blender/intern/cycles/render/camera.cpp
Sergey Sharybin 0579eaae1f Cycles: Make all #include statements relative to cycles source directory
The idea is to make include statements more explicit and obvious where the
file is coming from, additionally reducing chance of wrong header being
picked up.

For example, it was not obvious whether bvh.h was refferring to builder
or traversal, whenter node.h is a generic graph node or a shader node
and cases like that.

Surely this might look obvious for the active developers, but after some
time of not touching the code it becomes less obvious where file is coming
from.

This was briefly mentioned in T50824 and seems @brecht is fine with such
explicitness, but need to agree with all active developers before committing
this.

Please note that this patch is lacking changes related on GPU/OpenCL
support. This will be solved if/when we all agree this is a good idea to move
forward.

Reviewers: brecht, lukasstockner97, maiself, nirved, dingto, juicyfruit, swerner

Reviewed By: lukasstockner97, maiself, nirved, dingto

Subscribers: brecht

Differential Revision: https://developer.blender.org/D2586
2017-03-29 13:41:11 +02:00

611 lines
19 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "render/camera.h"
#include "render/mesh.h"
#include "render/object.h"
#include "render/scene.h"
#include "render/tables.h"
#include "device/device.h"
#include "util/util_foreach.h"
#include "util/util_function.h"
#include "util/util_math_cdf.h"
#include "util/util_vector.h"
CCL_NAMESPACE_BEGIN
static float shutter_curve_eval(float x,
array<float>& shutter_curve)
{
if(shutter_curve.size() == 0) {
return 1.0f;
}
x *= shutter_curve.size();
int index = (int)x;
float frac = x - index;
if(index < shutter_curve.size() - 1) {
return lerp(shutter_curve[index], shutter_curve[index + 1], frac);
}
else {
return shutter_curve[shutter_curve.size() - 1];
}
}
NODE_DEFINE(Camera)
{
NodeType* type = NodeType::add("camera", create);
SOCKET_FLOAT(shuttertime, "Shutter Time", 1.0f);
static NodeEnum motion_position_enum;
motion_position_enum.insert("start", MOTION_POSITION_START);
motion_position_enum.insert("center", MOTION_POSITION_CENTER);
motion_position_enum.insert("end", MOTION_POSITION_END);
SOCKET_ENUM(motion_position, "Motion Position", motion_position_enum, MOTION_POSITION_CENTER);
static NodeEnum rolling_shutter_type_enum;
rolling_shutter_type_enum.insert("none", ROLLING_SHUTTER_NONE);
rolling_shutter_type_enum.insert("top", ROLLING_SHUTTER_TOP);
SOCKET_ENUM(rolling_shutter_type, "Rolling Shutter Type", rolling_shutter_type_enum, ROLLING_SHUTTER_NONE);
SOCKET_FLOAT(rolling_shutter_duration, "Rolling Shutter Duration", 0.1f);
SOCKET_FLOAT_ARRAY(shutter_curve, "Shutter Curve", array<float>());
SOCKET_FLOAT(aperturesize, "Aperture Size", 0.0f);
SOCKET_FLOAT(focaldistance, "Focal Distance", 10.0f);
SOCKET_UINT(blades, "Blades", 0);
SOCKET_FLOAT(bladesrotation, "Blades Rotation", 0.0f);
SOCKET_TRANSFORM(matrix, "Matrix", transform_identity());
SOCKET_FLOAT(aperture_ratio, "Aperture Ratio", 1.0f);
static NodeEnum type_enum;
type_enum.insert("perspective", CAMERA_PERSPECTIVE);
type_enum.insert("orthograph", CAMERA_ORTHOGRAPHIC);
type_enum.insert("panorama", CAMERA_PANORAMA);
SOCKET_ENUM(type, "Type", type_enum, CAMERA_PERSPECTIVE);
static NodeEnum panorama_type_enum;
panorama_type_enum.insert("equirectangular", PANORAMA_EQUIRECTANGULAR);
panorama_type_enum.insert("mirrorball", PANORAMA_MIRRORBALL);
panorama_type_enum.insert("fisheye_equidistant", PANORAMA_FISHEYE_EQUIDISTANT);
panorama_type_enum.insert("fisheye_equisolid", PANORAMA_FISHEYE_EQUISOLID);
SOCKET_ENUM(panorama_type, "Panorama Type", panorama_type_enum, PANORAMA_EQUIRECTANGULAR);
SOCKET_FLOAT(fisheye_fov, "Fisheye FOV", M_PI_F);
SOCKET_FLOAT(fisheye_lens, "Fisheye Lens", 10.5f);
SOCKET_FLOAT(latitude_min, "Latitude Min", -M_PI_2_F);
SOCKET_FLOAT(latitude_max, "Latitude Max", M_PI_2_F);
SOCKET_FLOAT(longitude_min, "Longitude Min", -M_PI_F);
SOCKET_FLOAT(longitude_max, "Longitude Max", M_PI_F);
SOCKET_FLOAT(fov, "FOV", M_PI_4_F);
SOCKET_FLOAT(fov_pre, "FOV Pre", M_PI_4_F);
SOCKET_FLOAT(fov_post, "FOV Post", M_PI_4_F);
static NodeEnum stereo_eye_enum;
stereo_eye_enum.insert("none", STEREO_NONE);
stereo_eye_enum.insert("left", STEREO_LEFT);
stereo_eye_enum.insert("right", STEREO_RIGHT);
SOCKET_ENUM(stereo_eye, "Stereo Eye", stereo_eye_enum, STEREO_NONE);
SOCKET_FLOAT(interocular_distance, "Interocular Distance", 0.065f);
SOCKET_FLOAT(convergence_distance, "Convergence Distance", 30.0f * 0.065f);
SOCKET_BOOLEAN(use_pole_merge, "Use Pole Merge", false);
SOCKET_FLOAT(pole_merge_angle_from, "Pole Merge Angle From", 60.0f * M_PI_F / 180.0f);
SOCKET_FLOAT(pole_merge_angle_to, "Pole Merge Angle To", 75.0f * M_PI_F / 180.0f);
SOCKET_FLOAT(sensorwidth, "Sensor Width", 0.036f);
SOCKET_FLOAT(sensorheight, "Sensor Height", 0.024f);
SOCKET_FLOAT(nearclip, "Near Clip", 1e-5f);
SOCKET_FLOAT(farclip, "Far Clip", 1e5f);
SOCKET_FLOAT(viewplane.left, "Viewplane Left", 0);
SOCKET_FLOAT(viewplane.right, "Viewplane Right", 0);
SOCKET_FLOAT(viewplane.bottom, "Viewplane Bottom", 0);
SOCKET_FLOAT(viewplane.top, "Viewplane Top", 0);
SOCKET_FLOAT(border.left, "Border Left", 0);
SOCKET_FLOAT(border.right, "Border Right", 0);
SOCKET_FLOAT(border.bottom, "Border Bottom", 0);
SOCKET_FLOAT(border.top, "Border Top", 0);
return type;
}
Camera::Camera()
: Node(node_type)
{
shutter_table_offset = TABLE_OFFSET_INVALID;
width = 1024;
height = 512;
resolution = 1;
motion.pre = transform_identity();
motion.post = transform_identity();
use_motion = false;
use_perspective_motion = false;
shutter_curve.resize(RAMP_TABLE_SIZE);
for(int i = 0; i < shutter_curve.size(); ++i) {
shutter_curve[i] = 1.0f;
}
compute_auto_viewplane();
screentoworld = transform_identity();
rastertoworld = transform_identity();
ndctoworld = transform_identity();
rastertocamera = transform_identity();
cameratoworld = transform_identity();
worldtoraster = transform_identity();
dx = make_float3(0.0f, 0.0f, 0.0f);
dy = make_float3(0.0f, 0.0f, 0.0f);
need_update = true;
need_device_update = true;
need_flags_update = true;
previous_need_motion = -1;
}
Camera::~Camera()
{
}
void Camera::compute_auto_viewplane()
{
if(type == CAMERA_PANORAMA) {
viewplane.left = 0.0f;
viewplane.right = 1.0f;
viewplane.bottom = 0.0f;
viewplane.top = 1.0f;
}
else {
float aspect = (float)width/(float)height;
if(width >= height) {
viewplane.left = -aspect;
viewplane.right = aspect;
viewplane.bottom = -1.0f;
viewplane.top = 1.0f;
}
else {
viewplane.left = -1.0f;
viewplane.right = 1.0f;
viewplane.bottom = -1.0f/aspect;
viewplane.top = 1.0f/aspect;
}
}
}
void Camera::update()
{
if(!need_update)
return;
/* Full viewport to camera border in the viewport. */
Transform fulltoborder = transform_from_viewplane(viewport_camera_border);
Transform bordertofull = transform_inverse(fulltoborder);
/* ndc to raster */
Transform ndctoraster = transform_scale(width, height, 1.0f) * bordertofull;
Transform full_ndctoraster = transform_scale(full_width, full_height, 1.0f) * bordertofull;
/* raster to screen */
Transform screentondc = fulltoborder * transform_from_viewplane(viewplane);
Transform screentoraster = ndctoraster * screentondc;
Transform rastertoscreen = transform_inverse(screentoraster);
Transform full_screentoraster = full_ndctoraster * screentondc;
Transform full_rastertoscreen = transform_inverse(full_screentoraster);
/* screen to camera */
Transform cameratoscreen;
if(type == CAMERA_PERSPECTIVE)
cameratoscreen = transform_perspective(fov, nearclip, farclip);
else if(type == CAMERA_ORTHOGRAPHIC)
cameratoscreen = transform_orthographic(nearclip, farclip);
else
cameratoscreen = transform_identity();
Transform screentocamera = transform_inverse(cameratoscreen);
rastertocamera = screentocamera * rastertoscreen;
Transform full_rastertocamera = screentocamera * full_rastertoscreen;
cameratoraster = screentoraster * cameratoscreen;
cameratoworld = matrix;
screentoworld = cameratoworld * screentocamera;
rastertoworld = cameratoworld * rastertocamera;
ndctoworld = rastertoworld * ndctoraster;
/* note we recompose matrices instead of taking inverses of the above, this
* is needed to avoid inverting near degenerate matrices that happen due to
* precision issues with large scenes */
worldtocamera = transform_inverse(matrix);
worldtoscreen = cameratoscreen * worldtocamera;
worldtondc = screentondc * worldtoscreen;
worldtoraster = ndctoraster * worldtondc;
/* differentials */
if(type == CAMERA_ORTHOGRAPHIC) {
dx = transform_direction(&rastertocamera, make_float3(1, 0, 0));
dy = transform_direction(&rastertocamera, make_float3(0, 1, 0));
full_dx = transform_direction(&full_rastertocamera, make_float3(1, 0, 0));
full_dy = transform_direction(&full_rastertocamera, make_float3(0, 1, 0));
}
else if(type == CAMERA_PERSPECTIVE) {
dx = transform_perspective(&rastertocamera, make_float3(1, 0, 0)) -
transform_perspective(&rastertocamera, make_float3(0, 0, 0));
dy = transform_perspective(&rastertocamera, make_float3(0, 1, 0)) -
transform_perspective(&rastertocamera, make_float3(0, 0, 0));
full_dx = transform_perspective(&full_rastertocamera, make_float3(1, 0, 0)) -
transform_perspective(&full_rastertocamera, make_float3(0, 0, 0));
full_dy = transform_perspective(&full_rastertocamera, make_float3(0, 1, 0)) -
transform_perspective(&full_rastertocamera, make_float3(0, 0, 0));
}
else {
dx = make_float3(0.0f, 0.0f, 0.0f);
dy = make_float3(0.0f, 0.0f, 0.0f);
}
dx = transform_direction(&cameratoworld, dx);
dy = transform_direction(&cameratoworld, dy);
full_dx = transform_direction(&cameratoworld, full_dx);
full_dy = transform_direction(&cameratoworld, full_dy);
/* TODO(sergey): Support other types of camera. */
if(type == CAMERA_PERSPECTIVE) {
/* TODO(sergey): Move to an utility function and de-duplicate with
* calculation above.
*/
Transform screentocamera_pre =
transform_inverse(transform_perspective(fov_pre,
nearclip,
farclip));
Transform screentocamera_post =
transform_inverse(transform_perspective(fov_post,
nearclip,
farclip));
perspective_motion.pre = screentocamera_pre * rastertoscreen;
perspective_motion.post = screentocamera_post * rastertoscreen;
}
need_update = false;
need_device_update = true;
need_flags_update = true;
}
void Camera::device_update(Device *device, DeviceScene *dscene, Scene *scene)
{
Scene::MotionType need_motion = scene->need_motion(device->info.advanced_shading);
update();
if(previous_need_motion != need_motion) {
/* scene's motion model could have been changed since previous device
* camera update this could happen for example in case when one render
* layer has got motion pass and another not */
need_device_update = true;
}
if(!need_device_update)
return;
KernelCamera *kcam = &dscene->data.cam;
/* store matrices */
kcam->screentoworld = screentoworld;
kcam->rastertoworld = rastertoworld;
kcam->rastertocamera = rastertocamera;
kcam->cameratoworld = cameratoworld;
kcam->worldtocamera = worldtocamera;
kcam->worldtoscreen = worldtoscreen;
kcam->worldtoraster = worldtoraster;
kcam->worldtondc = worldtondc;
/* camera motion */
kcam->have_motion = 0;
kcam->have_perspective_motion = 0;
if(need_motion == Scene::MOTION_PASS) {
/* TODO(sergey): Support perspective (zoom, fov) motion. */
if(type == CAMERA_PANORAMA) {
if(use_motion) {
kcam->motion.pre = transform_inverse(motion.pre);
kcam->motion.post = transform_inverse(motion.post);
}
else {
kcam->motion.pre = kcam->worldtocamera;
kcam->motion.post = kcam->worldtocamera;
}
}
else {
if(use_motion) {
kcam->motion.pre = cameratoraster * transform_inverse(motion.pre);
kcam->motion.post = cameratoraster * transform_inverse(motion.post);
}
else {
kcam->motion.pre = worldtoraster;
kcam->motion.post = worldtoraster;
}
}
}
#ifdef __CAMERA_MOTION__
else if(need_motion == Scene::MOTION_BLUR) {
if(use_motion) {
transform_motion_decompose((DecompMotionTransform*)&kcam->motion, &motion, &matrix);
kcam->have_motion = 1;
}
if(use_perspective_motion) {
kcam->perspective_motion = perspective_motion;
kcam->have_perspective_motion = 1;
}
}
#endif
/* depth of field */
kcam->aperturesize = aperturesize;
kcam->focaldistance = focaldistance;
kcam->blades = (blades < 3)? 0.0f: blades;
kcam->bladesrotation = bladesrotation;
/* motion blur */
#ifdef __CAMERA_MOTION__
kcam->shuttertime = (need_motion == Scene::MOTION_BLUR) ? shuttertime: -1.0f;
scene->lookup_tables->remove_table(&shutter_table_offset);
if(need_motion == Scene::MOTION_BLUR) {
vector<float> shutter_table;
util_cdf_inverted(SHUTTER_TABLE_SIZE,
0.0f,
1.0f,
function_bind(shutter_curve_eval, _1, shutter_curve),
false,
shutter_table);
shutter_table_offset = scene->lookup_tables->add_table(dscene,
shutter_table);
kcam->shutter_table_offset = (int)shutter_table_offset;
}
#else
kcam->shuttertime = -1.0f;
#endif
/* type */
kcam->type = type;
/* anamorphic lens bokeh */
kcam->inv_aperture_ratio = 1.0f / aperture_ratio;
/* panorama */
kcam->panorama_type = panorama_type;
kcam->fisheye_fov = fisheye_fov;
kcam->fisheye_lens = fisheye_lens;
kcam->equirectangular_range = make_float4(longitude_min - longitude_max, -longitude_min,
latitude_min - latitude_max, -latitude_min + M_PI_2_F);
switch(stereo_eye) {
case STEREO_LEFT:
kcam->interocular_offset = -interocular_distance * 0.5f;
break;
case STEREO_RIGHT:
kcam->interocular_offset = interocular_distance * 0.5f;
break;
case STEREO_NONE:
default:
kcam->interocular_offset = 0.0f;
break;
}
kcam->convergence_distance = convergence_distance;
if(use_pole_merge) {
kcam->pole_merge_angle_from = pole_merge_angle_from;
kcam->pole_merge_angle_to = pole_merge_angle_to;
}
else {
kcam->pole_merge_angle_from = -1.0f;
kcam->pole_merge_angle_to = -1.0f;
}
/* sensor size */
kcam->sensorwidth = sensorwidth;
kcam->sensorheight = sensorheight;
/* render size */
kcam->width = width;
kcam->height = height;
kcam->resolution = resolution;
/* store differentials */
kcam->dx = float3_to_float4(dx);
kcam->dy = float3_to_float4(dy);
/* clipping */
kcam->nearclip = nearclip;
kcam->cliplength = (farclip == FLT_MAX)? FLT_MAX: farclip - nearclip;
/* Camera in volume. */
kcam->is_inside_volume = 0;
/* Rolling shutter effect */
kcam->rolling_shutter_type = rolling_shutter_type;
kcam->rolling_shutter_duration = rolling_shutter_duration;
previous_need_motion = need_motion;
}
void Camera::device_update_volume(Device * /*device*/,
DeviceScene *dscene,
Scene *scene)
{
if(!need_device_update && !need_flags_update) {
return;
}
KernelCamera *kcam = &dscene->data.cam;
BoundBox viewplane_boundbox = viewplane_bounds_get();
for(size_t i = 0; i < scene->objects.size(); ++i) {
Object *object = scene->objects[i];
if(object->mesh->has_volume &&
viewplane_boundbox.intersects(object->bounds))
{
/* TODO(sergey): Consider adding more grained check. */
kcam->is_inside_volume = 1;
break;
}
}
need_device_update = false;
need_flags_update = false;
}
void Camera::device_free(Device * /*device*/,
DeviceScene * /*dscene*/,
Scene *scene)
{
scene->lookup_tables->remove_table(&shutter_table_offset);
}
bool Camera::modified(const Camera& cam)
{
return !Node::equals(cam);
}
bool Camera::motion_modified(const Camera& cam)
{
return !((motion == cam.motion) &&
(use_motion == cam.use_motion) &&
(use_perspective_motion == cam.use_perspective_motion));
}
void Camera::tag_update()
{
need_update = true;
}
float3 Camera::transform_raster_to_world(float raster_x, float raster_y)
{
float3 D, P;
if(type == CAMERA_PERSPECTIVE) {
D = transform_perspective(&rastertocamera,
make_float3(raster_x, raster_y, 0.0f));
float3 Pclip = normalize(D);
P = make_float3(0.0f, 0.0f, 0.0f);
/* TODO(sergey): Aperture support? */
P = transform_point(&cameratoworld, P);
D = normalize(transform_direction(&cameratoworld, D));
/* TODO(sergey): Clipping is conditional in kernel, and hence it could
* be mistakes in here, currently leading to wrong camera-in-volume
* detection.
*/
P += nearclip * D / Pclip.z;
}
else if(type == CAMERA_ORTHOGRAPHIC) {
D = make_float3(0.0f, 0.0f, 1.0f);
/* TODO(sergey): Aperture support? */
P = transform_perspective(&rastertocamera,
make_float3(raster_x, raster_y, 0.0f));
P = transform_point(&cameratoworld, P);
D = normalize(transform_direction(&cameratoworld, D));
}
else {
assert(!"unsupported camera type");
}
return P;
}
BoundBox Camera::viewplane_bounds_get()
{
/* TODO(sergey): This is all rather stupid, but is there a way to perform
* checks we need in a more clear and smart fasion?
*/
BoundBox bounds = BoundBox::empty;
if(type == CAMERA_PANORAMA) {
if(use_spherical_stereo == false) {
bounds.grow(make_float3(cameratoworld.x.w,
cameratoworld.y.w,
cameratoworld.z.w));
}
else {
float half_eye_distance = interocular_distance * 0.5f;
bounds.grow(make_float3(cameratoworld.x.w + half_eye_distance,
cameratoworld.y.w,
cameratoworld.z.w));
bounds.grow(make_float3(cameratoworld.z.w,
cameratoworld.y.w + half_eye_distance,
cameratoworld.z.w));
bounds.grow(make_float3(cameratoworld.x.w - half_eye_distance,
cameratoworld.y.w,
cameratoworld.z.w));
bounds.grow(make_float3(cameratoworld.x.w,
cameratoworld.y.w - half_eye_distance,
cameratoworld.z.w));
}
}
else {
bounds.grow(transform_raster_to_world(0.0f, 0.0f));
bounds.grow(transform_raster_to_world(0.0f, (float)height));
bounds.grow(transform_raster_to_world((float)width, (float)height));
bounds.grow(transform_raster_to_world((float)width, 0.0f));
if(type == CAMERA_PERSPECTIVE) {
/* Center point has the most distance in local Z axis,
* use it to construct bounding box/
*/
bounds.grow(transform_raster_to_world(0.5f*width, 0.5f*height));
}
}
return bounds;
}
float Camera::world_to_raster_size(float3 P)
{
if(type == CAMERA_ORTHOGRAPHIC) {
return min(len(full_dx), len(full_dy));
}
else if(type == CAMERA_PERSPECTIVE) {
/* Calculate as if point is directly ahead of the camera. */
float3 raster = make_float3(0.5f*width, 0.5f*height, 0.0f);
float3 Pcamera = transform_perspective(&rastertocamera, raster);
/* dDdx */
float3 Ddiff = transform_direction(&cameratoworld, Pcamera);
float3 dx = len_squared(full_dx) < len_squared(full_dy) ? full_dx : full_dy;
float3 dDdx = normalize(Ddiff + dx) - normalize(Ddiff);
/* dPdx */
float dist = len(transform_point(&worldtocamera, P));
float3 D = normalize(Ddiff);
return len(dist*dDdx - dot(dist*dDdx, D)*D);
}
else {
// TODO(mai): implement for CAMERA_PANORAMA
assert(!"pixel width calculation for panoramic projection not implemented yet");
}
return 1.0f;
}
CCL_NAMESPACE_END