blender/intern/cycles/render/mesh_subdivision.cpp
Mai Lavelle 8f28441487 Cycles: Adaptive isolation
Idea here is to select the lowest isolation level that wont compromise quality.
By using the lowest level we save memory and processing time. This will also
help avoid precision issues that have been showing up from using the highest
level (T49179, T49257).

This is a pretty simple heuristic that gives ok results. There's more we could
do here, such as filtering for vertices/edges adjacent geometric features that
need isolation instead of checking them all, but the logic there could get a
bit involved.

There's potential for slight popping of edges during animation if the dice
rate is low, but I don't think this should be a problem since low dice rates
really shouldn't be used in animation anyways.

Reviewed By: brecht, sergey

Differential Revision: https://developer.blender.org/D2240
2016-09-18 12:44:43 -04:00

613 lines
16 KiB
C++

/*
* Copyright 2011-2016 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mesh.h"
#include "attribute.h"
#include "camera.h"
#include "subd_split.h"
#include "subd_patch.h"
#include "subd_patch_table.h"
#include "util_foreach.h"
#include "util_algorithm.h"
CCL_NAMESPACE_BEGIN
#ifdef WITH_OPENSUBDIV
CCL_NAMESPACE_END
#include <opensubdiv/far/topologyRefinerFactory.h>
#include <opensubdiv/far/primvarRefiner.h>
#include <opensubdiv/far/patchTableFactory.h>
#include <opensubdiv/far/patchMap.h>
/* specializations of TopologyRefinerFactory for ccl::Mesh */
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
namespace Far {
template<>
bool TopologyRefinerFactory<ccl::Mesh>::resizeComponentTopology(TopologyRefiner& refiner, ccl::Mesh const& mesh)
{
setNumBaseVertices(refiner, mesh.verts.size());
setNumBaseFaces(refiner, mesh.subd_faces.size());
const ccl::Mesh::SubdFace* face = mesh.subd_faces.data();
for(int i = 0; i < mesh.subd_faces.size(); i++, face++) {
setNumBaseFaceVertices(refiner, i, face->num_corners);
}
return true;
}
template<>
bool TopologyRefinerFactory<ccl::Mesh>::assignComponentTopology(TopologyRefiner& refiner, ccl::Mesh const& mesh)
{
const ccl::Mesh::SubdFace* face = mesh.subd_faces.data();
for(int i = 0; i < mesh.subd_faces.size(); i++, face++) {
IndexArray face_verts = getBaseFaceVertices(refiner, i);
int* corner = &mesh.subd_face_corners[face->start_corner];
for(int j = 0; j < face->num_corners; j++, corner++) {
face_verts[j] = *corner;
}
}
return true;
}
template<>
bool TopologyRefinerFactory<ccl::Mesh>::assignComponentTags(TopologyRefiner& refiner, ccl::Mesh const& mesh)
{
const ccl::Mesh::SubdEdgeCrease* crease = mesh.subd_creases.data();
for(int i = 0; i < mesh.subd_creases.size(); i++, crease++) {
Index edge = findBaseEdge(refiner, crease->v[0], crease->v[1]);
if(edge != INDEX_INVALID) {
setBaseEdgeSharpness(refiner, edge, crease->crease * 10.0f);
}
}
for(int i = 0; i < mesh.verts.size(); i++) {
ConstIndexArray vert_edges = getBaseVertexEdges(refiner, i);
if(vert_edges.size() == 2) {
float sharpness = refiner.getLevel(0).getEdgeSharpness(vert_edges[0]);
sharpness = std::min(sharpness, refiner.getLevel(0).getEdgeSharpness(vert_edges[1]));
setBaseVertexSharpness(refiner, i, sharpness);
}
}
return true;
}
template<>
bool TopologyRefinerFactory<ccl::Mesh>::assignFaceVaryingTopology(TopologyRefiner& /*refiner*/, ccl::Mesh const& /*mesh*/)
{
return true;
}
template<>
void TopologyRefinerFactory<ccl::Mesh>::reportInvalidTopology(TopologyError /*err_code*/,
char const */*msg*/, ccl::Mesh const& /*mesh*/)
{
}
} /* namespace Far */
} /* namespace OPENSUBDIV_VERSION */
} /* namespace OpenSubdiv */
CCL_NAMESPACE_BEGIN
using namespace OpenSubdiv;
/* struct that implements OpenSubdiv's vertex interface */
template<typename T>
struct OsdValue {
T value;
OsdValue() {}
void Clear(void* = 0) {
memset(&value, 0, sizeof(T));
}
void AddWithWeight(OsdValue<T> const& src, float weight) {
value += src.value * weight;
}
};
template<>
void OsdValue<uchar4>::AddWithWeight(OsdValue<uchar4> const& src, float weight)
{
for(int i = 0; i < 4; i++) {
value[i] += (uchar)(src.value[i] * weight);
}
}
/* class for holding OpenSubdiv data used during tessellation */
class OsdData {
Mesh* mesh;
vector<OsdValue<float3> > verts;
Far::TopologyRefiner* refiner;
Far::PatchTable* patch_table;
Far::PatchMap* patch_map;
public:
OsdData() : mesh(NULL), refiner(NULL), patch_table(NULL), patch_map(NULL) {}
~OsdData()
{
delete refiner;
delete patch_table;
delete patch_map;
}
void build_from_mesh(Mesh* mesh_)
{
mesh = mesh_;
/* type and options */
Sdc::SchemeType type = Sdc::SCHEME_CATMARK;
Sdc::Options options;
options.SetVtxBoundaryInterpolation(Sdc::Options::VTX_BOUNDARY_EDGE_ONLY);
/* create refiner */
refiner = Far::TopologyRefinerFactory<Mesh>::Create(*mesh,
Far::TopologyRefinerFactory<Mesh>::Options(type, options));
/* adaptive refinement */
int max_isolation = calculate_max_isolation();
refiner->RefineAdaptive(Far::TopologyRefiner::AdaptiveOptions(max_isolation));
/* create patch table */
Far::PatchTableFactory::Options patch_options;
patch_options.endCapType = Far::PatchTableFactory::Options::ENDCAP_GREGORY_BASIS;
patch_table = Far::PatchTableFactory::Create(*refiner, patch_options);
/* interpolate verts */
int num_refiner_verts = refiner->GetNumVerticesTotal();
int num_local_points = patch_table->GetNumLocalPoints();
verts.resize(num_refiner_verts + num_local_points);
for(int i = 0; i < mesh->verts.size(); i++) {
verts[i].value = mesh->verts[i];
}
OsdValue<float3>* src = verts.data();
for(int i = 0; i < refiner->GetMaxLevel(); i++) {
OsdValue<float3>* dest = src + refiner->GetLevel(i).GetNumVertices();
Far::PrimvarRefiner(*refiner).Interpolate(i+1, src, dest);
src = dest;
}
patch_table->ComputeLocalPointValues(&verts[0], &verts[num_refiner_verts]);
/* create patch map */
patch_map = new Far::PatchMap(*patch_table);
}
void subdivide_attribute(Attribute& attr)
{
Far::PrimvarRefiner primvar_refiner(*refiner);
if(attr.element == ATTR_ELEMENT_VERTEX) {
int num_refiner_verts = refiner->GetNumVerticesTotal();
int num_local_points = patch_table->GetNumLocalPoints();
attr.resize(num_refiner_verts + num_local_points);
attr.flags |= ATTR_FINAL_SIZE;
char* src = attr.buffer.data();
for(int i = 0; i < refiner->GetMaxLevel(); i++) {
char* dest = src + refiner->GetLevel(i).GetNumVertices() * attr.data_sizeof();
if(attr.same_storage(attr.type, TypeDesc::TypeFloat)) {
primvar_refiner.Interpolate(i+1, (OsdValue<float>*)src, (OsdValue<float>*&)dest);
}
else {
primvar_refiner.Interpolate(i+1, (OsdValue<float4>*)src, (OsdValue<float4>*&)dest);
}
src = dest;
}
if(attr.same_storage(attr.type, TypeDesc::TypeFloat)) {
patch_table->ComputeLocalPointValues((OsdValue<float>*)&attr.buffer[0],
(OsdValue<float>*)&attr.buffer[num_refiner_verts * attr.data_sizeof()]);
}
else {
patch_table->ComputeLocalPointValues((OsdValue<float4>*)&attr.buffer[0],
(OsdValue<float4>*)&attr.buffer[num_refiner_verts * attr.data_sizeof()]);
}
}
else if(attr.element == ATTR_ELEMENT_CORNER || attr.element == ATTR_ELEMENT_CORNER_BYTE) {
// TODO(mai): fvar interpolation
}
}
int calculate_max_isolation()
{
/* loop over all edges to find longest in screen space */
const Far::TopologyLevel& level = refiner->GetLevel(0);
Transform objecttoworld = mesh->subd_params->objecttoworld;
Camera* cam = mesh->subd_params->camera;
float longest_edge = 0.0f;
for(size_t i = 0; i < level.GetNumEdges(); i++) {
Far::ConstIndexArray verts = level.GetEdgeVertices(i);
float3 a = mesh->verts[verts[0]];
float3 b = mesh->verts[verts[1]];
float edge_len;
if(cam) {
a = transform_point(&objecttoworld, a);
b = transform_point(&objecttoworld, b);
edge_len = len(a - b) / cam->world_to_raster_size((a + b) * 0.5f);
}
else {
edge_len = len(a - b);
}
longest_edge = max(longest_edge, edge_len);
}
/* calculate isolation level */
int isolation = (int)(log2f(max(longest_edge / mesh->subd_params->dicing_rate, 1.0f)) + 1.0f);
return min(isolation, 10);
}
friend struct OsdPatch;
friend class Mesh;
};
/* ccl::Patch implementation that uses OpenSubdiv for eval */
struct OsdPatch : Patch {
OsdData* osd_data;
OsdPatch(OsdData* data) : osd_data(data) {}
void eval(float3 *P, float3 *dPdu, float3 *dPdv, float3 *N, float u, float v)
{
const Far::PatchTable::PatchHandle* handle = osd_data->patch_map->FindPatch(patch_index, u, v);
assert(handle);
float p_weights[20], du_weights[20], dv_weights[20];
osd_data->patch_table->EvaluateBasis(*handle, u, v, p_weights, du_weights, dv_weights);
Far::ConstIndexArray cv = osd_data->patch_table->GetPatchVertices(*handle);
float3 du, dv;
if(P) *P = make_float3(0.0f, 0.0f, 0.0f);
du = make_float3(0.0f, 0.0f, 0.0f);
dv = make_float3(0.0f, 0.0f, 0.0f);
for(int i = 0; i < cv.size(); i++) {
float3 p = osd_data->verts[cv[i]].value;
if(P) *P += p * p_weights[i];
du += p * du_weights[i];
dv += p * dv_weights[i];
}
if(dPdu) *dPdu = du;
if(dPdv) *dPdv = dv;
if(N) {
*N = cross(du, dv);
float t = len(*N);
*N = (t != 0.0f) ? *N/t : make_float3(0.0f, 0.0f, 1.0f);
}
}
BoundBox bound() { return BoundBox::empty; }
};
#endif
void Mesh::tessellate(DiagSplit *split)
{
#ifdef WITH_OPENSUBDIV
OsdData osd_data;
bool need_packed_patch_table = false;
if(subdivision_type == SUBDIVISION_CATMULL_CLARK) {
if(subd_faces.size()) {
osd_data.build_from_mesh(this);
}
}
else
#endif
{
/* force linear subdivision if OpenSubdiv is unavailable to avoid
* falling into catmull-clark code paths by accident
*/
subdivision_type = SUBDIVISION_LINEAR;
/* force disable attribute subdivision for same reason as above */
foreach(Attribute& attr, subd_attributes.attributes) {
attr.flags &= ~ATTR_SUBDIVIDED;
}
}
int num_faces = subd_faces.size();
Attribute *attr_vN = subd_attributes.find(ATTR_STD_VERTEX_NORMAL);
float3* vN = attr_vN->data_float3();
for(int f = 0; f < num_faces; f++) {
SubdFace& face = subd_faces[f];
if(face.is_quad()) {
/* quad */
QuadDice::SubPatch subpatch;
LinearQuadPatch quad_patch;
#ifdef WITH_OPENSUBDIV
OsdPatch osd_patch(&osd_data);
if(subdivision_type == SUBDIVISION_CATMULL_CLARK) {
osd_patch.patch_index = face.ptex_offset;
subpatch.patch = &osd_patch;
}
else
#endif
{
float3 *hull = quad_patch.hull;
float3 *normals = quad_patch.normals;
quad_patch.patch_index = face.ptex_offset;
for(int i = 0; i < 4; i++) {
hull[i] = verts[subd_face_corners[face.start_corner+i]];
}
if(face.smooth) {
for(int i = 0; i < 4; i++) {
normals[i] = vN[subd_face_corners[face.start_corner+i]];
}
}
else {
float3 N = face.normal(this);
for(int i = 0; i < 4; i++) {
normals[i] = N;
}
}
swap(hull[2], hull[3]);
swap(normals[2], normals[3]);
subpatch.patch = &quad_patch;
}
subpatch.patch->shader = face.shader;
/* Quad faces need to be split at least once to line up with split ngons, we do this
* here in this manner because if we do it later edge factors may end up slightly off.
*/
subpatch.P00 = make_float2(0.0f, 0.0f);
subpatch.P10 = make_float2(0.5f, 0.0f);
subpatch.P01 = make_float2(0.0f, 0.5f);
subpatch.P11 = make_float2(0.5f, 0.5f);
split->split_quad(subpatch.patch, &subpatch);
subpatch.P00 = make_float2(0.5f, 0.0f);
subpatch.P10 = make_float2(1.0f, 0.0f);
subpatch.P01 = make_float2(0.5f, 0.5f);
subpatch.P11 = make_float2(1.0f, 0.5f);
split->split_quad(subpatch.patch, &subpatch);
subpatch.P00 = make_float2(0.0f, 0.5f);
subpatch.P10 = make_float2(0.5f, 0.5f);
subpatch.P01 = make_float2(0.0f, 1.0f);
subpatch.P11 = make_float2(0.5f, 1.0f);
split->split_quad(subpatch.patch, &subpatch);
subpatch.P00 = make_float2(0.5f, 0.5f);
subpatch.P10 = make_float2(1.0f, 0.5f);
subpatch.P01 = make_float2(0.5f, 1.0f);
subpatch.P11 = make_float2(1.0f, 1.0f);
split->split_quad(subpatch.patch, &subpatch);
}
else {
/* ngon */
#ifdef WITH_OPENSUBDIV
if(subdivision_type == SUBDIVISION_CATMULL_CLARK) {
OsdPatch patch(&osd_data);
patch.shader = face.shader;
for(int corner = 0; corner < face.num_corners; corner++) {
patch.patch_index = face.ptex_offset + corner;
split->split_quad(&patch);
}
}
else
#endif
{
float3 center_vert = make_float3(0.0f, 0.0f, 0.0f);
float3 center_normal = make_float3(0.0f, 0.0f, 0.0f);
float inv_num_corners = 1.0f/float(face.num_corners);
for(int corner = 0; corner < face.num_corners; corner++) {
center_vert += verts[subd_face_corners[face.start_corner + corner]] * inv_num_corners;
center_normal += vN[subd_face_corners[face.start_corner + corner]] * inv_num_corners;
}
for(int corner = 0; corner < face.num_corners; corner++) {
LinearQuadPatch patch;
float3 *hull = patch.hull;
float3 *normals = patch.normals;
patch.patch_index = face.ptex_offset + corner;
patch.shader = face.shader;
hull[0] = verts[subd_face_corners[face.start_corner + mod(corner + 0, face.num_corners)]];
hull[1] = verts[subd_face_corners[face.start_corner + mod(corner + 1, face.num_corners)]];
hull[2] = verts[subd_face_corners[face.start_corner + mod(corner - 1, face.num_corners)]];
hull[3] = center_vert;
hull[1] = (hull[1] + hull[0]) * 0.5;
hull[2] = (hull[2] + hull[0]) * 0.5;
if(face.smooth) {
normals[0] = vN[subd_face_corners[face.start_corner + mod(corner + 0, face.num_corners)]];
normals[1] = vN[subd_face_corners[face.start_corner + mod(corner + 1, face.num_corners)]];
normals[2] = vN[subd_face_corners[face.start_corner + mod(corner - 1, face.num_corners)]];
normals[3] = center_normal;
normals[1] = (normals[1] + normals[0]) * 0.5;
normals[2] = (normals[2] + normals[0]) * 0.5;
}
else {
float3 N = face.normal(this);
for(int i = 0; i < 4; i++) {
normals[i] = N;
}
}
split->split_quad(&patch);
}
}
}
}
/* interpolate center points for attributes */
foreach(Attribute& attr, subd_attributes.attributes) {
#ifdef WITH_OPENSUBDIV
if(subdivision_type == SUBDIVISION_CATMULL_CLARK && attr.flags & ATTR_SUBDIVIDED) {
if(attr.element == ATTR_ELEMENT_CORNER || attr.element == ATTR_ELEMENT_CORNER_BYTE) {
/* keep subdivision for corner attributes disabled for now */
attr.flags &= ~ATTR_SUBDIVIDED;
}
else if(subd_faces.size()) {
osd_data.subdivide_attribute(attr);
need_packed_patch_table = true;
continue;
}
}
#endif
char* data = attr.data();
size_t stride = attr.data_sizeof();
int ngons = 0;
switch(attr.element) {
case ATTR_ELEMENT_VERTEX: {
for(int f = 0; f < num_faces; f++) {
SubdFace& face = subd_faces[f];
if(!face.is_quad()) {
char* center = data + (verts.size() - num_subd_verts + ngons) * stride;
attr.zero_data(center);
float inv_num_corners = 1.0f / float(face.num_corners);
for(int corner = 0; corner < face.num_corners; corner++) {
attr.add_with_weight(center,
data + subd_face_corners[face.start_corner + corner] * stride,
inv_num_corners);
}
ngons++;
}
}
} break;
case ATTR_ELEMENT_VERTEX_MOTION: {
// TODO(mai): implement
} break;
case ATTR_ELEMENT_CORNER: {
for(int f = 0; f < num_faces; f++) {
SubdFace& face = subd_faces[f];
if(!face.is_quad()) {
char* center = data + (subd_face_corners.size() + ngons) * stride;
attr.zero_data(center);
float inv_num_corners = 1.0f / float(face.num_corners);
for(int corner = 0; corner < face.num_corners; corner++) {
attr.add_with_weight(center,
data + (face.start_corner + corner) * stride,
inv_num_corners);
}
ngons++;
}
}
} break;
case ATTR_ELEMENT_CORNER_BYTE: {
for(int f = 0; f < num_faces; f++) {
SubdFace& face = subd_faces[f];
if(!face.is_quad()) {
uchar* center = (uchar*)data + (subd_face_corners.size() + ngons) * stride;
float inv_num_corners = 1.0f / float(face.num_corners);
float4 val = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
for(int corner = 0; corner < face.num_corners; corner++) {
for(int i = 0; i < 4; i++) {
val[i] += float(*(data + (face.start_corner + corner) * stride + i)) * inv_num_corners;
}
}
for(int i = 0; i < 4; i++) {
center[i] = uchar(min(max(val[i], 0.0f), 255.0f));
}
ngons++;
}
}
} break;
default: break;
}
}
#ifdef WITH_OPENSUBDIV
/* pack patch tables */
if(need_packed_patch_table) {
delete patch_table;
patch_table = new PackedPatchTable;
patch_table->pack(osd_data.patch_table);
}
#endif
}
CCL_NAMESPACE_END