blender/intern/cycles/util/util_math_float3.h
OmarSquircleArt 613b37bc2c Shading: Add More Features To The Voronoi Node.
This patch allows the Voronoi node to operate in 1D, 2D, and 4D space.
It also adds a Randomness input to control the randomness of the texture.
Additionally, it adds three new modes of operation:

- Smooth F1: A smooth version of F1 Voronoi with no discontinuities.
- Distance To Edge: Returns the distance to the edges of the cells.
- N-Sphere Radius: Returns the radius of the n-sphere inscribed in
the cells. In other words, it is half the distance between the
closest feature point and the feature point closest to it.

And it removes the following three modes of operation:

- F3.
- F4.
- Cracks.

The Distance metric is now called Euclidean, and it computes the actual
euclidean distance as opposed to the old method of computing the squared
euclidean distance.

This breaks backward compatibility in many ways, including the base case.

Reviewers: brecht, JacquesLucke

Differential Revision: https://developer.blender.org/D5743
2019-09-12 13:09:31 +02:00

500 lines
13 KiB
C

/*
* Copyright 2011-2017 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __UTIL_MATH_FLOAT3_H__
#define __UTIL_MATH_FLOAT3_H__
#ifndef __UTIL_MATH_H__
# error "Do not include this file directly, include util_types.h instead."
#endif
CCL_NAMESPACE_BEGIN
/*******************************************************************************
* Declaration.
*/
#ifndef __KERNEL_OPENCL__
ccl_device_inline float3 operator-(const float3 &a);
ccl_device_inline float3 operator*(const float3 &a, const float3 &b);
ccl_device_inline float3 operator*(const float3 &a, const float f);
ccl_device_inline float3 operator*(const float f, const float3 &a);
ccl_device_inline float3 operator/(const float f, const float3 &a);
ccl_device_inline float3 operator/(const float3 &a, const float f);
ccl_device_inline float3 operator/(const float3 &a, const float3 &b);
ccl_device_inline float3 operator+(const float3 &a, const float f);
ccl_device_inline float3 operator+(const float3 &a, const float3 &b);
ccl_device_inline float3 operator-(const float3 &a, const float f);
ccl_device_inline float3 operator-(const float3 &a, const float3 &b);
ccl_device_inline float3 operator+=(float3 &a, const float3 &b);
ccl_device_inline float3 operator-=(float3 &a, const float3 &b);
ccl_device_inline float3 operator*=(float3 &a, const float3 &b);
ccl_device_inline float3 operator*=(float3 &a, float f);
ccl_device_inline float3 operator/=(float3 &a, const float3 &b);
ccl_device_inline float3 operator/=(float3 &a, float f);
ccl_device_inline bool operator==(const float3 &a, const float3 &b);
ccl_device_inline bool operator!=(const float3 &a, const float3 &b);
ccl_device_inline float distance(const float3 &a, const float3 &b);
ccl_device_inline float dot(const float3 &a, const float3 &b);
ccl_device_inline float dot_xy(const float3 &a, const float3 &b);
ccl_device_inline float3 cross(const float3 &a, const float3 &b);
ccl_device_inline float3 normalize(const float3 &a);
ccl_device_inline float3 min(const float3 &a, const float3 &b);
ccl_device_inline float3 max(const float3 &a, const float3 &b);
ccl_device_inline float3 clamp(const float3 &a, const float3 &mn, const float3 &mx);
ccl_device_inline float3 fabs(const float3 &a);
ccl_device_inline float3 mix(const float3 &a, const float3 &b, float t);
ccl_device_inline float3 rcp(const float3 &a);
ccl_device_inline float3 sqrt(const float3 &a);
ccl_device_inline float3 floor(const float3 &a);
ccl_device_inline float3 ceil(const float3 &a);
#endif /* !__KERNEL_OPENCL__ */
ccl_device_inline float min3(float3 a);
ccl_device_inline float max3(float3 a);
ccl_device_inline float len(const float3 a);
ccl_device_inline float len_squared(const float3 a);
ccl_device_inline float3 reflect(const float3 incident, const float3 normal);
ccl_device_inline float3 project(const float3 v, const float3 v_proj);
ccl_device_inline float3 saturate3(float3 a);
ccl_device_inline float3 safe_normalize(const float3 a);
ccl_device_inline float3 normalize_len(const float3 a, float *t);
ccl_device_inline float3 safe_normalize_len(const float3 a, float *t);
ccl_device_inline float3 safe_divide_float3_float3(const float3 a, const float3 b);
ccl_device_inline float3 safe_divide_float3_float(const float3 a, const float b);
ccl_device_inline float3 interp(float3 a, float3 b, float t);
ccl_device_inline float3 sqr3(float3 a);
ccl_device_inline bool is_zero(const float3 a);
ccl_device_inline float reduce_add(const float3 a);
ccl_device_inline float average(const float3 a);
ccl_device_inline bool isequal_float3(const float3 a, const float3 b);
/*******************************************************************************
* Definition.
*/
#ifndef __KERNEL_OPENCL__
ccl_device_inline float3 operator-(const float3 &a)
{
# ifdef __KERNEL_SSE__
return float3(_mm_xor_ps(a.m128, _mm_castsi128_ps(_mm_set1_epi32(0x80000000))));
# else
return make_float3(-a.x, -a.y, -a.z);
# endif
}
ccl_device_inline float3 operator*(const float3 &a, const float3 &b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_mul_ps(a.m128, b.m128));
# else
return make_float3(a.x * b.x, a.y * b.y, a.z * b.z);
# endif
}
ccl_device_inline float3 operator*(const float3 &a, const float f)
{
# ifdef __KERNEL_SSE__
return float3(_mm_mul_ps(a.m128, _mm_set1_ps(f)));
# else
return make_float3(a.x * f, a.y * f, a.z * f);
# endif
}
ccl_device_inline float3 operator*(const float f, const float3 &a)
{
# if defined(__KERNEL_SSE__)
return float3(_mm_mul_ps(_mm_set1_ps(f), a.m128));
# else
return make_float3(a.x * f, a.y * f, a.z * f);
# endif
}
ccl_device_inline float3 operator/(const float f, const float3 &a)
{
# if defined(__KERNEL_SSE__)
return float3(_mm_div_ps(_mm_set1_ps(f), a.m128));
# else
return make_float3(f / a.x, f / a.y, f / a.z);
# endif
}
ccl_device_inline float3 operator/(const float3 &a, const float f)
{
float invf = 1.0f / f;
return a * invf;
}
ccl_device_inline float3 operator/(const float3 &a, const float3 &b)
{
# if defined(__KERNEL_SSE__)
return float3(_mm_div_ps(a.m128, b.m128));
# else
return make_float3(a.x / b.x, a.y / b.y, a.z / b.z);
# endif
}
ccl_device_inline float3 operator+(const float3 &a, const float f)
{
return a + make_float3(f, f, f);
}
ccl_device_inline float3 operator+(const float3 &a, const float3 &b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_add_ps(a.m128, b.m128));
# else
return make_float3(a.x + b.x, a.y + b.y, a.z + b.z);
# endif
}
ccl_device_inline float3 operator-(const float3 &a, const float f)
{
return a - make_float3(f, f, f);
}
ccl_device_inline float3 operator-(const float3 &a, const float3 &b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_sub_ps(a.m128, b.m128));
# else
return make_float3(a.x - b.x, a.y - b.y, a.z - b.z);
# endif
}
ccl_device_inline float3 operator+=(float3 &a, const float3 &b)
{
return a = a + b;
}
ccl_device_inline float3 operator-=(float3 &a, const float3 &b)
{
return a = a - b;
}
ccl_device_inline float3 operator*=(float3 &a, const float3 &b)
{
return a = a * b;
}
ccl_device_inline float3 operator*=(float3 &a, float f)
{
return a = a * f;
}
ccl_device_inline float3 operator/=(float3 &a, const float3 &b)
{
return a = a / b;
}
ccl_device_inline float3 operator/=(float3 &a, float f)
{
float invf = 1.0f / f;
return a = a * invf;
}
ccl_device_inline bool operator==(const float3 &a, const float3 &b)
{
# ifdef __KERNEL_SSE__
return (_mm_movemask_ps(_mm_cmpeq_ps(a.m128, b.m128)) & 7) == 7;
# else
return (a.x == b.x && a.y == b.y && a.z == b.z);
# endif
}
ccl_device_inline bool operator!=(const float3 &a, const float3 &b)
{
return !(a == b);
}
ccl_device_inline float distance(const float3 &a, const float3 &b)
{
return len(a - b);
}
ccl_device_inline float dot(const float3 &a, const float3 &b)
{
# if defined(__KERNEL_SSE41__) && defined(__KERNEL_SSE__)
return _mm_cvtss_f32(_mm_dp_ps(a, b, 0x7F));
# else
return a.x * b.x + a.y * b.y + a.z * b.z;
# endif
}
ccl_device_inline float dot_xy(const float3 &a, const float3 &b)
{
# if defined(__KERNEL_SSE41__) && defined(__KERNEL_SSE__)
return _mm_cvtss_f32(_mm_hadd_ps(_mm_mul_ps(a, b), b));
# else
return a.x * b.x + a.y * b.y;
# endif
}
ccl_device_inline float3 cross(const float3 &a, const float3 &b)
{
float3 r = make_float3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
return r;
}
ccl_device_inline float3 normalize(const float3 &a)
{
# if defined(__KERNEL_SSE41__) && defined(__KERNEL_SSE__)
__m128 norm = _mm_sqrt_ps(_mm_dp_ps(a.m128, a.m128, 0x7F));
return float3(_mm_div_ps(a.m128, norm));
# else
return a / len(a);
# endif
}
ccl_device_inline float3 min(const float3 &a, const float3 &b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_min_ps(a.m128, b.m128));
# else
return make_float3(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z));
# endif
}
ccl_device_inline float3 max(const float3 &a, const float3 &b)
{
# ifdef __KERNEL_SSE__
return float3(_mm_max_ps(a.m128, b.m128));
# else
return make_float3(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z));
# endif
}
ccl_device_inline float3 clamp(const float3 &a, const float3 &mn, const float3 &mx)
{
return min(max(a, mn), mx);
}
ccl_device_inline float3 fabs(const float3 &a)
{
# ifdef __KERNEL_SSE__
__m128 mask = _mm_castsi128_ps(_mm_set1_epi32(0x7fffffff));
return float3(_mm_and_ps(a.m128, mask));
# else
return make_float3(fabsf(a.x), fabsf(a.y), fabsf(a.z));
# endif
}
ccl_device_inline float3 sqrt(const float3 &a)
{
# ifdef __KERNEL_SSE__
return float3(_mm_sqrt_ps(a));
# else
return make_float3(sqrtf(a.x), sqrtf(a.y), sqrtf(a.z));
# endif
}
ccl_device_inline float3 floor(const float3 &a)
{
# ifdef __KERNEL_SSE__
return float3(_mm_floor_ps(a));
# else
return make_float3(floorf(a.x), floorf(a.y), floorf(a.z));
# endif
}
ccl_device_inline float3 ceil(const float3 &a)
{
# ifdef __KERNEL_SSE__
return float3(_mm_ceil_ps(a));
# else
return make_float3(ceilf(a.x), ceilf(a.y), ceilf(a.z));
# endif
}
ccl_device_inline float3 mix(const float3 &a, const float3 &b, float t)
{
return a + t * (b - a);
}
ccl_device_inline float3 rcp(const float3 &a)
{
# ifdef __KERNEL_SSE__
/* Don't use _mm_rcp_ps due to poor precision. */
return float3(_mm_div_ps(_mm_set_ps1(1.0f), a.m128));
# else
return make_float3(1.0f / a.x, 1.0f / a.y, 1.0f / a.z);
# endif
}
#endif /* !__KERNEL_OPENCL__ */
ccl_device_inline float min3(float3 a)
{
return min(min(a.x, a.y), a.z);
}
ccl_device_inline float max3(float3 a)
{
return max(max(a.x, a.y), a.z);
}
ccl_device_inline float len(const float3 a)
{
#if defined(__KERNEL_SSE41__) && defined(__KERNEL_SSE__)
return _mm_cvtss_f32(_mm_sqrt_ss(_mm_dp_ps(a.m128, a.m128, 0x7F)));
#else
return sqrtf(dot(a, a));
#endif
}
ccl_device_inline float len_squared(const float3 a)
{
return dot(a, a);
}
ccl_device_inline float3 reflect(const float3 incident, const float3 normal)
{
float3 unit_normal = normalize(normal);
return incident - 2.0f * unit_normal * dot(incident, unit_normal);
}
ccl_device_inline float3 project(const float3 v, const float3 v_proj)
{
float len_squared = dot(v_proj, v_proj);
return (len_squared != 0.0f) ? (dot(v, v_proj) / len_squared) * v_proj :
make_float3(0.0f, 0.0f, 0.0f);
}
ccl_device_inline float3 saturate3(float3 a)
{
return make_float3(saturate(a.x), saturate(a.y), saturate(a.z));
}
ccl_device_inline float3 normalize_len(const float3 a, float *t)
{
*t = len(a);
float x = 1.0f / *t;
return a * x;
}
ccl_device_inline float3 safe_normalize(const float3 a)
{
float t = len(a);
return (t != 0.0f) ? a * (1.0f / t) : a;
}
ccl_device_inline float3 safe_normalize_len(const float3 a, float *t)
{
*t = len(a);
return (*t != 0.0f) ? a / (*t) : a;
}
ccl_device_inline float3 safe_divide_float3_float3(const float3 a, const float3 b)
{
return make_float3((b.x != 0.0f) ? a.x / b.x : 0.0f,
(b.y != 0.0f) ? a.y / b.y : 0.0f,
(b.z != 0.0f) ? a.z / b.z : 0.0f);
}
ccl_device_inline float3 safe_divide_float3_float(const float3 a, const float b)
{
return (b != 0.0f) ? a / b : make_float3(0.0f, 0.0f, 0.0f);
}
ccl_device_inline float3 interp(float3 a, float3 b, float t)
{
return a + t * (b - a);
}
ccl_device_inline float3 sqr3(float3 a)
{
return a * a;
}
ccl_device_inline bool is_zero(const float3 a)
{
#ifdef __KERNEL_SSE__
return a == make_float3(0.0f);
#else
return (a.x == 0.0f && a.y == 0.0f && a.z == 0.0f);
#endif
}
ccl_device_inline float reduce_add(const float3 a)
{
return (a.x + a.y + a.z);
}
ccl_device_inline float average(const float3 a)
{
return reduce_add(a) * (1.0f / 3.0f);
}
ccl_device_inline bool isequal_float3(const float3 a, const float3 b)
{
#ifdef __KERNEL_OPENCL__
return all(a == b);
#else
return a == b;
#endif
}
ccl_device_inline float3 pow3(float3 v, float e)
{
return make_float3(powf(v.x, e), powf(v.y, e), powf(v.z, e));
}
ccl_device_inline float3 exp3(float3 v)
{
return make_float3(expf(v.x), expf(v.y), expf(v.z));
}
ccl_device_inline float3 log3(float3 v)
{
return make_float3(logf(v.x), logf(v.y), logf(v.z));
}
ccl_device_inline int3 quick_floor_to_int3(const float3 a)
{
#ifdef __KERNEL_SSE__
int3 b = int3(_mm_cvttps_epi32(a.m128));
int3 isneg = int3(_mm_castps_si128(_mm_cmplt_ps(a.m128, _mm_set_ps1(0.0f))));
/* Unsaturated add 0xffffffff is the same as subtract -1. */
return b + isneg;
#else
return make_int3(quick_floor_to_int(a.x), quick_floor_to_int(a.y), quick_floor_to_int(a.z));
#endif
}
ccl_device_inline bool isfinite3_safe(float3 v)
{
return isfinite_safe(v.x) && isfinite_safe(v.y) && isfinite_safe(v.z);
}
ccl_device_inline float3 ensure_finite3(float3 v)
{
if (!isfinite_safe(v.x))
v.x = 0.0f;
if (!isfinite_safe(v.y))
v.y = 0.0f;
if (!isfinite_safe(v.z))
v.z = 0.0f;
return v;
}
CCL_NAMESPACE_END
#endif /* __UTIL_MATH_FLOAT3_H__ */