blender/source/gameengine/Ketsji/KX_GameObject.cpp
2002-10-12 11:37:38 +00:00

1097 lines
21 KiB
C++

/**
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
* Game object wrapper
*/
#ifdef WIN32
// This warning tells us about truncation of __long__ stl-generated names.
// It can occasionally cause DevStudio to have internal compiler warnings.
#pragma warning( disable : 4786 )
#endif
#define KX_INERTIA_INFINITE 10000
#include "RAS_IPolygonMaterial.h"
#include "KX_GameObject.h"
#include "RAS_MeshObject.h"
#include "KX_MeshProxy.h"
#include <stdio.h> // printf
#include "SG_Controller.h"
#include "KX_IPhysicsController.h"
#include "SG_Node.h"
#include "SG_Controller.h"
#include "KX_ClientObjectInfo.h"
#include "RAS_BucketManager.h"
// This file defines relationships between parents and children
// in the game engine.
#include "KX_SG_NodeRelationships.h"
KX_GameObject::KX_GameObject(
void* sgReplicationInfo,
SG_Callbacks callbacks,
PyTypeObject* T
) :
SCA_IObject(T),
m_bUseObjectColor(false),
m_bDyna(false),
m_bSuspendDynamics(false),
m_pPhysicsController1(NULL),
m_bVisible(true)
{
m_ignore_activity_culling = false;
m_pClient_info = new KX_ClientObjectInfo();
m_pSGNode = new SG_Node(this,sgReplicationInfo,callbacks);
// define the relationship between this node and it's parent.
KX_NormalParentRelation * parent_relation =
KX_NormalParentRelation::New();
m_pSGNode->SetParentRelation(parent_relation);
};
KX_GameObject::~KX_GameObject()
{
// is this delete somewhere ?
//if (m_sumoObj)
// delete m_sumoObj;
delete m_pClient_info;
//if (m_pSGNode)
// delete m_pSGNode;
}
CValue* KX_GameObject:: Calc(VALUE_OPERATOR op, CValue *val)
{
return NULL;
}
CValue* KX_GameObject::CalcFinal(VALUE_DATA_TYPE dtype, VALUE_OPERATOR op, CValue *val)
{
return NULL;
}
const STR_String & KX_GameObject::GetText()
{
return m_text;
}
float KX_GameObject::GetNumber()
{
return 0;
}
STR_String KX_GameObject::GetName()
{
return m_name;
}
void KX_GameObject::SetName(STR_String name)
{
m_name = name;
}; // Set the name of the value
void KX_GameObject::ReplicaSetName(STR_String name)
{
}
KX_IPhysicsController* KX_GameObject::GetPhysicsController()
{
return m_pPhysicsController1;
}
KX_GameObject* KX_GameObject::GetParent()
{
KX_GameObject* result = NULL;
SG_Node* node = m_pSGNode;
while (node && !result)
{
node = node->GetSGParent();
if (node)
result = (KX_GameObject*)node->GetSGClientObject();
}
if (result)
result->AddRef();
return result;
}
void KX_GameObject::ProcessReplica(KX_GameObject* replica)
{
replica->m_pPhysicsController1 = NULL;
replica->m_pSGNode = NULL;
replica->m_pClient_info = new KX_ClientObjectInfo(*m_pClient_info);
replica->m_pClient_info->m_clientobject = replica;
}
CValue* KX_GameObject::GetReplica()
{
KX_GameObject* replica = new KX_GameObject(*this);
// this will copy properties and so on...
CValue::AddDataToReplica(replica);
ProcessReplica(replica);
return replica;
}
void KX_GameObject::ApplyForce(const MT_Vector3& force,bool local)
{
if (m_pPhysicsController1)
m_pPhysicsController1->ApplyForce(force,local);
}
void KX_GameObject::ApplyTorque(const MT_Vector3& torque,bool local)
{
if (m_pPhysicsController1)
m_pPhysicsController1->ApplyTorque(torque,local);
}
void KX_GameObject::ApplyMovement(const MT_Vector3& dloc,bool local)
{
if (this->IsDynamic())
{
m_pPhysicsController1->RelativeTranslate(dloc,local);
}
else
{
GetSGNode()->RelativeTranslate(dloc,GetSGNode()->GetSGParent(),local);
}
}
void KX_GameObject::ApplyRotation(const MT_Vector3& drot,bool local)
{
MT_Matrix3x3 rotmat(drot);
if (this->IsDynamic()) //m_pPhysicsController)
m_pPhysicsController1->RelativeRotate(rotmat.transposed(),local);
else
// in worldspace
GetSGNode()->RelativeRotate(rotmat.transposed(),local);
}
/**
GetOpenGL Matrix, returns an OpenGL 'compatible' matrix
*/
double* KX_GameObject::GetOpenGLMatrix()
{
// todo: optimize and only update if necessary
double* fl = m_OpenGL_4x4Matrix.getPointer();
MT_Transform trans;
trans.setOrigin(GetSGNode()->GetWorldPosition());
trans.setBasis(GetSGNode()->GetWorldOrientation());
MT_Vector3 scaling = GetSGNode()->GetWorldScaling();
trans.scale(scaling[0], scaling[1], scaling[2]);
trans.getValue(fl);
return fl;
}
void KX_GameObject::Bucketize()
{
double* fl = GetOpenGLMatrix();
for (int i=0;i<m_meshes.size();i++)
m_meshes[i]->Bucketize(fl, this, m_bUseObjectColor, m_objectColor);
}
void KX_GameObject::RemoveMeshes()
{
double* fl = GetOpenGLMatrix();
for (int i=0;i<m_meshes.size();i++)
m_meshes[i]->RemoveFromBuckets(fl, this);
//note: meshes can be shared, and are deleted by KX_BlenderSceneConverter
m_meshes.clear();
}
void KX_GameObject::UpdateNonDynas()
{
if (m_pPhysicsController1)
{
m_pPhysicsController1->SetSumoTransform(true);
}
}
void KX_GameObject::UpdateTransform()
{
if (m_pPhysicsController1)
{
m_pPhysicsController1->SetSumoTransform(false);
}
}
void KX_GameObject::SetDebugColor(unsigned int bgra)
{
for (int i=0;i<m_meshes.size();i++)
m_meshes[i]->DebugColor(bgra);
}
void KX_GameObject::ResetDebugColor()
{
SetDebugColor(0xff000000);
}
void KX_GameObject::UpdateIPO(float curframetime,
bool recurse,
bool ipo_as_force,
bool force_local)
{
// The ipo-actuator needs a sumo reference... this is retrieved (unfortunately)
// by the iposgcontr itself...
// ipocontr->SetSumoReference(gameobj->GetSumoScene(),
// gameobj->GetSumoObject());
// The ipo has to be treated as a force, and not a displacement!
// For this case, we send some settings to the controller. This
// may need some caching...
if (ipo_as_force) {
SGControllerList::iterator it = GetSGNode()->GetSGControllerList().begin();
while (it != GetSGNode()->GetSGControllerList().end()) {
(*it)->SetOption(SG_Controller::SG_CONTR_IPO_IPO_AS_FORCE, ipo_as_force);
(*it)->SetOption(SG_Controller::SG_CONTR_IPO_FORCES_ACT_LOCAL, force_local);
it++;
}
}
// The rest is the 'normal' update procedure.
GetSGNode()->SetSimulatedTime(curframetime,recurse);
GetSGNode()->UpdateWorldData(curframetime);
UpdateTransform();
}
/*
void KX_GameObject::RegisterSumoObject(class SM_Scene* sumoScene,
DT_SceneHandle solidscene,
class SM_Object* sumoObj,
const char* matname,
bool isDynamic,
bool isActor)
{
m_bDyna = isDynamic;
// need easy access, not via 'node' etc.
m_pPhysicsController = new KX_PhysicsController(sumoScene,solidscene,sumoObj,isDynamic);
GetSGNode()->AddSGController(m_pPhysicsController);
m_pClient_info->m_type = (isActor ? 1 : 0);
m_pClient_info->m_clientobject = this;
// store materialname in auxinfo, needed for touchsensors
m_pClient_info->m_auxilary_info = (matname? (void*)(matname+2) : NULL);
m_pPhysicsController->SetObject(this->GetSGNode());
}
*/
bool
KX_GameObject::GetVisible(
void
)
{
return m_bVisible;
}
void
KX_GameObject::SetVisible(
bool v
)
{
m_bVisible = v;
}
// used by Python, and the actuatorshould _not_ be misused by the
// scene!
void
KX_GameObject::MarkVisible(
bool visible
)
{
/* If explicit visibility settings are used, this is
* determined on this level. Maybe change this to mesh level
* later on? */
for (int i=0;i<m_meshes.size();i++)
{
double* fl = GetOpenGLMatrix();
m_meshes[i]->MarkVisible(fl,this,visible,m_bUseObjectColor,m_objectColor);
}
}
// Always use the flag?
void
KX_GameObject::MarkVisible(
void
)
{
for (int i=0;i<m_meshes.size();i++)
{
double* fl = GetOpenGLMatrix();
m_meshes[i]->MarkVisible(fl,
this,
m_bVisible,
m_bUseObjectColor,
m_objectColor
);
}
}
void KX_GameObject::addLinearVelocity(const MT_Vector3& lin_vel,bool local)
{
// if (m_pPhysicsController1)
// m_pPhysicsController1->AddLinearVelocity(lin_vel,local);
}
void KX_GameObject::setLinearVelocity(const MT_Vector3& lin_vel,bool local)
{
if (m_pPhysicsController1)
m_pPhysicsController1->SetLinearVelocity(lin_vel,local);
}
void KX_GameObject::setAngularVelocity(const MT_Vector3& ang_vel,bool local)
{
if (m_pPhysicsController1)
m_pPhysicsController1->SetAngularVelocity(ang_vel,local);
}
void KX_GameObject::SetObjectColor(const MT_Vector4& rgbavec)
{
m_bUseObjectColor = true;
m_objectColor = rgbavec;
}
MT_Vector3 KX_GameObject::GetLinearVelocity()
{
MT_Vector3 velocity(0.0,0.0,0.0);
if (m_pPhysicsController1)
{
velocity = m_pPhysicsController1->GetLinearVelocity();
}
return velocity;
}
// scenegraph node stuff
void KX_GameObject::NodeSetLocalPosition(const MT_Point3& trans)
{
if (m_pPhysicsController1)
{
m_pPhysicsController1->setPosition(trans);
}
GetSGNode()->SetLocalPosition(trans);
}
void KX_GameObject::NodeSetLocalOrientation(const MT_Matrix3x3& rot)
{
if (m_pPhysicsController1)
{
m_pPhysicsController1->setOrientation(rot.getRotation());
}
GetSGNode()->SetLocalOrientation(rot);
}
void KX_GameObject::NodeSetLocalScale(const MT_Vector3& scale)
{
if (m_pPhysicsController1)
{
m_pPhysicsController1->setScaling(scale);
}
GetSGNode()->SetLocalScale(scale);
}
void KX_GameObject::NodeSetRelativeScale(const MT_Vector3& scale)
{
GetSGNode()->RelativeScale(scale);
}
void KX_GameObject::NodeUpdateGS(double time,bool bInitiator)
{
GetSGNode()->UpdateWorldData(time);
}
const MT_Matrix3x3& KX_GameObject::NodeGetWorldOrientation() const
{
return GetSGNode()->GetWorldOrientation();
}
const MT_Vector3& KX_GameObject::NodeGetWorldScaling() const
{
return GetSGNode()->GetWorldScaling();
}
const MT_Point3& KX_GameObject::NodeGetWorldPosition() const
{
return GetSGNode()->GetWorldPosition();
}
/* Suspend/ resume: for the dynamic behaviour, there is a simple
* method. For the residual motion, there is not. I wonder what the
* correct solution is for Sumo. Remove from the motion-update tree?
*
* So far, only switch the physics and logic.
* */
void KX_GameObject::Resume(void)
{
if (m_suspended) {
SCA_IObject::Resume();
GetPhysicsController()->RestoreDynamics();
m_suspended = false;
}
}
void KX_GameObject::Suspend(void)
{
if ((!m_ignore_activity_culling)
&& (!m_suspended)) {
SCA_IObject::Suspend();
GetPhysicsController()->SuspendDynamics();
m_suspended = true;
}
}
/* ------- python stuff ---------------------------------------------------*/
PyMethodDef KX_GameObject::Methods[] = {
{"setVisible",(PyCFunction) KX_GameObject::sPySetVisible, METH_VARARGS},
{"setPosition", (PyCFunction) KX_GameObject::sPySetPosition, METH_VARARGS},
{"getPosition", (PyCFunction) KX_GameObject::sPyGetPosition, METH_VARARGS},
{"getLinearVelocity", (PyCFunction) KX_GameObject::sPyGetLinearVelocity, METH_VARARGS},
{"getVelocity", (PyCFunction) KX_GameObject::sPyGetVelocity, METH_VARARGS},
{"getOrientation", (PyCFunction) KX_GameObject::sPyGetOrientation, METH_VARARGS},
{"setOrientation", (PyCFunction) KX_GameObject::sPySetOrientation, METH_VARARGS},
{"getMass", (PyCFunction) KX_GameObject::sPyGetMass, METH_VARARGS},
{"getReactionForce", (PyCFunction) KX_GameObject::sPyGetReactionForce, METH_VARARGS},
{"applyImpulse", (PyCFunction) KX_GameObject::sPyApplyImpulse, METH_VARARGS},
{"suspendDynamics", (PyCFunction)KX_GameObject::sPySuspendDynamics,METH_VARARGS},
{"restoreDynamics", (PyCFunction)KX_GameObject::sPyRestoreDynamics,METH_VARARGS},
{"enableRigidBody", (PyCFunction)KX_GameObject::sPyEnableRigidBody,METH_VARARGS},
{"disableRigidBody", (PyCFunction)KX_GameObject::sPyDisableRigidBody,METH_VARARGS},
{"getParent", (PyCFunction)KX_GameObject::sPyGetParent,METH_VARARGS},
{"getMesh", (PyCFunction)KX_GameObject::sPyGetMesh,METH_VARARGS},
{"getPhysicsId", (PyCFunction)KX_GameObject::sPyGetPhysicsId,METH_VARARGS},
{NULL,NULL} //Sentinel
};
bool KX_GameObject::ConvertPythonVectorArgs(PyObject* args,
MT_Vector3& pos,
MT_Vector3& pos2)
{
PyObject* pylist;
PyObject* pylist2;
bool error = (PyArg_ParseTuple(args,"OO",&pylist,&pylist2)) != 0;
pos = ConvertPythonPylist(pylist);
pos2 = ConvertPythonPylist(pylist2);
return error;
}
PyObject* KX_GameObject::sPySetPosition(PyObject* self,
PyObject* args,
PyObject* kwds)
{
return ((KX_GameObject*) self)->PySetPosition(self, args, kwds);
}
PyObject* KX_GameObject::PyGetPosition(PyObject* self,
PyObject* args,
PyObject* kwds)
{
MT_Point3 pos = NodeGetWorldPosition();
PyObject* resultlist = PyList_New(3);
int index;
for (index=0;index<3;index++)
{
PyList_SetItem(resultlist,index,PyFloat_FromDouble(pos[index]));
}
return resultlist;
}
PyTypeObject KX_GameObject::Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"KX_GameObject",
sizeof(KX_GameObject),
0,
PyDestructor,
0,
__getattr,
__setattr,
0, //&MyPyCompare,
__repr,
0, //&cvalue_as_number,
0,
0,
0,
0
};
PyParentObject KX_GameObject::Parents[] = {
&KX_GameObject::Type,
&SCA_IObject::Type,
&CValue::Type,
NULL
};
PyObject* KX_GameObject::_getattr(char* attr)
{
_getattr_up(SCA_IObject);
}
PyObject* KX_GameObject::PyGetLinearVelocity(PyObject* self,
PyObject* args,
PyObject* kwds)
{
// only can get the velocity if we have a physics object connected to us...
MT_Vector3 velocity = GetLinearVelocity();
PyObject* resultlist = PyList_New(3);
int index;
for (index=0;index<3;index++)
{
PyList_SetItem(resultlist,index,PyFloat_FromDouble(velocity[index]));
}
return resultlist;
}
PyObject* KX_GameObject::PySetVisible(PyObject* self,
PyObject* args,
PyObject* kwds)
{
int visible = 1;
if (PyArg_ParseTuple(args,"i",&visible))
{
MarkVisible(visible!=0);
m_bVisible = (visible!=0);
}
else
{
return NULL;
}
Py_Return;
}
PyObject* KX_GameObject::PyGetVelocity(PyObject* self,
PyObject* args,
PyObject* kwds)
{
// only can get the velocity if we have a physics object connected to us...
MT_Vector3 velocity(0.0,0.0,0.0);
MT_Point3 point(0.0,0.0,0.0);
MT_Point3 pos;
PyObject* pylist;
bool error = false;
int len = PyTuple_Size(args);
if ((len > 0) && PyArg_ParseTuple(args,"O",&pylist))
{
if (pylist->ob_type == &CListValue::Type)
{
CListValue* listval = (CListValue*) pylist;
if (listval->GetCount() == 3)
{
int index;
for (index=0;index<3;index++)
{
pos[index] = listval->GetValue(index)->GetNumber();
}
} else
{
error = true;
}
} else
{
// assert the list is long enough...
int numitems = PyList_Size(pylist);
if (numitems == 3)
{
int index;
for (index=0;index<3;index++)
{
pos[index] = PyFloat_AsDouble(PyList_GetItem(pylist,index));
}
}
else
{
error = true;
}
}
if (!error)
point = pos;
}
if (m_pPhysicsController1)
{
velocity = m_pPhysicsController1->GetVelocity(point);
}
PyObject* resultlist = PyList_New(3);
int index;
for (index=0;index<3;index++)
{
PyList_SetItem(resultlist,index,PyFloat_FromDouble(velocity[index]));
}
return resultlist;
}
PyObject* KX_GameObject::PyGetMass(PyObject* self,
PyObject* args,
PyObject* kwds)
{
PyObject* pymass = NULL;
float mass = GetPhysicsController()->GetMass();
pymass = PyFloat_FromDouble(mass);
if (pymass)
return pymass;
Py_Return;
}
PyObject* KX_GameObject::PyGetReactionForce(PyObject* self,
PyObject* args,
PyObject* kwds)
{
// only can get the velocity if we have a physics object connected to us...
MT_Vector3 reaction_force = GetPhysicsController()->getReactionForce();
PyObject* resultlist = PyList_New(3);
int index;
for (index=0;index<3;index++)
{
PyList_SetItem(resultlist,index,
PyFloat_FromDouble(reaction_force[index]));
}
return resultlist;
}
PyObject* KX_GameObject::PyEnableRigidBody(PyObject* self,
PyObject* args,
PyObject* kwds)
{
GetPhysicsController()->setRigidBody(true);
Py_Return;
}
PyObject* KX_GameObject::PyDisableRigidBody(PyObject* self,
PyObject* args,
PyObject* kwds)
{
GetPhysicsController()->setRigidBody(false);
Py_Return;
}
PyObject* KX_GameObject::PyGetParent(PyObject* self,
PyObject* args,
PyObject* kwds)
{
KX_GameObject* parent = this->GetParent();
if (parent)
return parent;
Py_Return;
}
PyObject* KX_GameObject::PyGetMesh(PyObject* self,
PyObject* args,
PyObject* kwds)
{
if (m_meshes.size() > 0)
{
KX_MeshProxy* meshproxy = new KX_MeshProxy(m_meshes[0]);
return meshproxy;
}
Py_Return;
}
PyObject* KX_GameObject::PyApplyImpulse(PyObject* self,
PyObject* args,
PyObject* kwds)
{
MT_Point3 attach(0, 1, 0);
MT_Vector3 impulse(1, 0, 0);
if (ConvertPythonVectorArgs(args,attach,impulse))
{
if (m_pPhysicsController1)
{
m_pPhysicsController1->applyImpulse(attach, impulse);
}
}
Py_Return;
}
PyObject* KX_GameObject::PySuspendDynamics(PyObject* self,
PyObject* args,
PyObject* kwds)
{
if (m_bSuspendDynamics)
{
Py_Return;
}
if (m_pPhysicsController1)
{
m_pPhysicsController1->SuspendDynamics();
}
m_bSuspendDynamics = true;
Py_Return;
}
PyObject* KX_GameObject::PyRestoreDynamics(PyObject* self,
PyObject* args,
PyObject* kwds)
{
if (!m_bSuspendDynamics)
{
Py_Return;
}
if (m_pPhysicsController1)
{
m_pPhysicsController1->RestoreDynamics();
}
m_bSuspendDynamics = false;
Py_Return;
}
PyObject* KX_GameObject::PyGetOrientation(PyObject* self,
PyObject* args,
PyObject* kwds) //keywords
{
// do the conversion of a C++ matrix to a python list
PyObject* resultlist = PyList_New(3);
int row,col;
const MT_Matrix3x3& orient = NodeGetWorldOrientation();
int index = 0;
for (row=0;row<3;row++)
{
PyObject* veclist = PyList_New(3);
for (col=0;col<3;col++)
{
const MT_Scalar fl = orient[row][col];
PyList_SetItem(veclist,col,PyFloat_FromDouble(fl));
}
PyList_SetItem(resultlist,row,veclist);
}
return resultlist;
}
PyObject* KX_GameObject::PySetOrientation(PyObject* self,
PyObject* args,
PyObject* kwds)
{
MT_Matrix3x3 matrix;
PyObject* pylist;
bool error = false;
int row,col;
PyArg_ParseTuple(args,"O",&pylist);
if (pylist->ob_type == &CListValue::Type)
{
CListValue* listval = (CListValue*) pylist;
if (listval->GetCount() == 3)
{
for (row=0;row<3;row++) // each row has a 3-vector [x,y,z]
{
CListValue* vecval = (CListValue*)listval->GetValue(row);
for (col=0;col<3;col++)
{
matrix[row][col] = vecval->GetValue(col)->GetNumber();
}
}
}
else
{
error = true;
}
}
else
{
// assert the list is long enough...
int numitems = PyList_Size(pylist);
if (numitems == 3)
{
for (row=0;row<3;row++) // each row has a 3-vector [x,y,z]
{
PyObject* veclist = PyList_GetItem(pylist,row); // here we have a vector3 list
for (col=0;col<3;col++)
{
matrix[row][col] = PyFloat_AsDouble(PyList_GetItem(veclist,col));
}
}
}
else
{
error = true;
}
}
if (!error)
{
if (m_pPhysicsController1)
{
m_pPhysicsController1->setOrientation(matrix.getRotation());
}
NodeSetLocalOrientation(matrix);
}
Py_INCREF(Py_None);
return Py_None;
}
PyObject* KX_GameObject::PySetPosition(PyObject* self,
PyObject* args,
PyObject* kwds)
{
// make a general function for this, it's needed many times
MT_Point3 pos = ConvertPythonVectorArg(args);
if (this->m_pPhysicsController1)
{
this->m_pPhysicsController1->setPosition(pos);
}
NodeSetLocalPosition(pos);
Py_INCREF(Py_None);
return Py_None;
}
PyObject* KX_GameObject::PyGetPhysicsId(PyObject* self,
PyObject* args,
PyObject* kwds)
{
KX_IPhysicsController* ctrl = GetPhysicsController();
int physid=0;
if (ctrl)
{
physid= (int)ctrl->GetUserData();
}
return PyInt_FromLong(physid);
}
/* ---------------------------------------------------------------------
* Some stuff taken from the header
* --------------------------------------------------------------------- */
void KX_GameObject::Relink(GEN_Map<GEN_HashedPtr, void*> *map_parameter)
{
/* intentionally empty ? */
}