blender/release/scripts/skin.py
Willian Padovani Germano b970eadedf Scripts:
- updating some bundled scripts, thanks to authors Jean-Michel Soler, Campbell Barton and Anthony D'Agostino.

BPython:
- removing wrong fix from BGL.c's glDrawPixels.

note: applied guitargeek's setName patch to Blender.Key, but saw that he updated it with more functionality and assigned to stivs, so I won't commit this old version.
2005-10-11 02:32:58 +00:00

490 lines
13 KiB
Python

#!BPY
"""
Name: 'Bridge Faces/Edge-Loops'
Blender: 237
Group: 'Mesh'
Tooltip: 'Select 2 vert loops, then run this script.'
"""
__author__ = "Campbell Barton AKA Ideasman"
__url__ = ["http://members.iinet.net.au/~cpbarton/ideasman/", "blender", "elysiun"]
__version__ = "1.0 2004/04/25"
__bpydoc__ = """\
With this script vertex loops can be skinned: faces are created to connect the
selected loops of vertices.
Usage:
In mesh Edit mode select the vertices of the loops (closed paths / curves of
vertices: circles, for example) that should be skinned, then run this script.
A pop-up will provide further options, if the results of a method are not adequate try one of the others.
"""
# $Id$
#
# --------------------------------------------------------------------------
# Skin Selected edges 1.0 By Campbell Barton (AKA Ideasman)
# --------------------------------------------------------------------------
# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# ***** END GPL LICENCE BLOCK *****
# --------------------------------------------------------------------------
# Made by Ideasman/Campbell 2005/06/15 - ideasman@linuxmail.org
import Blender
from Blender import *
BIG_NUM = 1<<30
global CULL_METHOD
CULL_METHOD = 0
class edge:
def __init__(self, v1,v2):
self.v1 = v1
self.v2 = v2
# uv1 uv2 vcol1 vcol2 # Add later
self.length = (v1.co - v2.co).length
self.removed = 0 # Have we been culled from the eloop
self.match = None # The other edge were making a face with
class edgeLoop:
def __init__(self, loop): # Vert loop
# Use next and prev, nextDist, prevDist
# Get Loops centre.
self.centre = Mathutils.Vector()
f = 1.0/len(loop)
for v in loop:
self.centre += v.co * f
# Convert Vert loop to Edges.
self.edges = []
vIdx = 0
while vIdx < len(loop):
self.edges.append( edge(loop[vIdx-1], loop[vIdx]) )
vIdx += 1
# Assign linked list
for eIdx in range(len(self.edges)-1):
self.edges[eIdx].next = self.edges[eIdx+1]
self.edges[eIdx].prev = self.edges[eIdx-1]
# Now last
self.edges[-1].next = self.edges[0]
self.edges[-1].prev = self.edges[-2]
# GENERATE AN AVERAGE NORMAL FOR THE WHOLE LOOP.
self.normal = Mathutils.Vector()
for e in self.edges:
n = Mathutils.CrossVecs(self.centre-e.v1.co, self.centre-e.v2.co)
# Do we realy need tot normalize?
n.normalize()
self.normal += n
self.normal.normalize()
# Generate a normal for each edge.
for e in self.edges:
n1 = e.v1.co
n2 = e.v2.co
n3 = e.prev.v1.co
a = n1-n2
b = n1-n3
normal1 = Mathutils.CrossVecs(a,b)
normal1.normalize()
n1 = e.v2.co
n3 = e.next.v2.co
n2 = e.v1.co
a = n1-n2
b = n1-n3
normal2 = Mathutils.CrossVecs(a,b)
normal2.normalize()
# Reuse normal1 var
normal1 += normal1 + normal2
normal1.normalize()
e.normal = normal1
#print e.normal
def backup(self):
# Keep a backup of the edges
self.backupEdges = self.edges[:]
def restore(self):
self.edges = self.backupEdges[:]
for e in self.edges:
e.removed = 0
def reverse(self):
self.edges.reverse()
for e in self.edges:
e.normal = -e.normal
e.v1, e.v2 = e.v2, e.v1
self.normal = -self.normal
# Removes N Smallest edges and backs up
def removeSmallest(self, cullNum, otherLoopLen):
global CULL_METHOD
if CULL_METHOD == 0: # Shortest edge
eloopCopy = self.edges[:]
eloopCopy.sort(lambda e1, e2: cmp(e1.length, e2.length )) # Length sort, smallest first
eloopCopy = eloopCopy[:cullNum]
for e in eloopCopy:
e.removed = 1
self.edges.remove( e ) # Remove from own list, still in linked list.
else: # CULL METHOD is even
culled = 0
step = int(otherLoopLen / float(cullNum))
currentEdge = self.edges[0]
while culled < cullNum:
# Get the shortest face in the next STEP
while currentEdge.removed == 1:
# Bug here!
currentEdge = currentEdge.next
smallestEdge = currentEdge
for i in range(step):
currentEdge = currentEdge.next
while currentEdge.removed == 1:
currentEdge = currentEdge.next
if smallestEdge.length > currentEdge.length:
smallestEdge = currentEdge
# In that stepping length we have the smallest edge.remove it
smallestEdge.removed = 1
self.edges.remove(smallestEdge)
culled+=1
# Returns face edges.
# face must have edge data.
def faceEdges(me, f):
if len(f) == 3:
return [\
me.findEdge(f[0], f[1]),\
me.findEdge(f[1], f[2]),\
me.findEdge(f[2], f[0])\
]
elif len(f) == 4:
return [\
me.findEdge(f[0], f[1]),\
me.findEdge(f[1], f[2]),\
me.findEdge(f[2], f[3]),\
me.findEdge(f[3], f[0])\
]
def getSelectedEdges(me, ob):
SEL_FLAG = NMesh.EdgeFlags['SELECT']
FGON_FLAG = NMesh.EdgeFlags['FGON']
edges = [e for e in me.edges if e.flag & SEL_FLAG if (e.flag & FGON_FLAG) == 0 ]
# Now remove edges that face 2 or more selected faces usoing them
edgeFromSelFaces = []
for f in me.faces:
if len(f) >2 and f.sel:
edgeFromSelFaces.extend(faceEdges(me, f))
# Remove all edges with 2 or more selected faces as uses.
for e in edgeFromSelFaces:
if edgeFromSelFaces.count(e) > 1:
me.removeEdge(e.v1, e.v2)
# Remove selected faces?
fIdx = len(me.faces)
while fIdx:
fIdx-=1
if len(me.faces[fIdx]) > 2:
if me.faces[fIdx].sel:
me.faces.pop(fIdx)
return [e for e in edges if edgeFromSelFaces.count(e) < 2]
# Like vert loops
def getVertLoops(selEdges):
mainVertLoops = []
while selEdges:
e = selEdges.pop()
contextVertLoop= [e.v1, e.v2] # start the vert loop
eIdx = 1 # Get us into the loop. dummy var.
# if eIdx == 0 then it means we searched and found no matches...
# time for a new vert loop,
while eIdx:
eIdx = len(selEdges)
while eIdx:
eIdx-=1
# Check for edge attached at the head of the loop.
if contextVertLoop[0] == selEdges[eIdx].v1:
contextVertLoop.insert(0, selEdges.pop(eIdx).v2)
elif contextVertLoop[0] == selEdges[eIdx].v2:
contextVertLoop.insert(0, selEdges.pop(eIdx).v1)
# Chech for edge vert at the tail.
elif contextVertLoop[-1] == selEdges[eIdx].v1:
contextVertLoop.append(selEdges.pop(eIdx).v2)
elif contextVertLoop[-1] == selEdges[eIdx].v2:
contextVertLoop.append(selEdges.pop(eIdx).v1)
else:
# None found? Keep looking
continue
# Once found we.
break
# Is this a loop? if so then its forst and last vert must be teh same.
if contextVertLoop[0].index == contextVertLoop[-1].index:
contextVertLoop.pop() # remove double vert
mainVertLoops.append(contextVertLoop)
# Build context vert loops
return mainVertLoops
def skin2EdgeLoops(eloop1, eloop2, me, ob, MODE):
# Make sure e1 loops is bigger then e2
if len(eloop1.edges) != len(eloop2.edges):
if len(eloop1.edges) < len(eloop2.edges):
eloop1, eloop2 = eloop2, eloop1
eloop1.backup() # were about to cull faces
CULL_FACES = len(eloop1.edges) - len(eloop2.edges)
eloop1.removeSmallest(CULL_FACES, len(eloop1.edges))
else:
CULL_FACES = 0
# First make sure poly vert loops are in sync with eachother.
# The vector allong which we are skinning.
skinVector = eloop1.centre - eloop2.centre
loopDist = skinVector.length
# IS THE LOOP FLIPPED, IF SO FLIP BACK.
angleBetweenLoopNormals = Mathutils.AngleBetweenVecs(eloop1.normal, eloop2.normal)
if angleBetweenLoopNormals > 90:
eloop2.reverse()
bestEloopDist = BIG_NUM
bestOffset = 0
# Loop rotation offset to test.1
eLoopIdxs = range(len(eloop1.edges))
for offset in range(len(eloop1.edges)):
totEloopDist = 0 # Measure this total distance for thsi loop.
offsetIndexLs = eLoopIdxs[offset:] + eLoopIdxs[:offset] # Make offset index list
# e1Idx is always from 0 to N, e2Idx is offset.
for e1Idx, e2Idx in enumerate(offsetIndexLs):
# Measure the vloop distance ===============
totEloopDist += ((eloop1.edges[e1Idx].v1.co - eloop2.edges[e2Idx].v1.co).length / loopDist) #/ nangle1
totEloopDist += ((eloop1.edges[e1Idx].v2.co - eloop2.edges[e2Idx].v2.co).length / loopDist) #/ nangle1
# Premeture break if where no better off
if totEloopDist > bestEloopDist:
break
if totEloopDist < bestEloopDist:
bestOffset = offset
bestEloopDist = totEloopDist
# Modify V2 LS for Best offset
eloop2.edges = eloop2.edges[bestOffset:] + eloop2.edges[:bestOffset]
for loopIdx in range(len(eloop2.edges)):
e1 = eloop1.edges[loopIdx]
e2 = eloop2.edges[loopIdx]
# Remember the pairs for fan filling culled edges.
e1.match = e2; e2.match = e1
# need some smart face flipping code here.
f = NMesh.Face([e1.v1, e1.v2, e2.v2, e2.v1])
f.sel = 1
me.faces.append(f)
# FAN FILL MISSING FACES.
if CULL_FACES:
# Culled edges will be in eloop1.
FAN_FILLED_FACES = 0
contextEdge = eloop1.edges[0] # The larger of teh 2
while FAN_FILLED_FACES < CULL_FACES:
while contextEdge.next.removed == 0:
contextEdge = contextEdge.next
vertFanPivot = contextEdge.match.v2
while contextEdge.next.removed == 1:
f = NMesh.Face([contextEdge.next.v1, contextEdge.next.v2, vertFanPivot] )
f.sel = 1
me.faces.append(f)
# Should we use another var?, this will work for now.
contextEdge.next.removed = 1
contextEdge = contextEdge.next
FAN_FILLED_FACES += 1
eloop1.restore() # Add culled back into the list.
#if angleBetweenLoopNormals > 90:
# eloop2.reverse()
def main():
global CULL_METHOD
is_editmode = Window.EditMode()
if is_editmode: Window.EditMode(0)
ob = Scene.GetCurrent().getActiveObject()
if ob == None or ob.getType() != 'Mesh':
return
me = ob.getData()
if not me.edges:
Draw.PupMenu('Error, add edge data first')
if is_editmode: Window.EditMode(1)
return
# BAD BLENDER PYTHON API, NEED TO ENTER EXIT EDIT MODE FOR ADDING EDGE DATA.
# ADD EDGE DATA HERE, Python API CANT DO IT YET, LOOSES SELECTION
selEdges = getSelectedEdges(me, ob)
vertLoops = getVertLoops(selEdges) # list of lists of edges.
if len(vertLoops) > 2:
choice = Draw.PupMenu('Loft '+str(len(vertLoops))+' edge loops%t|loop|segment')
if choice == -1:
if is_editmode: Window.EditMode(1)
return
elif len(vertLoops) < 2:
Draw.PupMenu('Error, No Vertloops found%t|if you have a valid selection, go in and out of face edit mode to update the selection state.')
if is_editmode: Window.EditMode(1)
return
else:
choice = 2
# The line below checks if any of the vert loops are differenyt in length.
if False in [len(v) == len(vertLoops[0]) for v in vertLoops]:
CULL_METHOD = Draw.PupMenu('Small to large edge loop distrobution method%t|remove edges evenly|remove smallest edges edges')
if CULL_METHOD == -1:
if is_editmode: Window.EditMode(1)
return
if CULL_METHOD ==1: # RESET CULL_METHOD
CULL_METHOD = 0 # shortest
else:
CULL_METHOD = 1 # even
time1 = sys.time()
# Convert to special edge data.
edgeLoops = []
for vloop in vertLoops:
edgeLoops.append(edgeLoop(vloop))
# VERT LOOP ORDERING CODE
# Build a worm list - grow from Both ends
edgeOrderedList = [edgeLoops.pop()]
# Find the closest.
bestSoFar = BIG_NUM
bestIdxSoFar = None
for edLoopIdx, edLoop in enumerate(edgeLoops):
l =(edgeOrderedList[-1].centre - edLoop.centre).length
if l < bestSoFar:
bestIdxSoFar = edLoopIdx
bestSoFar = l
edgeOrderedList.append( edgeLoops.pop(bestIdxSoFar) )
# Now we have the 2 closest, append to either end-
# Find the closest.
while edgeLoops:
bestSoFar = BIG_NUM
bestIdxSoFar = None
first_or_last = 0 # Zero is first
for edLoopIdx, edLoop in enumerate(edgeLoops):
l1 =(edgeOrderedList[-1].centre - edLoop.centre).length
if l1 < bestSoFar:
bestIdxSoFar = edLoopIdx
bestSoFar = l1
first_or_last = 1 # last
l2 =(edgeOrderedList[0].centre - edLoop.centre).length
if l2 < bestSoFar:
bestIdxSoFar = edLoopIdx
bestSoFar = l2
first_or_last = 0 # last
if first_or_last: # add closest Last
edgeOrderedList.append( edgeLoops.pop(bestIdxSoFar) )
else: # Add closest First
edgeOrderedList.insert(0, edgeLoops.pop(bestIdxSoFar) ) # First
for i in range(len(edgeOrderedList)-1):
skin2EdgeLoops(edgeOrderedList[i], edgeOrderedList[i+1], me, ob, 0)
if choice == 1 and len(edgeOrderedList) > 2: # Loop
skin2EdgeLoops(edgeOrderedList[0], edgeOrderedList[-1], me, ob, 0)
me.update(1, 1, 0)
if is_editmode: Window.EditMode(1)
main()