if(components == 3) {
/* RGB */
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i*4+3] = 1.0f;
pixels[i*4+2] = pixels[i*3+2];
pixels[i*4+1] = pixels[i*3+1];
pixels[i*4+0] = pixels[i*3+0];
}
}
else if(components == 1) {
/* grayscale */
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i*4+3] = 1.0f;
pixels[i*4+2] = pixels[i];
pixels[i*4+1] = pixels[i];
pixels[i*4+0] = pixels[i];
}
}
if(img->use_alpha == false) {
for(size_t i = num_pixels-1, pixel = 0; pixel < num_pixels; pixel++, i--) {
pixels[i*4+3] = 1.0f;
}
}
return true;
}
bool ImageManager::file_load_float_image(Image *img, device_vector<float>& tex_img)
{
ImageInput *in = NULL;
int width, height, depth, components;
if(!file_load_image_generic(img, &in, width, height, depth, components))
return false;
/* read BW pixels */
float *pixels = (float*)tex_img.resize(width, height, depth);
if(pixels == NULL) {
return false;
}
if(in) {
float *readpixels = pixels;
if(depth <= 1) {
int scanlinesize = width*components*sizeof(float);
in->read_image(TypeDesc::FLOAT,
(uchar*)readpixels + (height-1)*scanlinesize,
AutoStride,
-scanlinesize,
AutoStride);
}
else {
in->read_image(TypeDesc::FLOAT, (uchar*)readpixels);
}
in->close();
delete in;
}
else {
builtin_image_float_pixels_cb(img->filename, img->builtin_data, pixels);
}
return true;
}
void ImageManager::device_load_image(Device *device, DeviceScene *dscene, ImageDataType type, int slot, Progress *progress)
{
if(progress->get_cancel())
return;
Image *img = images[type][slot];
if(osl_texture_system && !img->builtin_data)
return;
string filename = path_filename(images[type][slot]->filename);
progress->set_status("Updating Images", "Loading " + filename);
/* Slot assignment */
int flat_slot = type_index_to_flattened_slot(slot, type);
string name;
if(flat_slot >= 100)
name = string_printf("__tex_image_%s_%d", name_from_type(type).c_str(), flat_slot);
else if(flat_slot >= 10)
name = string_printf("__tex_image_%s_0%d", name_from_type(type).c_str(), flat_slot);
else
name = string_printf("__tex_image_%s_00%d", name_from_type(type).c_str(), flat_slot);
if(type == IMAGE_DATA_TYPE_FLOAT4) {
device_vector<float4>& tex_img = dscene->tex_float4_image[slot];
if(tex_img.device_pointer) {
thread_scoped_lock device_lock(device_mutex);
device->tex_free(tex_img);
}
if(!file_load_float4_image(img, tex_img)) {
/* on failure to load, we set a 1x1 pixels pink image */
float *pixels = (float*)tex_img.resize(1, 1);
pixels[0] = TEX_IMAGE_MISSING_R;
pixels[1] = TEX_IMAGE_MISSING_G;
pixels[2] = TEX_IMAGE_MISSING_B;
pixels[3] = TEX_IMAGE_MISSING_A;
}
if(!pack_images) {
thread_scoped_lock device_lock(device_mutex);
device->tex_alloc(name.c_str(),
tex_img,
img->interpolation,
img->extension);
}
}
else if(type == IMAGE_DATA_TYPE_FLOAT) {
device_vector<float>& tex_img = dscene->tex_float_image[slot];
if(tex_img.device_pointer) {
thread_scoped_lock device_lock(device_mutex);
device->tex_free(tex_img);
}
if(!file_load_float_image(img, tex_img)) {
/* on failure to load, we set a 1x1 pixels pink image */
float *pixels = (float*)tex_img.resize(1, 1);
pixels[0] = TEX_IMAGE_MISSING_R;
}
if(!pack_images) {
thread_scoped_lock device_lock(device_mutex);
device->tex_alloc(name.c_str(),
tex_img,
img->interpolation,
img->extension);
}
}
else if(type == IMAGE_DATA_TYPE_BYTE4){
device_vector<uchar4>& tex_img = dscene->tex_byte4_image[slot];
if(tex_img.device_pointer) {
thread_scoped_lock device_lock(device_mutex);
device->tex_free(tex_img);
}
if(!file_load_byte4_image(img, tex_img)) {
/* on failure to load, we set a 1x1 pixels pink image */
uchar *pixels = (uchar*)tex_img.resize(1, 1);
pixels[0] = (TEX_IMAGE_MISSING_R * 255);
pixels[1] = (TEX_IMAGE_MISSING_G * 255);
pixels[2] = (TEX_IMAGE_MISSING_B * 255);
pixels[3] = (TEX_IMAGE_MISSING_A * 255);
}
if(!pack_images) {
thread_scoped_lock device_lock(device_mutex);
device->tex_alloc(name.c_str(),
tex_img,
img->interpolation,
img->extension);
}
}
else {
device_vector<uchar>& tex_img = dscene->tex_byte_image[slot];
if(tex_img.device_pointer) {
thread_scoped_lock device_lock(device_mutex);
device->tex_free(tex_img);
}
if(!file_load_byte_image(img, tex_img)) {
/* on failure to load, we set a 1x1 pixels pink image */
uchar *pixels = (uchar*)tex_img.resize(1, 1);
pixels[0] = (TEX_IMAGE_MISSING_R * 255);
}
if(!pack_images) {
thread_scoped_lock device_lock(device_mutex);
device->tex_alloc(name.c_str(),
tex_img,
img->interpolation,
img->extension);
}
}
img->need_load = false;
}
void ImageManager::device_free_image(Device *device, DeviceScene *dscene, ImageDataType type, int slot)
{
Image *img = images[type][slot];
if(img) {
if(osl_texture_system && !img->builtin_data) {
#ifdef WITH_OSL
ustring filename(images[type][slot]->filename);
((OSL::TextureSystem*)osl_texture_system)->invalidate(filename);
#endif
}
else if(type == IMAGE_DATA_TYPE_FLOAT4) {
device_vector<float4>& tex_img = dscene->tex_float4_image[slot];
if(tex_img.device_pointer) {
thread_scoped_lock device_lock(device_mutex);
device->tex_free(tex_img);
}
tex_img.clear();
}
else if(type == IMAGE_DATA_TYPE_FLOAT) {
device_vector<float>& tex_img = dscene->tex_float_image[slot];
if(tex_img.device_pointer) {
thread_scoped_lock device_lock(device_mutex);
device->tex_free(tex_img);
}
tex_img.clear();
}
else if(type == IMAGE_DATA_TYPE_BYTE4){
device_vector<uchar4>& tex_img = dscene->tex_byte4_image[slot];
if(tex_img.device_pointer) {
thread_scoped_lock device_lock(device_mutex);
device->tex_free(tex_img);
}
tex_img.clear();
}
else {
device_vector<uchar>& tex_img = dscene->tex_byte_image[slot];
if(tex_img.device_pointer) {
thread_scoped_lock device_lock(device_mutex);
device->tex_free(tex_img);
}
tex_img.clear();
}
delete images[type][slot];
images[type][slot] = NULL;
}
}
void ImageManager::device_update(Device *device, DeviceScene *dscene, Progress& progress)
{
if(!need_update)
return;
TaskPool pool;
for(int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for(size_t slot = 0; slot < images[type].size(); slot++) {
if(!images[type][slot])
continue;
if(images[type][slot]->users == 0) {
device_free_image(device, dscene, (ImageDataType)type, slot);
}
else if(images[type][slot]->need_load) {
if(!osl_texture_system || images[type][slot]->builtin_data)
pool.push(function_bind(&ImageManager::device_load_image, this, device, dscene, (ImageDataType)type, slot, &progress));
}
}
}
pool.wait_work();
if(pack_images)
device_pack_images(device, dscene, progress);
need_update = false;
}
void ImageManager::device_update_slot(Device *device,
DeviceScene *dscene,
int flat_slot,
Progress *progress)
{
ImageDataType type;
int slot = flattened_slot_to_type_index(flat_slot, &type);
Image *image = images[type][slot];
assert(image != NULL);
if(image->users == 0) {
device_free_image(device, dscene, type, slot);
}
else if(image->need_load) {
if(!osl_texture_system || image->builtin_data)
device_load_image(device,
dscene,
type,
slot,
progress);
}
}
void ImageManager::device_pack_images(Device *device,
DeviceScene *dscene,
Progress& /*progess*/)
{
/* For OpenCL, we pack all image textures into a single large texture, and
* do our own interpolation in the kernel. */
size_t size = 0, offset = 0;
ImageDataType type;
int info_size = tex_num_images[IMAGE_DATA_TYPE_FLOAT4] + tex_num_images[IMAGE_DATA_TYPE_BYTE4];
uint4 *info = dscene->tex_image_packed_info.resize(info_size);
/* Byte Textures*/
type = IMAGE_DATA_TYPE_BYTE4;
for(size_t slot = 0; slot < images[type].size(); slot++) {
if(!images[type][slot])
continue;
device_vector<uchar4>& tex_img = dscene->tex_byte4_image[slot];
size += tex_img.size();
}
uchar4 *pixels_byte = dscene->tex_image_byte4_packed.resize(size);
for(size_t slot = 0; slot < images[type].size(); slot++) {
if(!images[type][slot])
continue;
device_vector<uchar4>& tex_img = dscene->tex_byte4_image[slot];
/* The image options are packed
bit 0 -> periodic
bit 1 + 2 -> interpolation type */
uint8_t interpolation = (images[type][slot]->interpolation << 1) + 1;
info[type_index_to_flattened_slot(slot, type)] = make_uint4(tex_img.data_width, tex_img.data_height, offset, interpolation);
memcpy(pixels_byte+offset, (void*)tex_img.data_pointer, tex_img.memory_size());
offset += tex_img.size();
}
/* Float Textures*/
type = IMAGE_DATA_TYPE_FLOAT4;
size = 0, offset = 0;
for(size_t slot = 0; slot < images[type].size(); slot++) {
if(!images[type][slot])
continue;
device_vector<float4>& tex_img = dscene->tex_float4_image[slot];
size += tex_img.size();
}
float4 *pixels_float = dscene->tex_image_float4_packed.resize(size);
for(size_t slot = 0; slot < images[type].size(); slot++) {
if(!images[type][slot])
continue;
device_vector<float4>& tex_img = dscene->tex_float4_image[slot];
/* todo: support 3D textures, only CPU for now */
/* The image options are packed
bit 0 -> periodic
bit 1 + 2 -> interpolation type */
uint8_t interpolation = (images[type][slot]->interpolation << 1) + 1;
info[type_index_to_flattened_slot(slot, type)] = make_uint4(tex_img.data_width, tex_img.data_height, offset, interpolation);
memcpy(pixels_float+offset, (void*)tex_img.data_pointer, tex_img.memory_size());
offset += tex_img.size();
}
if(dscene->tex_image_byte4_packed.size()) {
if(dscene->tex_image_byte4_packed.device_pointer) {
thread_scoped_lock device_lock(device_mutex);
device->tex_free(dscene->tex_image_byte4_packed);
}
device->tex_alloc("__tex_image_byte4_packed", dscene->tex_image_byte4_packed);
}
if(dscene->tex_image_float4_packed.size()) {
if(dscene->tex_image_float4_packed.device_pointer) {
thread_scoped_lock device_lock(device_mutex);
device->tex_free(dscene->tex_image_float4_packed);
}
device->tex_alloc("__tex_image_float4_packed", dscene->tex_image_float4_packed);
}
if(dscene->tex_image_packed_info.size()) {
if(dscene->tex_image_packed_info.device_pointer) {
thread_scoped_lock device_lock(device_mutex);
device->tex_free(dscene->tex_image_packed_info);
}
device->tex_alloc("__tex_image_packed_info", dscene->tex_image_packed_info);
}
}
void ImageManager::device_free_builtin(Device *device, DeviceScene *dscene)
{
for(int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for(size_t slot = 0; slot < images[type].size(); slot++) {
if(images[type][slot] && images[type][slot]->builtin_data)
device_free_image(device, dscene, (ImageDataType)type, slot);
}
}
}
void ImageManager::device_free(Device *device, DeviceScene *dscene)
{
for(int type = 0; type < IMAGE_DATA_NUM_TYPES; type++) {
for(size_t slot = 0; slot < images[type].size(); slot++) {
device_free_image(device, dscene, (ImageDataType)type, slot);
}
images[type].clear();
}
device->tex_free(dscene->tex_image_byte4_packed);
device->tex_free(dscene->tex_image_float4_packed);
device->tex_free(dscene->tex_image_packed_info);
dscene->tex_image_byte4_packed.clear();
dscene->tex_image_float4_packed.clear();
dscene->tex_image_packed_info.clear();
}
CCL_NAMESPACE_END