blender/intern/cycles/kernel/kernel_shader.h
Lukas Toenne 95b85a8c37 Revert "Use one context per OSL thread. Not sure if this actually works, but the simple renderer example in OSL does it this way."
This does not actually work: The context must not be shared between threads, but using the same context between different samples actually seems to prevent OSL from switching between shaders. The proper solution would be to ensure memory pooling works correctly.

This reverts commit 69f87e69258d6266dcb20f09f7e3d4021e663432.
2012-09-04 17:28:36 +00:00

788 lines
18 KiB
C

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/*
* ShaderData, used in four steps:
*
* Setup from incoming ray, sampled position and background.
* Execute for surface, volume or displacement.
* Evaluate one or more closures.
* Release.
*
*/
#ifdef __OSL__
#include "osl_shader.h"
#endif
#include "svm/bsdf.h"
#include "svm/emissive.h"
#include "svm/volume.h"
#include "svm/svm_bsdf.h"
#include "svm/svm.h"
CCL_NAMESPACE_BEGIN
/* ShaderData setup from incoming ray */
__device_inline void shader_setup_from_ray(KernelGlobals *kg, ShaderData *sd,
const Intersection *isect, const Ray *ray)
{
/* fetch triangle data */
int prim = kernel_tex_fetch(__prim_index, isect->prim);
float4 Ns = kernel_tex_fetch(__tri_normal, prim);
float3 Ng = make_float3(Ns.x, Ns.y, Ns.z);
int shader = __float_as_int(Ns.w);
/* triangle */
#ifdef __INSTANCING__
sd->object = (isect->object == ~0)? kernel_tex_fetch(__prim_object, isect->prim): isect->object;
#endif
sd->prim = prim;
#ifdef __UV__
sd->u = isect->u;
sd->v = isect->v;
#endif
/* matrices and time */
#ifdef __MOTION__
sd->ob_tfm = object_fetch_transform(kg, sd->object, ray->time, OBJECT_TRANSFORM);
sd->ob_itfm = object_fetch_transform(kg, sd->object, ray->time, OBJECT_INVERSE_TRANSFORM);
sd->time = ray->time;
#endif
/* vectors */
sd->P = bvh_triangle_refine(kg, sd, isect, ray);
sd->Ng = Ng;
sd->N = Ng;
sd->I = -ray->D;
sd->shader = shader;
sd->ray_length = isect->t;
/* smooth normal */
if(sd->shader & SHADER_SMOOTH_NORMAL)
sd->N = triangle_smooth_normal(kg, sd->prim, sd->u, sd->v);
sd->flag = kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*2);
sd->flag |= kernel_tex_fetch(__object_flag, sd->object);
#ifdef __DPDU__
/* dPdu/dPdv */
triangle_dPdudv(kg, &sd->dPdu, &sd->dPdv, sd->prim);
#endif
#ifdef __INSTANCING__
if(isect->object != ~0) {
/* instance transform */
object_normal_transform(kg, sd, &sd->N);
object_normal_transform(kg, sd, &sd->Ng);
#ifdef __DPDU__
object_dir_transform(kg, sd, &sd->dPdu);
object_dir_transform(kg, sd, &sd->dPdv);
#endif
}
#endif
/* backfacing test */
bool backfacing = (dot(sd->Ng, sd->I) < 0.0f);
if(backfacing) {
sd->flag |= SD_BACKFACING;
sd->Ng = -sd->Ng;
sd->N = -sd->N;
#ifdef __DPDU__
sd->dPdu = -sd->dPdu;
sd->dPdv = -sd->dPdv;
#endif
}
#ifdef __RAY_DIFFERENTIALS__
/* differentials */
differential_transfer(&sd->dP, ray->dP, ray->D, ray->dD, sd->Ng, isect->t);
differential_incoming(&sd->dI, ray->dD);
differential_dudv(&sd->du, &sd->dv, sd->dPdu, sd->dPdv, sd->dP, sd->Ng);
#endif
}
/* ShaderData setup from position sampled on mesh */
__device void shader_setup_from_sample(KernelGlobals *kg, ShaderData *sd,
const float3 P, const float3 Ng, const float3 I,
int shader, int object, int prim, float u, float v, float t, float time)
{
/* vectors */
sd->P = P;
sd->N = Ng;
sd->Ng = Ng;
sd->I = I;
sd->shader = shader;
/* primitive */
#ifdef __INSTANCING__
sd->object = object;
#endif
sd->prim = prim;
#ifdef __UV__
sd->u = u;
sd->v = v;
#endif
sd->ray_length = t;
/* detect instancing, for non-instanced the object index is -object-1 */
#ifdef __INSTANCING__
bool instanced = false;
if(sd->prim != ~0) {
if(sd->object >= 0)
instanced = true;
else
#endif
sd->object = ~sd->object;
#ifdef __INSTANCING__
}
#endif
#ifdef __MOTION__
sd->time = time;
sd->ob_tfm = object_fetch_transform(kg, sd->object, time, OBJECT_TRANSFORM);
sd->ob_itfm = object_fetch_transform(kg, sd->object, time, OBJECT_INVERSE_TRANSFORM);
#endif
/* smooth normal */
if(sd->shader & SHADER_SMOOTH_NORMAL) {
sd->N = triangle_smooth_normal(kg, sd->prim, sd->u, sd->v);
#ifdef __INSTANCING__
if(instanced)
object_normal_transform(kg, sd, &sd->N);
#endif
}
sd->flag = kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*2);
if(sd->object != -1)
sd->flag |= kernel_tex_fetch(__object_flag, sd->object);
#ifdef __DPDU__
/* dPdu/dPdv */
if(sd->prim == ~0) {
sd->dPdu = make_float3(0.0f, 0.0f, 0.0f);
sd->dPdv = make_float3(0.0f, 0.0f, 0.0f);
}
else {
triangle_dPdudv(kg, &sd->dPdu, &sd->dPdv, sd->prim);
#ifdef __INSTANCING__
if(instanced) {
object_dir_transform(kg, sd, &sd->dPdu);
object_dir_transform(kg, sd, &sd->dPdv);
}
#endif
}
#endif
/* backfacing test */
if(sd->prim != ~0) {
bool backfacing = (dot(sd->Ng, sd->I) < 0.0f);
if(backfacing) {
sd->flag |= SD_BACKFACING;
sd->Ng = -sd->Ng;
sd->N = -sd->N;
#ifdef __DPDU__
sd->dPdu = -sd->dPdu;
sd->dPdv = -sd->dPdv;
#endif
}
}
#ifdef __RAY_DIFFERENTIALS__
/* no ray differentials here yet */
sd->dP.dx = make_float3(0.0f, 0.0f, 0.0f);
sd->dP.dy = make_float3(0.0f, 0.0f, 0.0f);
sd->dI.dx = make_float3(0.0f, 0.0f, 0.0f);
sd->dI.dy = make_float3(0.0f, 0.0f, 0.0f);
sd->du.dx = 0.0f;
sd->du.dy = 0.0f;
sd->dv.dx = 0.0f;
sd->dv.dy = 0.0f;
#endif
}
/* ShaderData setup for displacement */
__device void shader_setup_from_displace(KernelGlobals *kg, ShaderData *sd,
int object, int prim, float u, float v)
{
float3 P, Ng, I = make_float3(0.0f, 0.0f, 0.0f);
int shader;
P = triangle_point_MT(kg, prim, u, v);
Ng = triangle_normal_MT(kg, prim, &shader);
/* force smooth shading for displacement */
shader |= SHADER_SMOOTH_NORMAL;
/* watch out: no instance transform currently */
shader_setup_from_sample(kg, sd, P, Ng, I, shader, object, prim, u, v, 0.0f, TIME_INVALID);
}
/* ShaderData setup from ray into background */
__device_inline void shader_setup_from_background(KernelGlobals *kg, ShaderData *sd, const Ray *ray)
{
/* vectors */
sd->P = ray->D;
sd->N = -sd->P;
sd->Ng = -sd->P;
sd->I = -sd->P;
sd->shader = kernel_data.background.shader;
sd->flag = kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*2);
#ifdef __MOTION__
sd->time = ray->time;
#endif
sd->ray_length = 0.0f;
#ifdef __INSTANCING__
sd->object = ~0;
#endif
sd->prim = ~0;
#ifdef __UV__
sd->u = 0.0f;
sd->v = 0.0f;
#endif
#ifdef __DPDU__
/* dPdu/dPdv */
sd->dPdu = make_float3(0.0f, 0.0f, 0.0f);
sd->dPdv = make_float3(0.0f, 0.0f, 0.0f);
#endif
#ifdef __RAY_DIFFERENTIALS__
/* differentials */
sd->dP = ray->dD;
differential_incoming(&sd->dI, sd->dP);
sd->du.dx = 0.0f;
sd->du.dy = 0.0f;
sd->dv.dx = 0.0f;
sd->dv.dy = 0.0f;
#endif
}
/* BSDF */
#ifdef __MULTI_CLOSURE__
#ifdef __OSL__
__device_inline void _shader_bsdf_multi_eval_osl(const ShaderData *sd, const float3 omega_in, float *pdf,
int skip_bsdf, BsdfEval *bsdf_eval, float sum_pdf, float sum_sample_weight)
{
for(int i = 0; i< sd->num_closure; i++) {
if(i == skip_bsdf)
continue;
const ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF(sc->type)) {
float bsdf_pdf = 0.0f;
float3 eval = OSLShader::bsdf_eval(sd, sc, omega_in, bsdf_pdf);
if(bsdf_pdf != 0.0f) {
bsdf_eval_accum(bsdf_eval, sc->type, eval*sc->weight);
sum_pdf += bsdf_pdf*sc->sample_weight;
}
sum_sample_weight += sc->sample_weight;
}
}
*pdf = (sum_sample_weight > 0.0f)? sum_pdf/sum_sample_weight: 0.0f;
}
#endif
__device_inline void _shader_bsdf_multi_eval_svm(const ShaderData *sd, const float3 omega_in, float *pdf,
int skip_bsdf, BsdfEval *bsdf_eval, float sum_pdf, float sum_sample_weight)
{
for(int i = 0; i< sd->num_closure; i++) {
if(i == skip_bsdf)
continue;
const ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF(sc->type)) {
float bsdf_pdf = 0.0f;
float3 eval = svm_bsdf_eval(sd, sc, omega_in, &bsdf_pdf);
if(bsdf_pdf != 0.0f) {
bsdf_eval_accum(bsdf_eval, sc->type, eval*sc->weight);
sum_pdf += bsdf_pdf*sc->sample_weight;
}
sum_sample_weight += sc->sample_weight;
}
}
*pdf = (sum_sample_weight > 0.0f)? sum_pdf/sum_sample_weight: 0.0f;
}
#endif
__device void shader_bsdf_eval(KernelGlobals *kg, const ShaderData *sd,
const float3 omega_in, BsdfEval *eval, float *pdf)
{
#ifdef __MULTI_CLOSURE__
bsdf_eval_init(eval, NBUILTIN_CLOSURES, make_float3(0.0f, 0.0f, 0.0f), kernel_data.film.use_light_pass);
#ifdef __OSL__
if (kernel_osl_use(kg))
return _shader_bsdf_multi_eval_osl(sd, omega_in, pdf, -1, eval, 0.0f, 0.0f);
else
#endif
return _shader_bsdf_multi_eval_svm(sd, omega_in, pdf, -1, eval, 0.0f, 0.0f);
#else
const ShaderClosure *sc = &sd->closure;
*pdf = 0.0f;
*eval = svm_bsdf_eval(sd, sc, omega_in, pdf)*sc->weight;
#endif
}
__device int shader_bsdf_sample(KernelGlobals *kg, const ShaderData *sd,
float randu, float randv, BsdfEval *bsdf_eval,
float3 *omega_in, differential3 *domega_in, float *pdf)
{
#ifdef __MULTI_CLOSURE__
int sampled = 0;
if(sd->num_closure > 1) {
/* pick a BSDF closure based on sample weights */
float sum = 0.0f;
for(sampled = 0; sampled < sd->num_closure; sampled++) {
const ShaderClosure *sc = &sd->closure[sampled];
if(CLOSURE_IS_BSDF(sc->type))
sum += sc->sample_weight;
}
float r = sd->randb_closure*sum;
sum = 0.0f;
for(sampled = 0; sampled < sd->num_closure; sampled++) {
const ShaderClosure *sc = &sd->closure[sampled];
if(CLOSURE_IS_BSDF(sc->type)) {
sum += sd->closure[sampled].sample_weight;
if(r <= sum)
break;
}
}
if(sampled == sd->num_closure) {
*pdf = 0.0f;
return LABEL_NONE;
}
}
const ShaderClosure *sc = &sd->closure[sampled];
int label;
float3 eval;
*pdf = 0.0f;
#ifdef __OSL__
if (kernel_osl_use(kg))
label = OSLShader::bsdf_sample(sd, sc, randu, randv, eval, *omega_in, *domega_in, *pdf);
else
#endif
label = svm_bsdf_sample(sd, sc, randu, randv, &eval, omega_in, domega_in, pdf);
if(*pdf != 0.0f) {
bsdf_eval_init(bsdf_eval, sc->type, eval*sc->weight, kernel_data.film.use_light_pass);
if(sd->num_closure > 1) {
float sweight = sc->sample_weight;
#ifdef __OSL__
if (kernel_osl_use(kg))
_shader_bsdf_multi_eval_osl(sd, *omega_in, pdf, sampled, bsdf_eval, *pdf*sweight, sweight);
else
#endif
_shader_bsdf_multi_eval_svm(sd, *omega_in, pdf, sampled, bsdf_eval, *pdf*sweight, sweight);
}
}
return label;
#else
/* sample the single closure that we picked */
*pdf = 0.0f;
int label = svm_bsdf_sample(sd, &sd->closure, randu, randv, bsdf_eval, omega_in, domega_in, pdf);
*bsdf_eval *= sd->closure.weight;
return label;
#endif
}
__device int shader_bsdf_sample_closure(KernelGlobals *kg, const ShaderData *sd,
const ShaderClosure *sc, float randu, float randv, BsdfEval *bsdf_eval,
float3 *omega_in, differential3 *domega_in, float *pdf)
{
int label;
float3 eval;
*pdf = 0.0f;
#ifdef __OSL__
if (kernel_osl_use(kg))
label = OSLShader::bsdf_sample(sd, sc, randu, randv, eval, *omega_in, *domega_in, *pdf);
else
#endif
label = svm_bsdf_sample(sd, sc, randu, randv, &eval, omega_in, domega_in, pdf);
if(*pdf != 0.0f)
bsdf_eval_init(bsdf_eval, sc->type, eval*sc->weight, kernel_data.film.use_light_pass);
return label;
}
__device void shader_bsdf_blur(KernelGlobals *kg, ShaderData *sd, float roughness)
{
#ifndef __OSL__
#ifdef __MULTI_CLOSURE__
for(int i = 0; i< sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF(sc->type))
svm_bsdf_blur(sc, roughness);
}
#else
svm_bsdf_blur(&sd->closure, roughness);
#endif
#endif
}
__device float3 shader_bsdf_transparency(KernelGlobals *kg, ShaderData *sd)
{
#ifdef __MULTI_CLOSURE__
float3 eval = make_float3(0.0f, 0.0f, 0.0f);
for(int i = 0; i< sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(sc->type == CLOSURE_BSDF_TRANSPARENT_ID) // todo: make this work for osl
eval += sc->weight;
}
return eval;
#else
if(sd->closure.type == CLOSURE_BSDF_TRANSPARENT_ID)
return sd->closure.weight;
else
return make_float3(0.0f, 0.0f, 0.0f);
#endif
}
__device float3 shader_bsdf_diffuse(KernelGlobals *kg, ShaderData *sd)
{
#ifdef __MULTI_CLOSURE__
float3 eval = make_float3(0.0f, 0.0f, 0.0f);
for(int i = 0; i< sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF_DIFFUSE(sc->type))
eval += sc->weight;
}
return eval;
#else
if(CLOSURE_IS_BSDF_DIFFUSE(sd->closure.type))
return sd->closure.weight;
else
return make_float3(0.0f, 0.0f, 0.0f);
#endif
}
__device float3 shader_bsdf_glossy(KernelGlobals *kg, ShaderData *sd)
{
#ifdef __MULTI_CLOSURE__
float3 eval = make_float3(0.0f, 0.0f, 0.0f);
for(int i = 0; i< sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF_GLOSSY(sc->type))
eval += sc->weight;
}
return eval;
#else
if(CLOSURE_IS_BSDF_GLOSSY(sd->closure.type))
return sd->closure.weight;
else
return make_float3(0.0f, 0.0f, 0.0f);
#endif
}
__device float3 shader_bsdf_transmission(KernelGlobals *kg, ShaderData *sd)
{
#ifdef __MULTI_CLOSURE__
float3 eval = make_float3(0.0f, 0.0f, 0.0f);
for(int i = 0; i< sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF_TRANSMISSION(sc->type))
eval += sc->weight;
}
return eval;
#else
if(CLOSURE_IS_BSDF_TRANSMISSION(sd->closure.type))
return sd->closure.weight;
else
return make_float3(0.0f, 0.0f, 0.0f);
#endif
}
/* Emission */
__device float3 shader_emissive_eval(KernelGlobals *kg, ShaderData *sd)
{
float3 eval;
#ifdef __MULTI_CLOSURE__
eval = make_float3(0.0f, 0.0f, 0.0f);
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_EMISSION(sc->type)) {
#ifdef __OSL__
if (kernel_osl_use(kg))
eval += OSLShader::emissive_eval(sd, sc)*sc->weight;
else
#endif
eval += svm_emissive_eval(sd, sc)*sc->weight;
}
}
#else
eval = svm_emissive_eval(sd, &sd->closure)*sd->closure.weight;
#endif
return eval;
}
/* Holdout */
__device float3 shader_holdout_eval(KernelGlobals *kg, ShaderData *sd)
{
#ifdef __MULTI_CLOSURE__
float3 weight = make_float3(0.0f, 0.0f, 0.0f);
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_HOLDOUT(sc->type))
weight += sc->weight;
}
return weight;
#else
if(sd->closure.type == CLOSURE_HOLDOUT_ID)
return make_float3(1.0f, 1.0f, 1.0f);
return make_float3(0.0f, 0.0f, 0.0f);
#endif
}
/* Surface Evaluation */
__device void shader_eval_surface(KernelGlobals *kg, ShaderData *sd,
float randb, int path_flag)
{
#ifdef __OSL__
if (kernel_osl_use(kg))
OSLShader::eval_surface(kg, sd, randb, path_flag);
else
#endif
{
#ifdef __SVM__
svm_eval_nodes(kg, sd, SHADER_TYPE_SURFACE, randb, path_flag);
#else
bsdf_diffuse_setup(sd, &sd->closure);
sd->closure.weight = make_float3(0.8f, 0.8f, 0.8f);
#endif
}
}
/* Background Evaluation */
__device float3 shader_eval_background(KernelGlobals *kg, ShaderData *sd, int path_flag)
{
#ifdef __OSL__
if (kernel_osl_use(kg))
return OSLShader::eval_background(kg, sd, path_flag);
else
#endif
{
#ifdef __SVM__
svm_eval_nodes(kg, sd, SHADER_TYPE_SURFACE, 0.0f, path_flag);
#ifdef __MULTI_CLOSURE__
float3 eval = make_float3(0.0f, 0.0f, 0.0f);
for(int i = 0; i< sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BACKGROUND(sc->type))
eval += sc->weight;
}
return eval;
#else
if(sd->closure.type == CLOSURE_BACKGROUND_ID)
return sd->closure.weight;
else
return make_float3(0.0f, 0.0f, 0.0f);
#endif
#else
return make_float3(0.8f, 0.8f, 0.8f);
#endif
}
}
/* Volume */
__device float3 shader_volume_eval_phase(KernelGlobals *kg, ShaderData *sd,
float3 omega_in, float3 omega_out)
{
#ifdef __MULTI_CLOSURE__
float3 eval = make_float3(0.0f, 0.0f, 0.0f);
for(int i = 0; i< sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_VOLUME(sc->type)) {
#ifdef __OSL__
if (kernel_osl_use(kg))
eval += OSLShader::volume_eval_phase(sd, sc, omega_in, omega_out);
else
#endif
eval += volume_eval_phase(sd, sc, omega_in, omega_out);
}
}
return eval;
#else
return volume_eval_phase(sd, &sd->closure, omega_in, omega_out);
#endif
}
/* Volume Evaluation */
__device void shader_eval_volume(KernelGlobals *kg, ShaderData *sd,
float randb, int path_flag)
{
#ifdef __SVM__
#ifdef __OSL__
if (kernel_osl_use(kg))
OSLShader::eval_volume(kg, sd, randb, path_flag);
else
#endif
svm_eval_nodes(kg, sd, SHADER_TYPE_VOLUME, randb, path_flag);
#endif
}
/* Displacement Evaluation */
__device void shader_eval_displacement(KernelGlobals *kg, ShaderData *sd)
{
/* this will modify sd->P */
#ifdef __SVM__
#ifdef __OSL__
if (kernel_osl_use(kg))
OSLShader::eval_displacement(kg, sd);
else
#endif
svm_eval_nodes(kg, sd, SHADER_TYPE_DISPLACEMENT, 0.0f, 0);
#endif
}
/* Transparent Shadows */
#ifdef __TRANSPARENT_SHADOWS__
__device bool shader_transparent_shadow(KernelGlobals *kg, Intersection *isect)
{
int prim = kernel_tex_fetch(__prim_index, isect->prim);
float4 Ns = kernel_tex_fetch(__tri_normal, prim);
int shader = __float_as_int(Ns.w);
int flag = kernel_tex_fetch(__shader_flag, (shader & SHADER_MASK)*2);
return (flag & SD_HAS_SURFACE_TRANSPARENT) != 0;
}
#endif
/* Merging */
#ifdef __NON_PROGRESSIVE__
__device void shader_merge_closures(KernelGlobals *kg, ShaderData *sd)
{
#ifndef __OSL__
/* merge identical closures, better when we sample a single closure at a time */
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sci = &sd->closure[i];
for(int j = i + 1; j < sd->num_closure; j++) {
ShaderClosure *scj = &sd->closure[j];
if(sci->type == scj->type && sci->data0 == scj->data0 && sci->data1 == scj->data1) {
sci->weight += scj->weight;
sci->sample_weight += scj->sample_weight;
int size = sd->num_closure - (j+1);
if(size > 0)
memmove(scj, scj+1, size*sizeof(ShaderClosure));
sd->num_closure--;
}
}
}
#endif
}
#endif
/* Free ShaderData */
__device void shader_release(KernelGlobals *kg, ShaderData *sd)
{
#ifdef __OSL__
if (kernel_osl_use(kg))
OSLShader::release(kg, sd);
#endif
}
CCL_NAMESPACE_END