blender/source/gameengine/Ketsji/KX_ConstraintActuator.cpp
Mitchell Stokes 60c8c130fe BGE cleanup: KX_GameObject::GetParent() no longer increases the object's refcount.
I'm not sure why this function ever increased the object's refcount. Any
place in the code that calls KX_GameObject::GetParent() has to turn
around and call parent->Release(). Forgetting to call Release() was a
common cause of memory leaks (in fact, KX_SteeringActuator was probably
leaking). If the refcount needs to be increased, the calling code can
handle calling AddRef().
2014-04-30 18:53:32 -07:00

627 lines
20 KiB
C++

/*
* Apply a constraint to a position or rotation value
*
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file gameengine/Ketsji/KX_ConstraintActuator.cpp
* \ingroup ketsji
*/
#include "SCA_IActuator.h"
#include "KX_ConstraintActuator.h"
#include "SCA_IObject.h"
#include "MT_Point3.h"
#include "MT_Matrix3x3.h"
#include "KX_GameObject.h"
#include "KX_RayCast.h"
#include "KX_PythonInit.h" // KX_GetActiveScene
#include <stdio.h>
/* ------------------------------------------------------------------------- */
/* Native functions */
/* ------------------------------------------------------------------------- */
KX_ConstraintActuator::KX_ConstraintActuator(SCA_IObject *gameobj,
int posDampTime,
int rotDampTime,
float minBound,
float maxBound,
float refDir[3],
int locrotxyz,
int time,
int option,
char *property) :
SCA_IActuator(gameobj, KX_ACT_CONSTRAINT),
m_refDirVector(refDir),
m_currentTime(0)
{
m_refDirection[0] = refDir[0];
m_refDirection[1] = refDir[1];
m_refDirection[2] = refDir[2];
m_posDampTime = posDampTime;
m_rotDampTime = rotDampTime;
m_locrot = locrotxyz;
m_option = option;
m_activeTime = time;
if (property) {
m_property = property;
} else {
m_property = "";
}
/* The units of bounds are determined by the type of constraint. To */
/* make the constraint application easier and more transparent later on, */
/* I think converting the bounds to the applicable domain makes more */
/* sense. */
switch (m_locrot) {
case KX_ACT_CONSTRAINT_ORIX:
case KX_ACT_CONSTRAINT_ORIY:
case KX_ACT_CONSTRAINT_ORIZ:
{
MT_Scalar len = m_refDirVector.length();
if (MT_fuzzyZero(len)) {
// missing a valid direction
std::cout << "WARNING: Constraint actuator " << GetName() << ": There is no valid reference direction!" << std::endl;
m_locrot = KX_ACT_CONSTRAINT_NODEF;
} else {
m_refDirection[0] /= len;
m_refDirection[1] /= len;
m_refDirection[2] /= len;
m_refDirVector /= len;
}
m_minimumBound = cos(minBound);
m_maximumBound = cos(maxBound);
m_minimumSine = sin(minBound);
m_maximumSine = sin(maxBound);
}
break;
default:
m_minimumBound = minBound;
m_maximumBound = maxBound;
m_minimumSine = 0.f;
m_maximumSine = 0.f;
break;
}
} /* End of constructor */
KX_ConstraintActuator::~KX_ConstraintActuator()
{
// there's nothing to be done here, really....
} /* end of destructor */
bool KX_ConstraintActuator::RayHit(KX_ClientObjectInfo *client, KX_RayCast *result, void * const data)
{
m_hitObject = client->m_gameobject;
bool bFound = false;
if (m_property.IsEmpty())
{
bFound = true;
}
else
{
if (m_option & KX_ACT_CONSTRAINT_MATERIAL)
{
if (client->m_auxilary_info)
{
bFound = !strcmp(m_property.Ptr(), ((char*)client->m_auxilary_info));
}
}
else
{
bFound = m_hitObject->GetProperty(m_property) != NULL;
}
}
// update the hit status
result->m_hitFound = bFound;
// stop looking
return true;
}
/* This function is used to pre-filter the object before casting the ray on them.
* This is useful for "X-Ray" option when we want to see "through" unwanted object.
*/
bool KX_ConstraintActuator::NeedRayCast(KX_ClientObjectInfo *client)
{
if (client->m_type > KX_ClientObjectInfo::ACTOR)
{
// Unknown type of object, skip it.
// Should not occur as the sensor objects are filtered in RayTest()
printf("Invalid client type %d found in ray casting\n", client->m_type);
return false;
}
// no X-Ray function yet
return true;
}
bool KX_ConstraintActuator::Update(double curtime, bool frame)
{
bool result = false;
bool bNegativeEvent = IsNegativeEvent();
RemoveAllEvents();
if (!bNegativeEvent) {
/* Constraint clamps the values to the specified range, with a sort of */
/* low-pass filtered time response, if the damp time is unequal to 0. */
/* Having to retrieve location/rotation and setting it afterwards may not */
/* be efficient enough... Something to look at later. */
KX_GameObject *obj = (KX_GameObject*) GetParent();
MT_Point3 position = obj->NodeGetWorldPosition();
MT_Point3 newposition;
MT_Vector3 normal, direction, refDirection;
MT_Matrix3x3 rotation = obj->NodeGetWorldOrientation();
MT_Scalar filter, newdistance, cosangle;
int axis, sign;
if (m_posDampTime) {
filter = m_posDampTime/(1.0+m_posDampTime);
} else {
filter = 0.0;
}
switch (m_locrot) {
case KX_ACT_CONSTRAINT_ORIX:
case KX_ACT_CONSTRAINT_ORIY:
case KX_ACT_CONSTRAINT_ORIZ:
switch (m_locrot) {
case KX_ACT_CONSTRAINT_ORIX:
direction[0] = rotation[0][0];
direction[1] = rotation[1][0];
direction[2] = rotation[2][0];
axis = 0;
break;
case KX_ACT_CONSTRAINT_ORIY:
direction[0] = rotation[0][1];
direction[1] = rotation[1][1];
direction[2] = rotation[2][1];
axis = 1;
break;
default:
direction[0] = rotation[0][2];
direction[1] = rotation[1][2];
direction[2] = rotation[2][2];
axis = 2;
break;
}
if ((m_maximumBound < (1.0f-FLT_EPSILON)) || (m_minimumBound < (1.0f-FLT_EPSILON))) {
// reference direction needs to be evaluated
// 1. get the cosine between current direction and target
cosangle = direction.dot(m_refDirVector);
if (cosangle >= (m_maximumBound-FLT_EPSILON) && cosangle <= (m_minimumBound+FLT_EPSILON)) {
// no change to do
result = true;
goto CHECK_TIME;
}
// 2. define a new reference direction
// compute local axis with reference direction as X and
// Y in direction X refDirection plane
MT_Vector3 zaxis = m_refDirVector.cross(direction);
if (MT_fuzzyZero2(zaxis.length2())) {
// direction and refDirection are identical,
// choose any other direction to define plane
if (direction[0] < 0.9999)
zaxis = m_refDirVector.cross(MT_Vector3(1.0,0.0,0.0));
else
zaxis = m_refDirVector.cross(MT_Vector3(0.0,1.0,0.0));
}
MT_Vector3 yaxis = zaxis.cross(m_refDirVector);
yaxis.normalize();
if (cosangle > m_minimumBound) {
// angle is too close to reference direction,
// choose a new reference that is exactly at minimum angle
refDirection = m_minimumBound * m_refDirVector + m_minimumSine * yaxis;
} else {
// angle is too large, choose new reference direction at maximum angle
refDirection = m_maximumBound * m_refDirVector + m_maximumSine * yaxis;
}
} else {
refDirection = m_refDirVector;
}
// apply damping on the direction
direction = filter*direction + (1.0-filter)*refDirection;
obj->AlignAxisToVect(direction, axis);
result = true;
goto CHECK_TIME;
case KX_ACT_CONSTRAINT_DIRPX:
case KX_ACT_CONSTRAINT_DIRPY:
case KX_ACT_CONSTRAINT_DIRPZ:
case KX_ACT_CONSTRAINT_DIRNX:
case KX_ACT_CONSTRAINT_DIRNY:
case KX_ACT_CONSTRAINT_DIRNZ:
switch (m_locrot) {
case KX_ACT_CONSTRAINT_DIRPX:
normal[0] = rotation[0][0];
normal[1] = rotation[1][0];
normal[2] = rotation[2][0];
axis = 0; // axis according to KX_GameObject::AlignAxisToVect()
sign = 0; // X axis will be parrallel to direction of ray
break;
case KX_ACT_CONSTRAINT_DIRPY:
normal[0] = rotation[0][1];
normal[1] = rotation[1][1];
normal[2] = rotation[2][1];
axis = 1;
sign = 0;
break;
case KX_ACT_CONSTRAINT_DIRPZ:
normal[0] = rotation[0][2];
normal[1] = rotation[1][2];
normal[2] = rotation[2][2];
axis = 2;
sign = 0;
break;
case KX_ACT_CONSTRAINT_DIRNX:
normal[0] = -rotation[0][0];
normal[1] = -rotation[1][0];
normal[2] = -rotation[2][0];
axis = 0;
sign = 1;
break;
case KX_ACT_CONSTRAINT_DIRNY:
normal[0] = -rotation[0][1];
normal[1] = -rotation[1][1];
normal[2] = -rotation[2][1];
axis = 1;
sign = 1;
break;
case KX_ACT_CONSTRAINT_DIRNZ:
normal[0] = -rotation[0][2];
normal[1] = -rotation[1][2];
normal[2] = -rotation[2][2];
axis = 2;
sign = 1;
break;
}
normal.normalize();
if (m_option & KX_ACT_CONSTRAINT_LOCAL) {
// direction of the ray is along the local axis
direction = normal;
} else {
switch (m_locrot) {
case KX_ACT_CONSTRAINT_DIRPX:
direction = MT_Vector3(1.0,0.0,0.0);
break;
case KX_ACT_CONSTRAINT_DIRPY:
direction = MT_Vector3(0.0,1.0,0.0);
break;
case KX_ACT_CONSTRAINT_DIRPZ:
direction = MT_Vector3(0.0,0.0,1.0);
break;
case KX_ACT_CONSTRAINT_DIRNX:
direction = MT_Vector3(-1.0,0.0,0.0);
break;
case KX_ACT_CONSTRAINT_DIRNY:
direction = MT_Vector3(0.0,-1.0,0.0);
break;
case KX_ACT_CONSTRAINT_DIRNZ:
direction = MT_Vector3(0.0,0.0,-1.0);
break;
}
}
{
MT_Point3 topoint = position + (m_maximumBound) * direction;
PHY_IPhysicsEnvironment* pe = KX_GetActiveScene()->GetPhysicsEnvironment();
PHY_IPhysicsController *spc = obj->GetPhysicsController();
if (!pe) {
std::cout << "WARNING: Constraint actuator " << GetName() << ": There is no physics environment!" << std::endl;
goto CHECK_TIME;
}
if (!spc) {
// the object is not physical, we probably want to avoid hitting its own parent
KX_GameObject *parent = obj->GetParent();
if (parent) {
spc = parent->GetPhysicsController();
}
}
KX_RayCast::Callback<KX_ConstraintActuator> callback(this,dynamic_cast<PHY_IPhysicsController*>(spc));
result = KX_RayCast::RayTest(pe, position, topoint, callback);
if (result) {
MT_Vector3 newnormal = callback.m_hitNormal;
// compute new position & orientation
if ((m_option & (KX_ACT_CONSTRAINT_NORMAL|KX_ACT_CONSTRAINT_DISTANCE)) == 0) {
// if none option is set, the actuator does nothing but detect ray
// (works like a sensor)
goto CHECK_TIME;
}
if (m_option & KX_ACT_CONSTRAINT_NORMAL) {
MT_Scalar rotFilter;
// apply damping on the direction
if (m_rotDampTime) {
rotFilter = m_rotDampTime/(1.0+m_rotDampTime);
} else {
rotFilter = filter;
}
newnormal = rotFilter*normal - (1.0-rotFilter)*newnormal;
obj->AlignAxisToVect((sign)?-newnormal:newnormal, axis);
if (m_option & KX_ACT_CONSTRAINT_LOCAL) {
direction = newnormal;
direction.normalize();
}
}
if (m_option & KX_ACT_CONSTRAINT_DISTANCE) {
if (m_posDampTime) {
newdistance = filter*(position-callback.m_hitPoint).length()+(1.0-filter)*m_minimumBound;
} else {
newdistance = m_minimumBound;
}
// logically we should cancel the speed along the ray direction as we set the
// position along that axis
spc = obj->GetPhysicsController();
if (spc && spc->IsDynamic()) {
MT_Vector3 linV = spc->GetLinearVelocity();
// cancel the projection along the ray direction
MT_Scalar fallspeed = linV.dot(direction);
if (!MT_fuzzyZero(fallspeed))
spc->SetLinearVelocity(linV-fallspeed*direction,false);
}
} else {
newdistance = (position-callback.m_hitPoint).length();
}
newposition = callback.m_hitPoint-newdistance*direction;
} else if (m_option & KX_ACT_CONSTRAINT_PERMANENT) {
// no contact but still keep running
result = true;
goto CHECK_TIME;
}
}
break;
case KX_ACT_CONSTRAINT_FHPX:
case KX_ACT_CONSTRAINT_FHPY:
case KX_ACT_CONSTRAINT_FHPZ:
case KX_ACT_CONSTRAINT_FHNX:
case KX_ACT_CONSTRAINT_FHNY:
case KX_ACT_CONSTRAINT_FHNZ:
switch (m_locrot) {
case KX_ACT_CONSTRAINT_FHPX:
normal[0] = -rotation[0][0];
normal[1] = -rotation[1][0];
normal[2] = -rotation[2][0];
direction = MT_Vector3(1.0,0.0,0.0);
break;
case KX_ACT_CONSTRAINT_FHPY:
normal[0] = -rotation[0][1];
normal[1] = -rotation[1][1];
normal[2] = -rotation[2][1];
direction = MT_Vector3(0.0,1.0,0.0);
break;
case KX_ACT_CONSTRAINT_FHPZ:
normal[0] = -rotation[0][2];
normal[1] = -rotation[1][2];
normal[2] = -rotation[2][2];
direction = MT_Vector3(0.0,0.0,1.0);
break;
case KX_ACT_CONSTRAINT_FHNX:
normal[0] = rotation[0][0];
normal[1] = rotation[1][0];
normal[2] = rotation[2][0];
direction = MT_Vector3(-1.0,0.0,0.0);
break;
case KX_ACT_CONSTRAINT_FHNY:
normal[0] = rotation[0][1];
normal[1] = rotation[1][1];
normal[2] = rotation[2][1];
direction = MT_Vector3(0.0,-1.0,0.0);
break;
case KX_ACT_CONSTRAINT_FHNZ:
normal[0] = rotation[0][2];
normal[1] = rotation[1][2];
normal[2] = rotation[2][2];
direction = MT_Vector3(0.0,0.0,-1.0);
break;
}
normal.normalize();
{
PHY_IPhysicsEnvironment* pe = KX_GetActiveScene()->GetPhysicsEnvironment();
PHY_IPhysicsController *spc = obj->GetPhysicsController();
if (!pe) {
std::cout << "WARNING: Constraint actuator " << GetName() << ": There is no physics environment!" << std::endl;
goto CHECK_TIME;
}
if (!spc || !spc->IsDynamic()) {
// the object is not dynamic, it won't support setting speed
goto CHECK_TIME;
}
m_hitObject = NULL;
// distance of Fh area is stored in m_minimum
MT_Point3 topoint = position + (m_minimumBound+spc->GetRadius()) * direction;
KX_RayCast::Callback<KX_ConstraintActuator> callback(this, spc);
result = KX_RayCast::RayTest(pe, position, topoint, callback);
// we expect a hit object
if (!m_hitObject)
result = false;
if (result)
{
MT_Vector3 newnormal = callback.m_hitNormal;
// compute new position & orientation
MT_Scalar distance = (callback.m_hitPoint-position).length()-spc->GetRadius();
// estimate the velocity of the hit point
MT_Point3 relativeHitPoint;
relativeHitPoint = (callback.m_hitPoint-m_hitObject->NodeGetWorldPosition());
MT_Vector3 velocityHitPoint = m_hitObject->GetVelocity(relativeHitPoint);
MT_Vector3 relativeVelocity = spc->GetLinearVelocity() - velocityHitPoint;
MT_Scalar relativeVelocityRay = direction.dot(relativeVelocity);
MT_Scalar springExtent = 1.0 - distance/m_minimumBound;
// Fh force is stored in m_maximum
MT_Scalar springForce = springExtent * m_maximumBound;
// damping is stored in m_refDirection [0] = damping, [1] = rot damping
MT_Scalar springDamp = relativeVelocityRay * m_refDirVector[0];
MT_Vector3 newVelocity = spc->GetLinearVelocity()-(springForce+springDamp)*direction;
if (m_option & KX_ACT_CONSTRAINT_NORMAL)
{
newVelocity+=(springForce+springDamp)*(newnormal-newnormal.dot(direction)*direction);
}
spc->SetLinearVelocity(newVelocity, false);
if (m_option & KX_ACT_CONSTRAINT_DOROTFH)
{
MT_Vector3 angSpring = (normal.cross(newnormal))*m_maximumBound;
MT_Vector3 angVelocity = spc->GetAngularVelocity();
// remove component that is parallel to normal
angVelocity -= angVelocity.dot(newnormal)*newnormal;
MT_Vector3 angDamp = angVelocity * ((m_refDirVector[1]>MT_EPSILON)?m_refDirVector[1]:m_refDirVector[0]);
spc->SetAngularVelocity(spc->GetAngularVelocity()+(angSpring-angDamp), false);
}
} else if (m_option & KX_ACT_CONSTRAINT_PERMANENT) {
// no contact but still keep running
result = true;
}
// don't set the position with this constraint
goto CHECK_TIME;
}
break;
case KX_ACT_CONSTRAINT_LOCX:
case KX_ACT_CONSTRAINT_LOCY:
case KX_ACT_CONSTRAINT_LOCZ:
newposition = position = obj->GetSGNode()->GetLocalPosition();
switch (m_locrot) {
case KX_ACT_CONSTRAINT_LOCX:
Clamp(newposition[0], m_minimumBound, m_maximumBound);
break;
case KX_ACT_CONSTRAINT_LOCY:
Clamp(newposition[1], m_minimumBound, m_maximumBound);
break;
case KX_ACT_CONSTRAINT_LOCZ:
Clamp(newposition[2], m_minimumBound, m_maximumBound);
break;
}
result = true;
if (m_posDampTime) {
newposition = filter*position + (1.0-filter)*newposition;
}
obj->NodeSetLocalPosition(newposition);
goto CHECK_TIME;
}
if (result) {
// set the new position but take into account parent if any
obj->NodeSetWorldPosition(newposition);
}
CHECK_TIME:
if (result && m_activeTime > 0 ) {
if (++m_currentTime >= m_activeTime)
result = false;
}
}
if (!result) {
m_currentTime = 0;
}
return result;
} /* end of KX_ConstraintActuator::Update(double curtime,double deltatime) */
void KX_ConstraintActuator::Clamp(MT_Scalar &var,
float min,
float max) {
if (var < min) {
var = min;
} else if (var > max) {
var = max;
}
}
bool KX_ConstraintActuator::IsValidMode(KX_ConstraintActuator::KX_CONSTRAINTTYPE m)
{
bool res = false;
if ( (m > KX_ACT_CONSTRAINT_NODEF) && (m < KX_ACT_CONSTRAINT_MAX)) {
res = true;
}
return res;
}
#ifdef WITH_PYTHON
/* ------------------------------------------------------------------------- */
/* Python functions */
/* ------------------------------------------------------------------------- */
/* Integration hooks ------------------------------------------------------- */
PyTypeObject KX_ConstraintActuator::Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"KX_ConstraintActuator",
sizeof(PyObjectPlus_Proxy),
0,
py_base_dealloc,
0,
0,
0,
0,
py_base_repr,
0,0,0,0,0,0,0,0,0,
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
0,0,0,0,0,0,0,
Methods,
0,
0,
&SCA_IActuator::Type,
0,0,0,0,0,0,
py_base_new
};
PyMethodDef KX_ConstraintActuator::Methods[] = {
{NULL,NULL} //Sentinel
};
PyAttributeDef KX_ConstraintActuator::Attributes[] = {
KX_PYATTRIBUTE_INT_RW("damp",0,100,true,KX_ConstraintActuator,m_posDampTime),
KX_PYATTRIBUTE_INT_RW("rotDamp",0,100,true,KX_ConstraintActuator,m_rotDampTime),
KX_PYATTRIBUTE_FLOAT_ARRAY_RW_CHECK("direction",-FLT_MAX,FLT_MAX,KX_ConstraintActuator,m_refDirection,3,pyattr_check_direction),
KX_PYATTRIBUTE_INT_RW("option",0,0xFFFF,false,KX_ConstraintActuator,m_option),
KX_PYATTRIBUTE_INT_RW("time",0,1000,true,KX_ConstraintActuator,m_activeTime),
KX_PYATTRIBUTE_STRING_RW("propName",0,MAX_PROP_NAME,true,KX_ConstraintActuator,m_property),
KX_PYATTRIBUTE_FLOAT_RW("min",-FLT_MAX,FLT_MAX,KX_ConstraintActuator,m_minimumBound),
KX_PYATTRIBUTE_FLOAT_RW("distance",-FLT_MAX,FLT_MAX,KX_ConstraintActuator,m_minimumBound),
KX_PYATTRIBUTE_FLOAT_RW("max",-FLT_MAX,FLT_MAX,KX_ConstraintActuator,m_maximumBound),
KX_PYATTRIBUTE_FLOAT_RW("rayLength",0,2000.f,KX_ConstraintActuator,m_maximumBound),
KX_PYATTRIBUTE_INT_RW("limit",KX_ConstraintActuator::KX_ACT_CONSTRAINT_NODEF+1,KX_ConstraintActuator::KX_ACT_CONSTRAINT_MAX-1,false,KX_ConstraintActuator,m_locrot),
{ NULL } //Sentinel
};
int KX_ConstraintActuator::pyattr_check_direction(void *self, const struct KX_PYATTRIBUTE_DEF *attrdef)
{
KX_ConstraintActuator* act = static_cast<KX_ConstraintActuator*>(self);
MT_Vector3 dir(act->m_refDirection);
MT_Scalar len = dir.length();
if (MT_fuzzyZero(len)) {
PyErr_SetString(PyExc_ValueError, "actuator.direction = vec: KX_ConstraintActuator, invalid direction");
return 1;
}
act->m_refDirVector = dir/len;
return 0;
}
#endif
/* eof */