blender/intern/cycles/device/opencl/opencl_util.cpp
2017-03-31 10:12:13 +02:00

1075 lines
29 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef WITH_OPENCL
#include "device/opencl/opencl.h"
#include "util/util_logging.h"
#include "util/util_md5.h"
#include "util/util_path.h"
#include "util/util_time.h"
using std::cerr;
using std::endl;
CCL_NAMESPACE_BEGIN
OpenCLCache::Slot::ProgramEntry::ProgramEntry()
: program(NULL),
mutex(NULL)
{
}
OpenCLCache::Slot::ProgramEntry::ProgramEntry(const ProgramEntry& rhs)
: program(rhs.program),
mutex(NULL)
{
}
OpenCLCache::Slot::ProgramEntry::~ProgramEntry()
{
delete mutex;
}
OpenCLCache::Slot::Slot()
: context_mutex(NULL),
context(NULL)
{
}
OpenCLCache::Slot::Slot(const Slot& rhs)
: context_mutex(NULL),
context(NULL),
programs(rhs.programs)
{
}
OpenCLCache::Slot::~Slot()
{
delete context_mutex;
}
OpenCLCache& OpenCLCache::global_instance()
{
static OpenCLCache instance;
return instance;
}
cl_context OpenCLCache::get_context(cl_platform_id platform,
cl_device_id device,
thread_scoped_lock& slot_locker)
{
assert(platform != NULL);
OpenCLCache& self = global_instance();
thread_scoped_lock cache_lock(self.cache_lock);
pair<CacheMap::iterator,bool> ins = self.cache.insert(
CacheMap::value_type(PlatformDevicePair(platform, device), Slot()));
Slot &slot = ins.first->second;
/* create slot lock only while holding cache lock */
if(!slot.context_mutex)
slot.context_mutex = new thread_mutex;
/* need to unlock cache before locking slot, to allow store to complete */
cache_lock.unlock();
/* lock the slot */
slot_locker = thread_scoped_lock(*slot.context_mutex);
/* If the thing isn't cached */
if(slot.context == NULL) {
/* return with the caller's lock holder holding the slot lock */
return NULL;
}
/* the item was already cached, release the slot lock */
slot_locker.unlock();
cl_int ciErr = clRetainContext(slot.context);
assert(ciErr == CL_SUCCESS);
(void)ciErr;
return slot.context;
}
cl_program OpenCLCache::get_program(cl_platform_id platform,
cl_device_id device,
ustring key,
thread_scoped_lock& slot_locker)
{
assert(platform != NULL);
OpenCLCache& self = global_instance();
thread_scoped_lock cache_lock(self.cache_lock);
pair<CacheMap::iterator,bool> ins = self.cache.insert(
CacheMap::value_type(PlatformDevicePair(platform, device), Slot()));
Slot &slot = ins.first->second;
pair<Slot::EntryMap::iterator,bool> ins2 = slot.programs.insert(
Slot::EntryMap::value_type(key, Slot::ProgramEntry()));
Slot::ProgramEntry &entry = ins2.first->second;
/* create slot lock only while holding cache lock */
if(!entry.mutex)
entry.mutex = new thread_mutex;
/* need to unlock cache before locking slot, to allow store to complete */
cache_lock.unlock();
/* lock the slot */
slot_locker = thread_scoped_lock(*entry.mutex);
/* If the thing isn't cached */
if(entry.program == NULL) {
/* return with the caller's lock holder holding the slot lock */
return NULL;
}
/* the item was already cached, release the slot lock */
slot_locker.unlock();
cl_int ciErr = clRetainProgram(entry.program);
assert(ciErr == CL_SUCCESS);
(void)ciErr;
return entry.program;
}
void OpenCLCache::store_context(cl_platform_id platform,
cl_device_id device,
cl_context context,
thread_scoped_lock& slot_locker)
{
assert(platform != NULL);
assert(device != NULL);
assert(context != NULL);
OpenCLCache &self = global_instance();
thread_scoped_lock cache_lock(self.cache_lock);
CacheMap::iterator i = self.cache.find(PlatformDevicePair(platform, device));
cache_lock.unlock();
Slot &slot = i->second;
/* sanity check */
assert(i != self.cache.end());
assert(slot.context == NULL);
slot.context = context;
/* unlock the slot */
slot_locker.unlock();
/* increment reference count in OpenCL.
* The caller is going to release the object when done with it. */
cl_int ciErr = clRetainContext(context);
assert(ciErr == CL_SUCCESS);
(void)ciErr;
}
void OpenCLCache::store_program(cl_platform_id platform,
cl_device_id device,
cl_program program,
ustring key,
thread_scoped_lock& slot_locker)
{
assert(platform != NULL);
assert(device != NULL);
assert(program != NULL);
OpenCLCache &self = global_instance();
thread_scoped_lock cache_lock(self.cache_lock);
CacheMap::iterator i = self.cache.find(PlatformDevicePair(platform, device));
assert(i != self.cache.end());
Slot &slot = i->second;
Slot::EntryMap::iterator i2 = slot.programs.find(key);
assert(i2 != slot.programs.end());
Slot::ProgramEntry &entry = i2->second;
assert(entry.program == NULL);
cache_lock.unlock();
entry.program = program;
/* unlock the slot */
slot_locker.unlock();
/* Increment reference count in OpenCL.
* The caller is going to release the object when done with it.
*/
cl_int ciErr = clRetainProgram(program);
assert(ciErr == CL_SUCCESS);
(void)ciErr;
}
string OpenCLCache::get_kernel_md5()
{
OpenCLCache &self = global_instance();
thread_scoped_lock lock(self.kernel_md5_lock);
if(self.kernel_md5.empty()) {
self.kernel_md5 = path_files_md5_hash(path_get("source"));
}
return self.kernel_md5;
}
OpenCLDeviceBase::OpenCLProgram::OpenCLProgram(OpenCLDeviceBase *device,
string program_name,
string kernel_file,
string kernel_build_options,
bool use_stdout)
: device(device),
program_name(program_name),
kernel_file(kernel_file),
kernel_build_options(kernel_build_options),
use_stdout(use_stdout)
{
loaded = false;
program = NULL;
}
OpenCLDeviceBase::OpenCLProgram::~OpenCLProgram()
{
release();
}
void OpenCLDeviceBase::OpenCLProgram::release()
{
for(map<ustring, cl_kernel>::iterator kernel = kernels.begin(); kernel != kernels.end(); ++kernel) {
if(kernel->second) {
clReleaseKernel(kernel->second);
kernel->second = NULL;
}
}
if(program) {
clReleaseProgram(program);
program = NULL;
}
}
void OpenCLDeviceBase::OpenCLProgram::add_log(string msg, bool debug)
{
if(!use_stdout) {
log += msg + "\n";
}
else if(!debug) {
printf("%s\n", msg.c_str());
}
else {
VLOG(2) << msg;
}
}
void OpenCLDeviceBase::OpenCLProgram::add_error(string msg)
{
if(use_stdout) {
fprintf(stderr, "%s\n", msg.c_str());
}
if(error_msg == "") {
error_msg += "\n";
}
error_msg += msg;
}
void OpenCLDeviceBase::OpenCLProgram::add_kernel(ustring name)
{
if(!kernels.count(name)) {
kernels[name] = NULL;
}
}
bool OpenCLDeviceBase::OpenCLProgram::build_kernel(const string *debug_src)
{
string build_options;
build_options = device->kernel_build_options(debug_src) + kernel_build_options;
VLOG(1) << "Build options passed to clBuildProgram: '"
<< build_options << "'.";
cl_int ciErr = clBuildProgram(program, 0, NULL, build_options.c_str(), NULL, NULL);
/* show warnings even if build is successful */
size_t ret_val_size = 0;
clGetProgramBuildInfo(program, device->cdDevice, CL_PROGRAM_BUILD_LOG, 0, NULL, &ret_val_size);
if(ciErr != CL_SUCCESS) {
add_error(string("OpenCL build failed with error ") + clewErrorString(ciErr) + ", errors in console.");
}
if(ret_val_size > 1) {
vector<char> build_log(ret_val_size + 1);
clGetProgramBuildInfo(program, device->cdDevice, CL_PROGRAM_BUILD_LOG, ret_val_size, &build_log[0], NULL);
build_log[ret_val_size] = '\0';
/* Skip meaningless empty output from the NVidia compiler. */
if(!(ret_val_size == 2 && build_log[0] == '\n')) {
add_log(string("OpenCL program ") + program_name + " build output: " + string(&build_log[0]), ciErr == CL_SUCCESS);
}
}
return (ciErr == CL_SUCCESS);
}
bool OpenCLDeviceBase::OpenCLProgram::compile_kernel(const string *debug_src)
{
string source = "#include \"kernel/kernels/opencl/" + kernel_file + "\"\n";
/* We compile kernels consisting of many files. unfortunately OpenCL
* kernel caches do not seem to recognize changes in included files.
* so we force recompile on changes by adding the md5 hash of all files.
*/
source = path_source_replace_includes(source, path_get("source"));
source += "\n// " + util_md5_string(source) + "\n";
if(debug_src) {
path_write_text(*debug_src, source);
}
size_t source_len = source.size();
const char *source_str = source.c_str();
cl_int ciErr;
program = clCreateProgramWithSource(device->cxContext,
1,
&source_str,
&source_len,
&ciErr);
if(ciErr != CL_SUCCESS) {
add_error(string("OpenCL program creation failed: ") + clewErrorString(ciErr));
return false;
}
double starttime = time_dt();
add_log(string("Compiling OpenCL program ") + program_name.c_str(), false);
add_log(string("Build flags: ") + kernel_build_options, true);
if(!build_kernel(debug_src))
return false;
add_log(string("Kernel compilation of ") + program_name + " finished in " + string_printf("%.2lfs.\n", time_dt() - starttime), false);
return true;
}
bool OpenCLDeviceBase::OpenCLProgram::load_binary(const string& clbin,
const string *debug_src)
{
/* read binary into memory */
vector<uint8_t> binary;
if(!path_read_binary(clbin, binary)) {
add_error(string_printf("OpenCL failed to read cached binary %s.", clbin.c_str()));
return false;
}
/* create program */
cl_int status, ciErr;
size_t size = binary.size();
const uint8_t *bytes = &binary[0];
program = clCreateProgramWithBinary(device->cxContext, 1, &device->cdDevice,
&size, &bytes, &status, &ciErr);
if(status != CL_SUCCESS || ciErr != CL_SUCCESS) {
add_error(string("OpenCL failed create program from cached binary ") + clbin + ": "
+ clewErrorString(status) + " " + clewErrorString(ciErr));
return false;
}
if(!build_kernel(debug_src))
return false;
return true;
}
bool OpenCLDeviceBase::OpenCLProgram::save_binary(const string& clbin)
{
size_t size = 0;
clGetProgramInfo(program, CL_PROGRAM_BINARY_SIZES, sizeof(size_t), &size, NULL);
if(!size)
return false;
vector<uint8_t> binary(size);
uint8_t *bytes = &binary[0];
clGetProgramInfo(program, CL_PROGRAM_BINARIES, sizeof(uint8_t*), &bytes, NULL);
return path_write_binary(clbin, binary);
}
void OpenCLDeviceBase::OpenCLProgram::load()
{
assert(device);
loaded = false;
string device_md5 = device->device_md5_hash(kernel_build_options);
/* Try to use cached kernel. */
thread_scoped_lock cache_locker;
ustring cache_key(program_name + device_md5);
program = device->load_cached_kernel(cache_key,
cache_locker);
if(!program) {
add_log(string("OpenCL program ") + program_name + " not found in cache.", true);
/* need to create source to get md5 */
string source = "#include \"kernel/kernels/opencl/" + kernel_file + "\"\n";
source = path_source_replace_includes(source, path_get("source"));
string basename = "cycles_kernel_" + program_name + "_" + device_md5 + "_" + util_md5_string(source);
basename = path_cache_get(path_join("kernels", basename));
string clbin = basename + ".clbin";
/* path to preprocessed source for debugging */
string clsrc, *debug_src = NULL;
if(OpenCLInfo::use_debug()) {
clsrc = basename + ".cl";
debug_src = &clsrc;
}
/* If binary kernel exists already, try use it. */
if(path_exists(clbin) && load_binary(clbin)) {
/* Kernel loaded from binary, nothing to do. */
add_log(string("Loaded program from ") + clbin + ".", true);
}
else {
add_log(string("Kernel file ") + clbin + " either doesn't exist or failed to be loaded by driver.", true);
/* If does not exist or loading binary failed, compile kernel. */
if(!compile_kernel(debug_src)) {
return;
}
/* Save binary for reuse. */
if(!save_binary(clbin)) {
add_log(string("Saving compiled OpenCL kernel to ") + clbin + " failed!", true);
}
}
/* Cache the program. */
device->store_cached_kernel(program,
cache_key,
cache_locker);
}
else {
add_log(string("Found cached OpenCL program ") + program_name + ".", true);
}
for(map<ustring, cl_kernel>::iterator kernel = kernels.begin(); kernel != kernels.end(); ++kernel) {
assert(kernel->second == NULL);
cl_int ciErr;
string name = "kernel_ocl_" + kernel->first.string();
kernel->second = clCreateKernel(program, name.c_str(), &ciErr);
if(device->opencl_error(ciErr)) {
add_error(string("Error getting kernel ") + name + " from program " + program_name + ": " + clewErrorString(ciErr));
return;
}
}
loaded = true;
}
void OpenCLDeviceBase::OpenCLProgram::report_error()
{
/* If loaded is true, there was no error. */
if(loaded) return;
/* if use_stdout is true, the error was already reported. */
if(use_stdout) return;
cerr << error_msg << endl;
if(!compile_output.empty()) {
cerr << "OpenCL kernel build output for " << program_name << ":" << endl;
cerr << compile_output << endl;
}
}
cl_kernel OpenCLDeviceBase::OpenCLProgram::operator()()
{
assert(kernels.size() == 1);
return kernels.begin()->second;
}
cl_kernel OpenCLDeviceBase::OpenCLProgram::operator()(ustring name)
{
assert(kernels.count(name));
return kernels[name];
}
cl_device_type OpenCLInfo::device_type()
{
switch(DebugFlags().opencl.device_type)
{
case DebugFlags::OpenCL::DEVICE_NONE:
return 0;
case DebugFlags::OpenCL::DEVICE_ALL:
return CL_DEVICE_TYPE_ALL;
case DebugFlags::OpenCL::DEVICE_DEFAULT:
return CL_DEVICE_TYPE_DEFAULT;
case DebugFlags::OpenCL::DEVICE_CPU:
return CL_DEVICE_TYPE_CPU;
case DebugFlags::OpenCL::DEVICE_GPU:
return CL_DEVICE_TYPE_GPU;
case DebugFlags::OpenCL::DEVICE_ACCELERATOR:
return CL_DEVICE_TYPE_ACCELERATOR;
default:
return CL_DEVICE_TYPE_ALL;
}
}
bool OpenCLInfo::use_debug()
{
return DebugFlags().opencl.debug;
}
bool OpenCLInfo::use_single_program()
{
return DebugFlags().opencl.single_program;
}
bool OpenCLInfo::kernel_use_advanced_shading(const string& platform)
{
/* keep this in sync with kernel_types.h! */
if(platform == "NVIDIA CUDA")
return true;
else if(platform == "Apple")
return true;
else if(platform == "AMD Accelerated Parallel Processing")
return true;
else if(platform == "Intel(R) OpenCL")
return true;
/* Make sure officially unsupported OpenCL platforms
* does not set up to use advanced shading.
*/
return false;
}
bool OpenCLInfo::kernel_use_split(const string& platform_name,
const cl_device_type device_type)
{
if(DebugFlags().opencl.kernel_type == DebugFlags::OpenCL::KERNEL_SPLIT) {
VLOG(1) << "Forcing split kernel to use.";
return true;
}
if(DebugFlags().opencl.kernel_type == DebugFlags::OpenCL::KERNEL_MEGA) {
VLOG(1) << "Forcing mega kernel to use.";
return false;
}
/* TODO(sergey): Replace string lookups with more enum-like API,
* similar to device/vendor checks blender's gpu.
*/
if(platform_name == "AMD Accelerated Parallel Processing" &&
device_type == CL_DEVICE_TYPE_GPU)
{
return true;
}
return false;
}
bool OpenCLInfo::device_supported(const string& platform_name,
const cl_device_id device_id)
{
cl_device_type device_type;
if(!get_device_type(device_id, &device_type)) {
return false;
}
string device_name;
if(!get_device_name(device_id, &device_name)) {
return false;
}
/* It is possible tyo have Iris GPU on AMD/Apple OpenCL framework
* (aka, it will not be on Intel framework). This isn't supported
* and needs an explicit blacklist.
*/
if(strstr(device_name.c_str(), "Iris")) {
return false;
}
if(platform_name == "AMD Accelerated Parallel Processing" &&
device_type == CL_DEVICE_TYPE_GPU)
{
return true;
}
if(platform_name == "Apple" && device_type == CL_DEVICE_TYPE_GPU) {
return true;
}
return false;
}
bool OpenCLInfo::platform_version_check(cl_platform_id platform,
string *error)
{
const int req_major = 1, req_minor = 1;
int major, minor;
char version[256];
clGetPlatformInfo(platform,
CL_PLATFORM_VERSION,
sizeof(version),
&version,
NULL);
if(sscanf(version, "OpenCL %d.%d", &major, &minor) < 2) {
if(error != NULL) {
*error = string_printf("OpenCL: failed to parse platform version string (%s).", version);
}
return false;
}
if(!((major == req_major && minor >= req_minor) || (major > req_major))) {
if(error != NULL) {
*error = string_printf("OpenCL: platform version 1.1 or later required, found %d.%d", major, minor);
}
return false;
}
if(error != NULL) {
*error = "";
}
return true;
}
bool OpenCLInfo::device_version_check(cl_device_id device,
string *error)
{
const int req_major = 1, req_minor = 1;
int major, minor;
char version[256];
clGetDeviceInfo(device,
CL_DEVICE_OPENCL_C_VERSION,
sizeof(version),
&version,
NULL);
if(sscanf(version, "OpenCL C %d.%d", &major, &minor) < 2) {
if(error != NULL) {
*error = string_printf("OpenCL: failed to parse OpenCL C version string (%s).", version);
}
return false;
}
if(!((major == req_major && minor >= req_minor) || (major > req_major))) {
if(error != NULL) {
*error = string_printf("OpenCL: C version 1.1 or later required, found %d.%d", major, minor);
}
return false;
}
if(error != NULL) {
*error = "";
}
return true;
}
string OpenCLInfo::get_hardware_id(string platform_name, cl_device_id device_id)
{
if(platform_name == "AMD Accelerated Parallel Processing" || platform_name == "Apple") {
/* Use cl_amd_device_topology extension. */
cl_char topology[24];
if(clGetDeviceInfo(device_id, 0x4037, sizeof(topology), topology, NULL) == CL_SUCCESS && topology[0] == 1) {
return string_printf("%02x:%02x.%01x",
(unsigned int)topology[21],
(unsigned int)topology[22],
(unsigned int)topology[23]);
}
}
else if(platform_name == "NVIDIA CUDA") {
/* Use two undocumented options of the cl_nv_device_attribute_query extension. */
cl_int bus_id, slot_id;
if(clGetDeviceInfo(device_id, 0x4008, sizeof(cl_int), &bus_id, NULL) == CL_SUCCESS &&
clGetDeviceInfo(device_id, 0x4009, sizeof(cl_int), &slot_id, NULL) == CL_SUCCESS) {
return string_printf("%02x:%02x.%01x",
(unsigned int)(bus_id),
(unsigned int)(slot_id >> 3),
(unsigned int)(slot_id & 0x7));
}
}
/* No general way to get a hardware ID from OpenCL => give up. */
return "";
}
void OpenCLInfo::get_usable_devices(vector<OpenCLPlatformDevice> *usable_devices,
bool force_all)
{
const bool force_all_platforms = force_all ||
(DebugFlags().opencl.kernel_type != DebugFlags::OpenCL::KERNEL_DEFAULT);
const cl_device_type device_type = OpenCLInfo::device_type();
static bool first_time = true;
#define FIRST_VLOG(severity) if(first_time) VLOG(severity)
usable_devices->clear();
if(device_type == 0) {
FIRST_VLOG(2) << "OpenCL devices are forced to be disabled.";
first_time = false;
return;
}
cl_int error;
vector<cl_device_id> device_ids;
vector<cl_platform_id> platform_ids;
/* Get platforms. */
if(!get_platforms(&platform_ids, &error)) {
FIRST_VLOG(2) << "Error fetching platforms:"
<< string(clewErrorString(error));
first_time = false;
return;
}
if(platform_ids.size() == 0) {
FIRST_VLOG(2) << "No OpenCL platforms were found.";
first_time = false;
return;
}
/* Devices are numbered consecutively across platforms. */
for(int platform = 0; platform < platform_ids.size(); platform++) {
cl_platform_id platform_id = platform_ids[platform];
string platform_name;
if(!get_platform_name(platform_id, &platform_name)) {
FIRST_VLOG(2) << "Failed to get platform name, ignoring.";
continue;
}
FIRST_VLOG(2) << "Enumerating devices for platform "
<< platform_name << ".";
if(!platform_version_check(platform_id)) {
FIRST_VLOG(2) << "Ignoring platform " << platform_name
<< " due to too old compiler version.";
continue;
}
if(!get_platform_devices(platform_id,
device_type,
&device_ids,
&error))
{
FIRST_VLOG(2) << "Ignoring platform " << platform_name
<< ", failed to fetch of devices: "
<< string(clewErrorString(error));
continue;
}
if(device_ids.size() == 0) {
FIRST_VLOG(2) << "Ignoring platform " << platform_name
<< ", it has no devices.";
continue;
}
for(int num = 0; num < device_ids.size(); num++) {
const cl_device_id device_id = device_ids[num];
string device_name;
if(!get_device_name(device_id, &device_name, &error)) {
FIRST_VLOG(2) << "Failed to fetch device name: "
<< string(clewErrorString(error))
<< ", ignoring.";
continue;
}
if(!device_version_check(device_id)) {
FIRST_VLOG(2) << "Ignoring device " << device_name
<< " due to old compiler version.";
continue;
}
if(force_all_platforms ||
device_supported(platform_name, device_id))
{
cl_device_type device_type;
if(!get_device_type(device_id, &device_type, &error)) {
FIRST_VLOG(2) << "Ignoring device " << device_name
<< ", failed to fetch device type:"
<< string(clewErrorString(error));
continue;
}
string readable_device_name =
get_readable_device_name(device_id);
if(readable_device_name != device_name) {
FIRST_VLOG(2) << "Using more readable device name: "
<< readable_device_name;
}
FIRST_VLOG(2) << "Adding new device "
<< readable_device_name << ".";
string hardware_id = get_hardware_id(platform_name, device_id);
usable_devices->push_back(OpenCLPlatformDevice(
platform_id,
platform_name,
device_id,
device_type,
readable_device_name,
hardware_id));
}
else {
FIRST_VLOG(2) << "Ignoring device " << device_name
<< ", not officially supported yet.";
}
}
}
first_time = false;
}
bool OpenCLInfo::get_platforms(vector<cl_platform_id> *platform_ids,
cl_int *error)
{
/* Reset from possible previous state. */
platform_ids->resize(0);
cl_uint num_platforms;
if(!get_num_platforms(&num_platforms, error)) {
return false;
}
/* Get actual platforms. */
cl_int err;
platform_ids->resize(num_platforms);
if((err = clGetPlatformIDs(num_platforms,
&platform_ids->at(0),
NULL)) != CL_SUCCESS) {
if(error != NULL) {
*error = err;
}
return false;
}
if(error != NULL) {
*error = CL_SUCCESS;
}
return true;
}
vector<cl_platform_id> OpenCLInfo::get_platforms()
{
vector<cl_platform_id> platform_ids;
get_platforms(&platform_ids);
return platform_ids;
}
bool OpenCLInfo::get_num_platforms(cl_uint *num_platforms, cl_int *error)
{
cl_int err;
if((err = clGetPlatformIDs(0, NULL, num_platforms)) != CL_SUCCESS) {
if(error != NULL) {
*error = err;
}
*num_platforms = 0;
return false;
}
if(error != NULL) {
*error = CL_SUCCESS;
}
return true;
}
cl_uint OpenCLInfo::get_num_platforms()
{
cl_uint num_platforms;
if(!get_num_platforms(&num_platforms)) {
return 0;
}
return num_platforms;
}
bool OpenCLInfo::get_platform_name(cl_platform_id platform_id,
string *platform_name)
{
char buffer[256];
if(clGetPlatformInfo(platform_id,
CL_PLATFORM_NAME,
sizeof(buffer),
&buffer,
NULL) != CL_SUCCESS)
{
*platform_name = "";
return false;
}
*platform_name = buffer;
return true;
}
string OpenCLInfo::get_platform_name(cl_platform_id platform_id)
{
string platform_name;
if (!get_platform_name(platform_id, &platform_name)) {
return "";
}
return platform_name;
}
bool OpenCLInfo::get_num_platform_devices(cl_platform_id platform_id,
cl_device_type device_type,
cl_uint *num_devices,
cl_int *error)
{
cl_int err;
if((err = clGetDeviceIDs(platform_id,
device_type,
0,
NULL,
num_devices)) != CL_SUCCESS)
{
if(error != NULL) {
*error = err;
}
*num_devices = 0;
return false;
}
if(error != NULL) {
*error = CL_SUCCESS;
}
return true;
}
cl_uint OpenCLInfo::get_num_platform_devices(cl_platform_id platform_id,
cl_device_type device_type)
{
cl_uint num_devices;
if(!get_num_platform_devices(platform_id,
device_type,
&num_devices))
{
return 0;
}
return num_devices;
}
bool OpenCLInfo::get_platform_devices(cl_platform_id platform_id,
cl_device_type device_type,
vector<cl_device_id> *device_ids,
cl_int* error)
{
/* Reset from possible previous state. */
device_ids->resize(0);
/* Get number of devices to pre-allocate memory. */
cl_uint num_devices;
if(!get_num_platform_devices(platform_id,
device_type,
&num_devices,
error))
{
return false;
}
/* Get actual device list. */
device_ids->resize(num_devices);
cl_int err;
if((err = clGetDeviceIDs(platform_id,
device_type,
num_devices,
&device_ids->at(0),
NULL)) != CL_SUCCESS)
{
if(error != NULL) {
*error = err;
}
return false;
}
if(error != NULL) {
*error = CL_SUCCESS;
}
return true;
}
vector<cl_device_id> OpenCLInfo::get_platform_devices(cl_platform_id platform_id,
cl_device_type device_type)
{
vector<cl_device_id> devices;
get_platform_devices(platform_id, device_type, &devices);
return devices;
}
bool OpenCLInfo::get_device_name(cl_device_id device_id,
string *device_name,
cl_int* error)
{
char buffer[1024];
cl_int err;
if((err = clGetDeviceInfo(device_id,
CL_DEVICE_NAME,
sizeof(buffer),
&buffer,
NULL)) != CL_SUCCESS)
{
if(error != NULL) {
*error = err;
}
*device_name = "";
return false;
}
if(error != NULL) {
*error = CL_SUCCESS;
}
*device_name = buffer;
return true;
}
string OpenCLInfo::get_device_name(cl_device_id device_id)
{
string device_name;
if(!get_device_name(device_id, &device_name)) {
return "";
}
return device_name;
}
bool OpenCLInfo::get_device_type(cl_device_id device_id,
cl_device_type *device_type,
cl_int* error)
{
cl_int err;
if((err = clGetDeviceInfo(device_id,
CL_DEVICE_TYPE,
sizeof(cl_device_type),
device_type,
NULL)) != CL_SUCCESS)
{
if(error != NULL) {
*error = err;
}
*device_type = 0;
return false;
}
if(error != NULL) {
*error = CL_SUCCESS;
}
return true;
}
cl_device_type OpenCLInfo::get_device_type(cl_device_id device_id)
{
cl_device_type device_type;
if(!get_device_type(device_id, &device_type)) {
return 0;
}
return device_type;
}
string OpenCLInfo::get_readable_device_name(cl_device_id device_id)
{
char board_name[1024];
if(clGetDeviceInfo(device_id,
CL_DEVICE_BOARD_NAME_AMD,
sizeof(board_name),
&board_name,
NULL) == CL_SUCCESS)
{
return board_name;
}
/* Fallback to standard device name API. */
return get_device_name(device_id);
}
CCL_NAMESPACE_END
#endif