blender/release/scripts/object_cookie_cutter.py

646 lines
17 KiB
Python
Executable File

#!BPY
"""
Name: 'Cookie Cut from View'
Blender: 234
Group: 'Object'
Tooltip: 'Cut from the view axis, (Sel Meshes (only edges) into other meshes with faces)'
"""
__author__= "Campbell Barton"
__url__= ["blender", "blenderartist"]
__version__= "1.0"
__bpydoc__= """\
This script takes the selected mesh objects, devides them into 2 groups
Cutters and The objects to be cut.
Cutters are meshes with no faces, just edge loops. and any meshes with faces will be cut.
Usage:
Select 2 or more meshes, one with no faces (a closed polyline) and one with faces to cut.
Align the view on the axis you want to cut.
For shapes that have overlapping faces (from the view), hide any backfacing faces so they will be ignored during the cut.
Run the script.
You can choose to make the cut verts lie on the face that they were cut from or on the edge that cut them.
This script supports UV coordinates and images.
"""
import Blender
import BPyMathutils
from math import sqrt
reload(BPyMathutils)
Vector= Blender.Mathutils.Vector
LineIntersect2D= Blender.Geometry.LineIntersect2D
# Auto class
def auto_class(slots):
exec('class container_class(object): __slots__=%s' % slots)
return container_class
bignum= 1<<30
def bounds_xy(iter_item):
'''
Works with types
MMesh.verts
MFace
MEdge
'''
xmin= ymin= bignum
xmax= ymax= -bignum
for v in iter_item:
x= v.co.x
y= v.co.y
if x<xmin: xmin= x
if y<ymin: ymin= y
if x>xmax: xmax= x
if y>ymax: ymax= y
return xmin, ymin, xmax, ymax
def bounds_intersect(a,b):
'''
each tuple is
xmin, ymin, xmax, ymax
'''
if\
a[0]>b[2] or\
a[1]>b[3] or\
a[2]<b[0] or\
a[3]<b[1]:
return False
else:
return True
def point_in_bounds(pt, bounds):
'''
each tuple is
xmin, ymin, xmax, ymax
'''
if\
pt.x<bounds[0] or\
pt.y<bounds[1] or\
pt.x>bounds[2] or\
pt.y>bounds[3]:
return False
else:
return True
def point_in_poly2d(pt, fvco):
crazy_point= Vector(pt) # A point far outside the range of the terrain.
crazy_point.x= crazy_point.x - 10000000
#fvco= [v.co for v in face]
isect=0
for i in xrange(len(fvco)):
isect+= (LineIntersect2D(pt, crazy_point, fvco[i], fvco[i-1]) != None)
return isect%2 # odd number is an intersect which wouold be true (inside the face)
# reuse me more.
def sorted_edge_indicies(ed):
i1= ed.v1.index
i2= ed.v2.index
if i1>i2:
i1,i2= i2,i1
return i1, i2
def sorted_indicies(i1, i2):
if i1>i2:
i1,i2= i2,i1
return i1, i2
def fake_length2d(pt1, pt2):
'''
Only used for comparison so dont sqrt
'''
#return math.sqrt(abs(pow(x1-x2, 2)+ pow(y1-y2, 2)))
return pow(pt1[0]-pt2[0], 2) + pow(pt1[1]- pt2[1], 2)
def length2d(pt1, pt2):
'''
Only used for comparison so dont sqrt
'''
#return math.sqrt(abs(pow(x1-x2, 2)+ pow(y1-y2, 2)))
return sqrt(pow(pt1[0]-pt2[0], 2) + pow(pt1[1]- pt2[1], 2))
def tri_area_2d(v1, v2, v3):
e1 = length2d(v1, v2)
e2 = length2d(v2, v3)
e3 = length2d(v3, v1)
p = e1+e2+e3
return 0.25 * sqrt(abs(p*(p-2*e1)*(p-2*e2)*(p-2*e3)))
def tri_pt_find_z_2d(pt, tri):
""" Takes a face and 3d vector and assigns teh vectors Z to its on the face"""
l1= tri_area_2d(tri[1], tri[2], pt)
l2= tri_area_2d(tri[0], tri[2], pt)
l3= tri_area_2d(tri[0], tri[1], pt)
tot= l1+l2+l3
# Normalize
l1=l1/tot
l2=l2/tot
l3=l3/tot
z1= tri[0].z*l1
z2= tri[1].z*l2
z3= tri[2].z*l3
return z1+z2+z3
def tri_pt_find_uv_2d(pt, tri, uvs):
""" Takes a face and 3d vector and assigns teh vectors Z to its on the face"""
l1= tri_area_2d(tri[1], tri[2], pt)
l2= tri_area_2d(tri[0], tri[2], pt)
l3= tri_area_2d(tri[0], tri[1], pt)
tot= l1+l2+l3
if not tot: # No area, just return the first uv
return Vector(uvs[0])
# Normalize
l1=l1/tot
l2=l2/tot
l3=l3/tot
uv1= uvs[0]*l1
uv2= uvs[1]*l2
uv3= uvs[2]*l3
return uv1+uv2+uv3
def mesh_edge_dict(me):
ed_dict= {}
for f in me.faces:
if not f.hide:
for edkey in f.edge_keys:
ed_dict.setdefault(edkey, []).append(f)
return ed_dict
def terrain_cut_2d(t, c, PREF_Z_LOC):
'''
t is the terrain
c is the cutter
PREF_Z_LOC: 0 - from terrain face
1 - from cutter edge
returns nothing
'''
# do we have a 2d intersection
if not bounds_intersect(t.bounds, c.bounds):
return
# Local vars
me_t= t.mesh
me_c= c.mesh
has_uv= me_t.faceUV
Blender.Mesh.Mode(Blender.Mesh.SelectModes['VERTEX'])
'''
first assign a face terrain face for each cutter verticie
'''
cut_verts_temp= list(me_c.verts)
cut_vert_terrain_faces= [None] * len(me_c.verts)
vert_z_level= [-10.0] * len(me_c.verts)
for v in me_c.verts:
v_index= v.index
v_co= v.co
for fidx, f in enumerate(me_t.faces):
if not f.hide:
if point_in_bounds(v_co, t.face_bounds[fidx]):
f_v= [vv.co for vv in f]
if point_in_poly2d(v_co, f_v):
if PREF_Z_LOC==0:
'''
Get the z location from the face.
'''
if len(f_v)==3:
vert_z_level[v_index]= tri_pt_find_z_2d(v_co, (f_v[0], f_v[1], f_v[2]) )
else:
# Quad, which side are we on?
a1= tri_area_2d(f_v[0], f_v[1], v_co)
a2= tri_area_2d(f_v[1], f_v[2], v_co)
a3= tri_area_2d(f_v[0], f_v[1], f_v[2])
if a1+a2<a3:
vert_z_level[v_index]= tri_pt_find_z_2d(v_co, (f_v[0], f_v[1], f_v[2]) )
else:
vert_z_level[v_index]= tri_pt_find_z_2d(v_co, (f_v[0], f_v[2], f_v[3]) )
else: # PREF_Z_LOC==1
'''
Get the z location from the vert
'''
vert_z_level[v_index]= v_co.z
# Non overlapping faces in terrain mean we can break
cut_vert_terrain_faces[v_index]= f
break
del cut_verts_temp
edge_intersections= []
edge_isect_type= auto_class(['point', 'ed_terrain', 'ed_cut'])
# intersect cutter faces with terrain edges.
for ei_t, ed_t in enumerate(me_t.edges):
eb_t= t.edge_bounds[ei_t]
if bounds_intersect(eb_t, c.bounds): # face/cutter bounds intersect?
# Loop through the cutter edges.
for ei_c, ed_c in enumerate(me_c.edges):
# If the cutter edge has 2 verts inside the same face then we can ignore it
# Bothe are different faces or None
if cut_vert_terrain_faces[ed_c.v1.index] != cut_vert_terrain_faces[ed_c.v2.index] or\
cut_vert_terrain_faces[ed_c.v1.index] == cut_vert_terrain_faces[ed_c.v2.index] == None:
eb_c= c.edge_bounds[ei_c]
if bounds_intersect(eb_t, eb_c): # face/edge bounds intersect?
# Now we know the 2 edges might intersect, we'll do a propper test
x= LineIntersect2D(ed_t.v1.co, ed_t.v2.co, ed_c.v1.co, ed_c.v2.co)
if x:
ed_isect= edge_isect_type()
ed_isect.point= x.resize3D() # fake 3d
# Find the interpolation Z point
if PREF_Z_LOC==0:
'''
Terrains edge
'''
l1= length2d(ed_isect.point, ed_t.v1.co)
l2= length2d(ed_isect.point, ed_t.v2.co)
ed_isect.point.z= ((l2*ed_t.v1.co.z) + (l1*ed_t.v2.co.z)) / (l1+l2)
else:
'''
Cutters edge
'''
l1= length2d(ed_isect.point, ed_c.v1.co)
l2= length2d(ed_isect.point, ed_c.v2.co)
ed_isect.point.z= ((l2*ed_c.v1.co.z) + (l1*ed_c.v2.co.z)) / (l1+l2)
ed_isect.ed_terrain= ed_t
ed_isect.ed_cut= ed_c
edge_intersections.append(ed_isect)
if not edge_intersections:
return
# Now we have collected intersections we need to apply them
# Find faces that have intersections, these faces will need to be cut.
faces_intersecting= {} # face index as key, list of edges as values
for ed_isect in edge_intersections:
try:
faces= t.edge_dict[ sorted_edge_indicies(ed_isect.ed_terrain) ]
except:
# If the faces are hidden then the faces wont exist.
faces= []
for f in faces:
faces_intersecting.setdefault(f.index, []).append(ed_isect)
# this list is used to store edges that are totaly inside a face ( no intersections with terrain)
# we can remove these as we
face_containing_edges= [[] for i in xrange(len(me_t.faces))]
for ed_c in me_c.edges:
if cut_vert_terrain_faces[ed_c.v1.index]==cut_vert_terrain_faces[ed_c.v2.index] != None:
# were inside a face.
face_containing_edges[cut_vert_terrain_faces[ed_c.v1.index].index].append(ed_c)
# New Mesh for filling faces only
new_me= Blender.Mesh.New()
scn= Blender.Scene.GetCurrent()
ob= Blender.Object.New('Mesh')
ob.link(new_me)
scn.link(ob)
ob.sel= True
new_faces= []
new_faces_props= []
new_uvs= []
new_verts= []
# Loop through inter
for fidx_t, isect_edges in faces_intersecting.iteritems():
f= me_t.faces[fidx_t]
f_v= f.v
fidxs_s= [v.index for v in f_v]
# Make new fake edges for each edge, each starts as a list of 2 verts, but more verts can be added
# This list will then be sorted so the edges are in order from v1 to v2 of the edge.
face_new_verts= [ (f_v[i], [], f_v[i-1]) for i in xrange(len(f_v)) ]
# if len(face_new_verts) < 3: raise 'weirdo'
face_edge_dict = dict( [(sorted_indicies(fidxs_s[i], fidxs_s[i-1]), i) for i in xrange(len(f_v))] )
for ed_isect in isect_edges:
edge_index_in_face = face_edge_dict[ sorted_edge_indicies(ed_isect.ed_terrain) ]
# Add this intersection to the face
face_new_verts[edge_index_in_face][1].append(ed_isect)
# Now sort the intersections
for new_edge in face_new_verts:
if len(new_edge[1]) > 1:
# We have 2+ verts to sort
edv1= tuple(new_edge[0].co) # 3d but well only use the 2d part
new_edge[1].sort(lambda a,b: cmp(fake_length2d(a.point, edv1), fake_length2d(b.point, edv1) ))
# now build up a new face by getting edges
random_face_edges= []
unique_verts= [] # store vert
rem_double_edges= {}
def add_edge(p1, p2):
k1= tuple(p1)
k2= tuple(p2)
# Adds new verts where needed
try:
i1= rem_double_edges[k1]
except:
i1= rem_double_edges[k1]= len(rem_double_edges)
unique_verts.append(k1)
try:
i2= rem_double_edges[k2]
except:
i2= rem_double_edges[k2]= len(rem_double_edges)
unique_verts.append(k2)
random_face_edges.append( (i1, i2) )
# edges that dont have a vert in the face have to span between to intersection points
# since we dont know the other point at any 1 time we need to remember edges that
# span a face and add them once we'v collected both
# first add outline edges
edge_span_face= {}
for new_edge in face_new_verts:
new_edge_subdiv= len(new_edge[1])
if new_edge_subdiv==0:
# no subdiv edges, just add
add_edge(new_edge[0].co, new_edge[2].co)
elif new_edge_subdiv==1:
add_edge(new_edge[0].co, new_edge[1][0].point)
add_edge(new_edge[1][0].point, new_edge[2].co)
else:
# 2 or more edges
add_edge(new_edge[0].co, new_edge[1][0].point)
add_edge(new_edge[1][-1].point, new_edge[2].co)
# now add multiple
for i in xrange(new_edge_subdiv-1):
add_edge(new_edge[1][i].point, new_edge[1][i+1].point)
# done adding outline
# while looping through the edge subdivs, add the edges that intersect
for ed_isect in new_edge[1]:
ed_cut= ed_isect.ed_cut
if cut_vert_terrain_faces[ed_cut.v1.index]==f:
# our first vert is inside the face
point= Vector(ed_cut.v1.co)
point.z= vert_z_level[ed_cut.v1.index]
add_edge(point, ed_isect.point)
elif cut_vert_terrain_faces[ed_cut.v2.index]==f:
# assume second vert is inside the face
point= Vector(ed_cut.v2.co)
point.z= vert_z_level[ed_cut.v2.index]
add_edge(point, ed_isect.point)
else:
# this edge has no verts in the face so it will need to be clipped in 2 places
try:
point= edge_span_face[ed_cut]
# if were here it worked ;)
add_edge(point, ed_isect.point)
except:
# add the first intersecting point
edge_span_face[ed_cut]= ed_isect.point
# now add all edges that are inside the the face
for ed_c in face_containing_edges[fidx_t]:
point1= Vector(ed_c.v1.co)
point2= Vector(ed_c.v2.co)
point1.z= vert_z_level[ed_c.v1.index]
point2.z= vert_z_level[ed_c.v2.index]
add_edge(point1, point2)
new_me.verts.extend(unique_verts)
new_me.edges.extend(random_face_edges)
new_me.sel= 1
# backup the z values, fill and restore
backup_z= [v.co.z for v in new_me.verts]
for v in new_me.verts: v.co.z= 0
#raise 'as'
new_me.fill()
for i, v in enumerate(new_me.verts): v.co.z= backup_z[i]
# ASSIGN UV's
if has_uv:
f_uv= f_uv_mod= f.uv
f_vco= f_vco_mod= [v.co for v in f]
# f is the face, get the uv's from that.
uvs= [None] * len(new_me.verts)
for i, v in enumerate(new_me.verts):
v_co= v.co
f_uv_mod= f_uv
f_vco_mod= f_vco
if len(f_v)==4:
# Quad, which side are we on?
a1= tri_area_2d(f_vco[0], f_vco[1], v_co)
a2= tri_area_2d(f_vco[1], f_vco[2], v_co)
a3= tri_area_2d(f_vco[0], f_vco[1], f_vco[2])
if a1+a2 > a3:
# 0,2,3
f_uv_mod= f_uv[0], f_uv[2], f_uv[3]
f_vco_mod= f_vco[0], f_vco[2], f_vco[3]
# else - side of 0,1,2 - dont modify the quad
uvs[i]= tri_pt_find_uv_2d(v_co, f_vco_mod, f_uv_mod)
new_uvs.extend(uvs)
new_faces_props.extend( [f.image] * len(new_me.faces) )
# collect the fill results
new_verts_len= len(new_verts) + len(me_t.verts)
new_faces.extend( [[v.index+new_verts_len for v in ff] for ff in new_me.faces] )
new_verts.extend(unique_verts)
new_me.verts= None
#raise 'error'
# Finished filling
scn.unlink(ob)
# Remove faces
face_len = len(me_t.faces)
verts_len = len(me_t.verts)
me_t.verts.extend(new_verts)
me_t.faces.extend(new_faces)
for i in xrange(len(new_faces)):
f= me_t.faces[face_len+i]
if has_uv:
img= new_faces_props[i]
if img: f.image= img
f_uv= f.uv
for ii, v in enumerate(f):
v_index= v.index-verts_len
new_uv= new_uvs[v_index]
uv= f_uv[ii]
uv.x= new_uv.x
uv.y= new_uv.y
me_t.faces.delete(1, faces_intersecting.keys())
me_t.sel= 1
me_t.remDoubles(0.0000001)
def main():
PREF_Z_LOC= Blender.Draw.PupMenu('Cut Z Location%t|Original Faces|Cutting Polyline')
if PREF_Z_LOC==-1:
return
PREF_Z_LOC-=1
Blender.Window.WaitCursor(1)
print '\nRunning Cookie Cutter'
time= Blender.sys.time()
obs= [ob for ob in Blender.Object.GetSelected() if ob.getType()=='Mesh']
# Divide into 2 lists- 1 with faces, one with only edges
terrains= [] #[me for me in mes if me.faces]
cutters= [] #[me for me in mes if not me.faces]
terrain_type= auto_class(['mesh', 'bounds', 'face_bounds', 'edge_bounds', 'edge_dict', 'cutters', 'matrix'])
for ob in obs:
me= ob.getData(mesh=1)
# a new terrain instance
t= terrain_type()
t.matrix= ob.matrixWorld * Blender.Window.GetViewMatrix()
# Transform the object by its matrix
me.transform(t.matrix)
# Set the terrain bounds
t.bounds= bounds_xy(me.verts)
t.edge_bounds= [bounds_xy(ed) for ed in me.edges]
t.mesh= me
if me.faces: # Terrain.
t.edge_dict= mesh_edge_dict(me)
t.face_bounds= [bounds_xy(f) for f in me.faces]
t.cutters= [] # Store cutting objects that cut us here
terrains.append(t)
elif len(me.edges)>2: # Cutter
cutters.append(t)
totcuts= len(terrains)*len(cutters)
if not totcuts:
Blender.Window.WaitCursor(0)
Blender.Draw.PupMenu('ERROR%t|Select at least 1 closed loop mesh (edges only)|as the cutter...|and 1 or more meshes to cut into')
crazy_point= Vector(100000, 100000)
for t in terrains:
for c in cutters:
# Main curring function
terrain_cut_2d(t, c, PREF_Z_LOC)
# Was the terrain touched?
if len(t.face_bounds) != len(t.mesh.faces):
t.edge_dict= mesh_edge_dict(t.mesh)
# remake the bounds
t.edge_bounds= [bounds_xy(ed) for ed in t.mesh.edges]
t.face_bounds= [bounds_xy(f) for f in t.mesh.faces]
t.cutters.append(c)
print '\t%i remaining' % totcuts
totcuts-=1
# SELECT INTERNAL FACES ONCE THIS TERRAIN IS CUT
Blender.Mesh.Mode(Blender.Mesh.SelectModes['FACE'])
t.mesh.sel= 0
for c in t.cutters:
edge_verts_c= [(ed_c.v1.co, ed_c.v2.co) for ed_c in c.mesh.edges]
for f in t.mesh.faces:
# How many edges do we intersect on our way to the faces center
if not f.hide and not f.sel: # Not alredy selected
c= f.cent
if point_in_bounds(c, t.bounds):
isect_count= 0
for edv1, edv2 in edge_verts_c:
isect_count += (LineIntersect2D(c, crazy_point, edv1, edv2) != None)
if isect_count%2:
f.sel= 1
Blender.Mesh.Mode(Blender.Mesh.SelectModes['FACE'])
# Restore the transformation
for data in (terrains, cutters):
for t in data:
t.mesh.transform(t.matrix.copy().invert())
Blender.Window.WaitCursor(0)
print 'terrains:%i cutters %i %.2f secs taken' % (len(terrains), len(cutters), Blender.sys.time()-time)
if __name__=='__main__':
main()