blender/intern/quadriflow/quadriflow_capi.cpp
Campbell Barton e955c94ed3 License Headers: Set copyright to "Blender Authors", add AUTHORS
Listing the "Blender Foundation" as copyright holder implied the Blender
Foundation holds copyright to files which may include work from many
developers.

While keeping copyright on headers makes sense for isolated libraries,
Blender's own code may be refactored or moved between files in a way
that makes the per file copyright holders less meaningful.

Copyright references to the "Blender Foundation" have been replaced with
"Blender Authors", with the exception of `./extern/` since these this
contains libraries which are more isolated, any changed to license
headers there can be handled on a case-by-case basis.

Some directories in `./intern/` have also been excluded:

- `./intern/cycles/` it's own `AUTHORS` file is planned.
- `./intern/opensubdiv/`.

An "AUTHORS" file has been added, using the chromium projects authors
file as a template.

Design task: #110784

Ref !110783.
2023-08-16 00:20:26 +10:00

223 lines
5.8 KiB
C++

/* SPDX-FileCopyrightText: 2019 Blender Authors
*
* SPDX-License-Identifier: GPL-2.0-or-later */
#include <unordered_map>
#include "MEM_guardedalloc.h"
#include "config.hpp"
#include "field-math.hpp"
#include "loader.hpp"
#include "optimizer.hpp"
#include "parametrizer.hpp"
#include "quadriflow_capi.hpp"
using namespace qflow;
struct ObjVertex {
uint32_t p = (uint32_t)-1;
uint32_t n = (uint32_t)-1;
uint32_t uv = (uint32_t)-1;
ObjVertex()
{
}
ObjVertex(uint32_t pi)
{
p = pi;
}
bool operator==(const ObjVertex &v) const
{
return v.p == p && v.n == n && v.uv == uv;
}
};
struct ObjVertexHash {
std::size_t operator()(const ObjVertex &v) const
{
size_t hash = std::hash<uint32_t>()(v.p);
hash = hash * 37 + std::hash<uint32_t>()(v.uv);
hash = hash * 37 + std::hash<uint32_t>()(v.n);
return hash;
}
};
typedef std::unordered_map<ObjVertex, uint32_t, ObjVertexHash> VertexMap;
static int check_if_canceled(float progress,
void (*update_cb)(void *, float progress, int *cancel),
void *update_cb_data)
{
int cancel = 0;
update_cb(update_cb_data, progress, &cancel);
return cancel;
}
void QFLOW_quadriflow_remesh(QuadriflowRemeshData *qrd,
void (*update_cb)(void *, float progress, int *cancel),
void *update_cb_data)
{
Parametrizer field;
VertexMap vertexMap;
/* Get remeshing parameters. */
int faces = qrd->target_faces;
if (qrd->preserve_sharp) {
field.flag_preserve_sharp = 1;
}
if (qrd->preserve_boundary) {
field.flag_preserve_boundary = 1;
}
if (qrd->adaptive_scale) {
field.flag_adaptive_scale = 1;
}
if (qrd->minimum_cost_flow) {
field.flag_minimum_cost_flow = 1;
}
if (qrd->aggresive_sat) {
field.flag_aggresive_sat = 1;
}
if (qrd->rng_seed) {
field.hierarchy.rng_seed = qrd->rng_seed;
}
if (check_if_canceled(0.0f, update_cb, update_cb_data) != 0) {
return;
}
/* Copy mesh to quadriflow data structures. */
std::vector<Vector3d> positions;
std::vector<uint32_t> indices;
std::vector<ObjVertex> vertices;
for (int i = 0; i < qrd->totverts; i++) {
Vector3d v(qrd->verts[i * 3], qrd->verts[i * 3 + 1], qrd->verts[i * 3 + 2]);
positions.push_back(v);
}
for (int q = 0; q < qrd->totfaces; q++) {
Vector3i f(qrd->faces[q * 3], qrd->faces[q * 3 + 1], qrd->faces[q * 3 + 2]);
ObjVertex tri[6];
int nVertices = 3;
tri[0] = ObjVertex(f[0]);
tri[1] = ObjVertex(f[1]);
tri[2] = ObjVertex(f[2]);
for (int i = 0; i < nVertices; ++i) {
const ObjVertex &v = tri[i];
VertexMap::const_iterator it = vertexMap.find(v);
if (it == vertexMap.end()) {
vertexMap[v] = (uint32_t)vertices.size();
indices.push_back((uint32_t)vertices.size());
vertices.push_back(v);
}
else {
indices.push_back(it->second);
}
}
}
field.F.resize(3, indices.size() / 3);
memcpy(field.F.data(), indices.data(), sizeof(uint32_t) * indices.size());
field.V.resize(3, vertices.size());
for (uint32_t i = 0; i < vertices.size(); ++i) {
field.V.col(i) = positions.at(vertices[i].p);
}
if (check_if_canceled(0.1f, update_cb, update_cb_data)) {
return;
}
/* Start processing the input mesh data */
field.NormalizeMesh();
field.Initialize(faces);
if (check_if_canceled(0.2f, update_cb, update_cb_data)) {
return;
}
/* Setup mesh boundary constraints if needed */
if (field.flag_preserve_boundary) {
Hierarchy &mRes = field.hierarchy;
mRes.clearConstraints();
for (uint32_t i = 0; i < 3 * mRes.mF.cols(); ++i) {
if (mRes.mE2E[i] == -1) {
uint32_t i0 = mRes.mF(i % 3, i / 3);
uint32_t i1 = mRes.mF((i + 1) % 3, i / 3);
Vector3d p0 = mRes.mV[0].col(i0), p1 = mRes.mV[0].col(i1);
Vector3d edge = p1 - p0;
if (edge.squaredNorm() > 0) {
edge.normalize();
mRes.mCO[0].col(i0) = p0;
mRes.mCO[0].col(i1) = p1;
mRes.mCQ[0].col(i0) = mRes.mCQ[0].col(i1) = edge;
mRes.mCQw[0][i0] = mRes.mCQw[0][i1] = mRes.mCOw[0][i0] = mRes.mCOw[0][i1] = 1.0;
}
}
}
mRes.propagateConstraints();
}
/* Optimize the mesh field orientations (tangental field etc) */
Optimizer::optimize_orientations(field.hierarchy);
field.ComputeOrientationSingularities();
if (check_if_canceled(0.3f, update_cb, update_cb_data)) {
return;
}
if (field.flag_adaptive_scale == 1) {
field.EstimateSlope();
}
if (check_if_canceled(0.4f, update_cb, update_cb_data)) {
return;
}
Optimizer::optimize_scale(field.hierarchy, field.rho, field.flag_adaptive_scale);
field.flag_adaptive_scale = 1;
Optimizer::optimize_positions(field.hierarchy, field.flag_adaptive_scale);
field.ComputePositionSingularities();
if (check_if_canceled(0.5f, update_cb, update_cb_data)) {
return;
}
/* Compute the final quad geomtry using a maxflow solver */
field.ComputeIndexMap();
if (check_if_canceled(0.9f, update_cb, update_cb_data)) {
return;
}
/* Get the output mesh data */
qrd->out_totverts = field.O_compact.size();
qrd->out_totfaces = field.F_compact.size();
qrd->out_verts = (float *)MEM_malloc_arrayN(qrd->out_totverts, sizeof(float[3]), __func__);
qrd->out_faces = (int *)MEM_malloc_arrayN(qrd->out_totfaces, sizeof(int[4]), __func__);
for (int i = 0; i < qrd->out_totverts; i++) {
auto t = field.O_compact[i] * field.normalize_scale + field.normalize_offset;
qrd->out_verts[i * 3] = t[0];
qrd->out_verts[i * 3 + 1] = t[1];
qrd->out_verts[i * 3 + 2] = t[2];
}
for (int i = 0; i < qrd->out_totfaces; i++) {
qrd->out_faces[i * 4] = field.F_compact[i][0];
qrd->out_faces[i * 4 + 1] = field.F_compact[i][1];
qrd->out_faces[i * 4 + 2] = field.F_compact[i][2];
qrd->out_faces[i * 4 + 3] = field.F_compact[i][3];
}
}