blender/release/scripts/xsi_export.py
Willian Padovani Germano d3f964084d Scripts:
- Mirror bone weights contributed by Thomas Oppl.
- Softimage XSI exporter contributed by Elira (with updates by Mal
Duffin).

Again, thanks to the authors mentioned. And to Tom (LetterRip) for
contacting the authors and making suggestions about scripts we should
include.
2005-12-15 20:12:00 +00:00

1246 lines
30 KiB
Python

#!BPY
"""
Name: 'SoftImage XSI (.xsi)...'
Blender: 236
Group: 'Export'
Tooltip: 'Export to a SoftImage XSI file'
"""
__author__ = ("Elira")
__url__ = ["Author's site, http://www.creative-realms.net/~elira/blender.html",
"SoftImage's site, www.softimage.com", "elysiun"]
__email__ = ["scripts"]
__version__ = "2005/11/01"
__bpydoc__ = """\
This script exports to the XSI format.
Usage:
Run this script from "File->Export" menu.
Note:<br>
- Updates by Mal Duffin, to assist with XSI to Shockwave 3D conversion.
"""
# $Id: xsi_export.py,v 1.4.6 2005/11/01
#
#------------------------------------------------------------------------
# XSI exporter for blender 2.36 or above
#
# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# ***** END GPL LICENCE BLOCK *****
#
#
# ---------------------------------------------------------------------------
# XSI Export V 1.4.1 by Elira (at) creative-realms (dot) net
#
# Updates by Mal Duffin, to assist with XSI to Shockwave 3D conversion
# ---------------------------------------------------------------------------
# 0.0.0 - This header and having blender ID the file.
# 0.1.0 - Output the statis xsi header elements
# 0.2.0 - create a full shell output (no content just structure)
# 0.3.0 - output used materials from the full materials list
# 0.4.0 - output the object model minor data
# 0.5.0 - output the object shape data, storing a uv table
# 0.6.0 - output the triangle lists (uv references stored uv table)
# 0.7.0 - convert output to genuine file writes.
# 1.0.0 - Admit this script exists and wait for flames
# 1.1.0 - Correctly export mesh shapes
# 1.2.0 - Mesh positioning corrected, added back normals
# 1.3.0 - conditionally output uv co-ordinates
# 1.4.0 - export vertex paint colours.
# ---------------------------------------------------------------------------
# 1.4.1 - added basic normal export code,
# to get XSI to Shockwave 3D converter working ( Mal Duffin )
# 1.4.2 - invalid mesh checking
# better normal exporting
# general code clean up
# 1.4.3 - basic light exporting
# fix for ambient light being ignored by Shockwave 3D converter
# 1.4.4 - basic camera exporting
# 1.4.5 - exports normals correctly
# 1.4.6 - exports multiple materials per object
# ---------------------------------------------------------------------------
# TO DO
# - Support texturing
# - for both methods of texturing ( render method, and Game Engine method )
# ---------------------------------------------------------------------------
# add required modules
import Blender
from Blender import sys as bsys
from Blender import Mathutils
from Blender import Lamp
from Blender import Camera
import math
# ---------------------------------------------------------------------------
# globals to make things a lot lot easier
OBJ = [] # the object list
MAT = [] # the materials list
UVC = [] # uv vert co-ords
UVI = [] # uv vert index
VCC = [] # vert colour co-ords
VCI = [] # vert colour index
FD = [] # file handle
NORMALS = [] # normal list
mats = []
EXPORT_DIR = ''
WORLD = Blender.World.Get()
# ---------------------------------------------------------------------------
# get_path returns the path portion o/wf the supplied filename.
# ---------------------------------------------------------------------------
def get_path(file):
l=len(file)
r=0
for i in range(l, 0, -1):
if r == 0:
if file[i-1] == "/" or file[i-1] == "\\":
r = i
return file[:r]
# ---------------------------------------------------------------------------
# r2d - radians to degrees
# ---------------------------------------------------------------------------
def r2d(r):
return round(r*180.0/math.pi,4)
# ---------------------------------------------------------------------------
# d2r - degrees to radians
# ---------------------------------------------------------------------------
def d2r(d):
return (d*math.pi)/180.0
# ---------------------------------------------------------------------------
# get_filename returns the filename
# ---------------------------------------------------------------------------
def get_filename(file):
l=len(file)
r=0
for i in range(l, 0, -1):
if r == 0:
if file[i-1] == "/" or file[i-1] == "\\":
r = i
return file[r:]
# ---------------------------------------------------------------------------
# find materials returns all materials on an object.
# ---------------------------------------------------------------------------
def get_materials(obj):
# any materials attached to the object itself
mats = obj.getMaterials(0)
if 'Mesh' != obj.getType():
return mats
# now drop down to the mesh level
#mesh = Blender.NMesh.GetRaw(obj.data.name)
mesh = obj.data
if mesh.materials:
for mat in mesh.materials:
mats.append(mat)
# return the materials list
return mats
# ---------------------------------------------------------------------------
# apply_transform converts a vertex to co-ords
# ---------------------------------------------------------------------------
def apply_transform(vert, matrix):
vc = Mathutils.CopyVec(vert)
vc.resize4D()
return Mathutils.VecMultMat(vc, matrix)
# ---------------------------------------------------------------------------
# do_header writes out the header data
# ---------------------------------------------------------------------------
def do_header():
global FD
# this says which xsi version
FD.write("xsi 0300txt 0032\n\n")
# static fileinfo block
FD.write("SI_FileInfo {\n")
FD.write(" \"Blender Scene\",\n")
FD.write(" \"Blender User\",\n")
FD.write(" \"Now\",\n")
FD.write(" \"xsi_export Blender Scene Exporter\",\n")
FD.write("}\n\n")
# static scene block
FD.write("SI_Scene no_name {\n")
FD.write(" \"FRAMES\",\n")
FD.write(" 0.000000,\n")
FD.write(" 100.000000,\n")
FD.write(" 30.000000,\n")
FD.write("}\n\n")
# static co-ordinate system block
FD.write("SI_CoordinateSystem coord {\n")
FD.write(" 1,\n")
FD.write(" 0,\n")
FD.write(" 1,\n")
FD.write(" 0,\n")
FD.write(" 5,\n")
FD.write(" 2,\n")
FD.write("}\n\n")
# static angle block
FD.write("SI_Angle {\n")
FD.write(" 0,\n")
FD.write("}\n\n")
# static ambience block
ambient = WORLD[0].getAmb()
FD.write("SI_Ambience {\n")
FD.write(" %f,\n" % ambient[0])
FD.write(" %f,\n" % ambient[1])
FD.write(" %f,\n" % ambient[2])
FD.write("}\n\n")
# ---------------------------------------------------------------------------
# do_materiallibrary writes out the materials subsection.
# ---------------------------------------------------------------------------
def do_materiallibrary():
global OBJ, MAT, FD
# set some flags first
mnum = 0
# run through every material, how many used?
for mat in MAT:
nmat = mat.getName()
# first, is this material on any of the objects.
f = 0
for obj in OBJ:
ml = get_materials(obj)
for mli in ml:
nmli = mli.getName()
if nmli == nmat:
f = 1
mnum += 1
break
if f == 1:
break
bCreateDefault = 0
# if none then exit
if not mnum:
bCreateDefault = 1
# return
# get to work create the materiallibrary wrapper and fill.
FD.write("SI_MaterialLibrary {\n")
FD.write(" " + str(mnum) + ",\n")
# run through every material, write the used ones
for mat in MAT:
nmat = mat.getName()
# find out if on any object, if so we write.
f = 0
for obj in OBJ:
ml = get_materials(obj)
for mli in ml:
nmli = mli.getName()
if nmli == nmat:
do_material(mat)
f = 1
break
if f == 1:
break
if bCreateDefault == 1:
do_material ( 0 )
# clean up
FD.write("}\n\n")
def removeSpacesFromName(name):
name = name.replace ( " ", "_" )
return name
# ---------------------------------------------------------------------------
# do_material writes out this material.
# ---------------------------------------------------------------------------
def do_material(mat):
global FD
if mat == 0:
name = "__default"
cr = 1.0
cg = 1.0
cb = 1.0
ca = 1.0
sp = 0.0
sr = 0.0
sg = 0.0
sb = 0.0
em = 0.0
am = 1.0
sm = 0
else:
# get the name first
name = mat.getName()
# face colour r, g, b, a
# power (spec decay) fl
# spec colour r, g, b
# emmisive colourm r, g, b
# shading model int constant, lambert, phong, blinn, shadow, vertex
# ambient colour r, g, b
# get and print the base material block
cr, cg, cb = mat.getRGBCol()
ca = mat.getAlpha()
sp = 0.0
sr, sg, sb = mat.getSpecCol()
em = mat.getEmit()
am = mat.getAmb()
# how do we render this material? start with constant (0)
sm = 0
fl = mat.getMode()
if fl & Blender.Material.Modes['VCOL_PAINT']:
sm = 5
FD.write(" SI_Material " + removeSpacesFromName(name) + " {\n")
FD.write(" %f,\n" % cr)
FD.write(" %f,\n" % cg)
FD.write(" %f,\n" % cb)
FD.write(" %f,\n" % ca)
FD.write(" %f,\n" % sp)
FD.write(" %f,\n" % sr)
FD.write(" %f,\n" % sg)
FD.write(" %f,\n" % sb)
FD.write(" %f,\n" % em)
FD.write(" %f,\n" % em)
FD.write(" %f,\n" % em)
FD.write(" %d,\n" % sm)
#FD.write(" %f,\n" % am)
#FD.write(" %f,\n" % am)
#FD.write(" %f,\n" % am)
FD.write(" %f,\n" % cr)
FD.write(" %f,\n" % cg)
FD.write(" %f,\n" % cb)
if mat != 0:
# if this material has a texture, then add here
mtex = mat.getTextures()
for mt in mtex:
if mt:
do_texture(mt)
FD.write(" }\n")
# ---------------------------------------------------------------------------
# do_texture writes out this texture if usable.
# ---------------------------------------------------------------------------
def do_texture(mtex):
global FD
# get our texture
tex = mtex.tex
tn = tex.getName()
# what type of texture, we are limitd
if tex.type != Blender.Texture.Types.IMAGE:
return
FD.write(" SI_Texture2D " + tn + " {\n")
img = tex.getImage()
iname = get_filename(img.getFilename())
FD.write(" \"" + iname + "\",\n")
# mapping type ? uv map wrapped is 4, how to detect?
# start with a simple xy mapping ie 0
FD.write(" 4,\n")
print img.getSize ()
# image width, and height
ix, iy = img.getSize()
FD.write(" %d,\n" % ix)
FD.write(" %d,\n" % iy)
# u crop min/max, v crop min/max
mincu, mincv, maxcu, maxcv = tex.crop
FD.write(" %d,\n" % ( mincu * ix ) )
FD.write(" %d,\n" % ( maxcu * ix - 1 ) )
FD.write(" %d,\n" % ( mincv * iy ) )
FD.write(" %d,\n" % ( maxcv * iy - 1) )
# uv swap
uvs =0
if (tex.flags & Blender.Texture.Flags.FLIPBLEND):
uvs = 1
FD.write(" %d,\n" % uvs )
# u/v repeat
iru = img.getXRep()
FD.write(" %d,\n" % iru )
irv = img.getYRep()
FD.write(" %d,\n" % irv )
# u/v alt - 0, 0
FD.write(" 0,\n" )
FD.write(" 0,\n" )
# u/v scale - 1,1
FD.write(" 1.000000,\n" )
FD.write(" 1.000000,\n" )
# u/v offset - 0,0
FD.write(" 0.000000,\n" )
FD.write(" 0.000000,\n" )
# proj mat 4x4 1 0 0 0, 0 1 0 0, 0 0 1 0, 0 0 0 1 is default
FD.write(" 1.000000,\n" )
FD.write(" 0.000000,\n" )
FD.write(" 0.000000,\n" )
FD.write(" 0.000000,\n" )
FD.write(" 0.000000,\n" )
FD.write(" 1.000000,\n" )
FD.write(" 0.000000,\n" )
FD.write(" 0.000000,\n" )
FD.write(" 0.000000,\n" )
FD.write(" 0.000000,\n" )
FD.write(" 1.000000,\n" )
FD.write(" 0.000000,\n" )
FD.write(" 0.000000,\n" )
FD.write(" 0.000000,\n" )
FD.write(" 0.000000,\n" )
FD.write(" 1.000000,\n" )
# blending type - 3
FD.write(" 3,\n" )
# blending - 1
FD.write(" 1.000000,\n" )
# ambient - 0
FD.write(" 0.000000,\n" )
# diffuse - 1
FD.write(" 1.000000,\n" )
# speculara - 0
FD.write(" 0.000000,\n" )
# transparent - 0
FD.write(" 0.000000,\n" )
# reflective - 0
FD.write(" 0.000000,\n" )
# roughness - 0
FD.write(" 0.000000,\n" )
# close off this texture
FD.write(" }\n")
# ---------------------------------------------------------------------------
# do_model_transform dumps out the transform data
# ---------------------------------------------------------------------------
def do_model_transform(obj):
global FD
# now output
FD.write(" SI_Transform SRT-" + removeSpacesFromName( obj.getName() ) + " {\n" )
# write out the object size? (scaling)
FD.write(" %f,\n" % obj.SizeX )
FD.write(" %f,\n" % obj.SizeY )
FD.write(" %f,\n" % obj.SizeZ )
# write out the object rotation
FD.write(" %f,\n" % r2d(obj.RotX) )
FD.write(" %f,\n" % r2d(obj.RotY) )
FD.write(" %f,\n" % r2d(obj.RotZ) )
# this is the position of the object's axis
FD.write(" %f,\n" % obj.LocX )
FD.write(" %f,\n" % obj.LocY )
FD.write(" %f,\n" % obj.LocZ )
FD.write(" }\n\n")
# ---------------------------------------------------------------------------
# do_model_visibility marks if the model is visible or not???
# ---------------------------------------------------------------------------
def do_model_visibility(obj):
global FD
# for now this is a static block
FD.write(" SI_Visibility {\n" )
FD.write(" 1,\n" )
FD.write(" }\n\n" )
# ---------------------------------------------------------------------------
# do_model_material sets the global material for the model
# ---------------------------------------------------------------------------
def do_model_material(obj):
global FD
# do we have one?
ml = get_materials(obj)
n = 0
for mli in ml:
if mli:
n+=1
if n == 1:
mat=mli
# if no materials just go back
if n == 0:
return
# for now we grab the first material on the list.
for mat in ml:
FD.write(" SI_GlobalMaterial {\n" )
FD.write(" \"" + removeSpacesFromName(mat.getName()) + "\",\n" )
FD.write(" \"NODE\",\n" )
FD.write(" }\n\n" )
def meshHasUV ( mesh ):
if mesh.hasFaceUV():
return TRUE
# materials = mesh.materials
# if len(materials) > 0:
return FALSE
# ---------------------------------------------------------------------------
# do_collect_uv, makes an easy to use list out of the uv data
# todo, remove duplicates and compress the list size, xsi supports this.
# ---------------------------------------------------------------------------
def do_collect_uv(mesh):
global UVC, UVI
# reset the uv details first.
UVI = []
UVC = []
#print "Textures..."
#mtex = mat.getTextures()
#for mt in mtex:
# print mt
# if no uv data then return
if not mesh.hasFaceUV():
return
# run through all the faces
j = 0
for f in mesh.faces:
for i in range(len(f)):
UVI.append(j)
UVC.append(f.uv[i])
j+=1
UVI.append(-1)
# ---------------------------------------------------------------------------
# do_collect_colour, makes an easy to use list out of the colour data
# todo, remove duplicates and compress the list size, xsi supports this.
# ---------------------------------------------------------------------------
def do_collect_colour(mesh):
global VCC, VCI
# reset the uv details first.
VCC = []
VCI = []
# if no uv data then return
if not mesh.hasVertexColours():
return
# run through all the faces
j = 0
for f in mesh.faces:
for i in range(len(f)):
VCI.append(j)
VCC.append(f.col[i])
j+=1
VCI.append(-1)
# ---------------------------------------------------------------------------
# do_mesh_shape outputs the shape data
# ---------------------------------------------------------------------------
def do_mesh_shape(obj):
global UVC, UVI, VCC, VCI, FD, NORMALS
# Grab the mesh itself
mesh = Blender.NMesh.GetRaw(obj.data.name)
# get the world matrix
matrix = obj.getMatrix('worldspace')
# we need to decide about vertex and uv details first.
do_collect_uv(mesh)
do_collect_colour(mesh)
# output the shell
elements=2
if len(UVC):
elements+=1
if len(VCC):
elements+=1
FD.write(" SI_Shape SHP-" + removeSpacesFromName ( obj.getName() ) + "-ORG {\n" )
FD.write(" %d,\n" % elements )
FD.write(" \"ORDERED\",\n\n" )
# vertices first
FD.write(" %d,\n" % len(mesh.verts) )
FD.write(" \"POSITION\",\n" )
for v in mesh.verts:
FD.write(" %f,%f,%f,\n" % (v.co[0], v.co[1], v.co[2]) )
FD.write("\n")
print " MESH NAME = " + mesh.name
NORMALS = []
for f in mesh.faces:
NORMALS.append ( f.no )
for v in mesh.verts:
aTemp = [v.no[0], v.no[1], v.no[2]]
NORMALS.append ( aTemp )
FD.write(" %d,\n" % len(NORMALS) )
FD.write(" \"NORMAL\",\n" )
for n in NORMALS:
FD.write(" %f,%f,%f,\n" % ( n[0], n[1], n[2] ) )
# if vertex colour data then process
if mesh.hasVertexColours():
# put out the co-ord header
FD.write(" %d,\n" % len(VCC) )
FD.write(" \"COLOR\",\n" )
# now output them
for vc in VCC:
FD.write(" %f,%f,%f,%f,\n" % (vc.r/255.0, vc.g/255.0, vc.b/255.0, vc.a/255.0) )
# if uv data then process
if mesh.hasFaceUV():
# put out the co-ord header
FD.write(" %d,\n" % len(UVC) )
FD.write(" \"TEX_COORD_UV\",\n" )
# now output them
for uv in UVC:
FD.write(" %f,%f\n" % (uv[0], uv[1]) )
# close off
FD.write(" }\n" )
# ---------------------------------------------------------------------------
# do_mesh_faces outputs the faces data
# ---------------------------------------------------------------------------
def do_mesh_faces(obj):
global FD, UVI, VCI, mats
# do we have a texture?
ml = get_materials(obj)
n = 0
for mli in ml:
if mli:
n+=1
if n == 1:
mat=mli
# Grab the mesh itself
# mesh = Blender.NMesh.GetRaw(obj.data.name)
# mesh = Blender.NMesh.GetRawFromObject(obj.name)
mesh = obj.data
tris = []
normalX = []
mats = []
for f in mesh.faces:
tris.extend ( triangulate_face(f) )
aVal = triangulate_normals(mesh,f)
for v in aVal:
normalX.append ( v )
triangles = len(tris)
if n == 0:
FD.write(" SI_TriangleList " + removeSpacesFromName(obj.getName()) + " {\n")
FD.write(" %d,\n" % triangles)
ostring=" \"NORMAL"
if len(VCI):
ostring += "|COLOR"
if len(UVC):
ostring += "|TEX_COORD_UV"
ostring += "\",\n"
FD.write(ostring)
FD.write(" \"\",\n\n")
for t in tris:
FD.write(" %d,%d,%d,\n" % (t[0], t[2], t[1]))
FD.write("\n")
for n in normalX:
FD.write(" %d,%d,%d,\n" % ( n[0], n[1], n[2] ) )
# finally close this triangle list off
FD.write(" }\n\n")
print "total materials"
print ml
for mIndex in range (0,len(ml)):
mat = ml[mIndex]
print "checking materials"
print mat
aTriCount = 0
for tIndex in range ( 0, len ( tris ) ):
aMat = mats[tIndex]
if aMat == mIndex:
aTriCount = aTriCount + 1
#
# output the shell
FD.write(" SI_TriangleList " + removeSpacesFromName(obj.getName()) + " {\n")
# FD.write(" %d,\n" % triangles)
FD.write(" %d,\n" % aTriCount)
ostring=" \"NORMAL"
if len(VCI):
ostring += "|COLOR"
if len(UVC):
ostring += "|TEX_COORD_UV"
ostring += "\",\n"
FD.write(ostring)
FD.write(" \"" + removeSpacesFromName ( mat.getName() ) + "\",\n\n")
# FD.write(" \"\",\n\n")
for tIndex in range ( 0, len ( tris ) ):
aMat = mats[tIndex]
if mIndex == aMat:
t = tris[tIndex]
FD.write(" %d,%d,%d,\n" % (t[0], t[2], t[1]))
FD.write("\n")
# for n in normalX:
for tIndex in range ( 0, len ( tris ) ):
aMat = mats[tIndex]
if mIndex == aMat:
n = normalX[tIndex]
FD.write(" %d,%d,%d,\n" % ( n[0], n[1], n[2] ) )
# if we have it, put out the colour vertex list
# ostring = " "
# for i in range(len(VCI)):
# if a -1 its end of line, write.
# if VCI[i] == -1:
# ostring = ostring + "\n"
# FD.write(ostring)
# ostring=" "
# else:
# ostring = ostring + "%d," % VCI[i]
# The final set is to work out the uv list, its one set per face
# ostring = " "
# for i in range(len(UVI)):
# # if a -1 its end of line, write.
# if UVI[i] == -1:
# ostring = ostring + "\n"
# FD.write(ostring)
# ostring=" "
# else:
# ostring = ostring + "%d," % UVI[i]
# finally close this triangle list off
FD.write(" }\n\n")
def getNormalInfo(mesh, faceInfo):
global NORMALS
aNL = []
for fi in faceInfo:
aN = []
aFace = mesh.faces[fi[0]]
print aFace
if (aFace.smooth):
aN.append ( NORMALS.index ( aFace.v.no[0] ) )
aN.append ( NORMALS.index ( aFace.v.no[1] ) )
aN.append ( NORMALS.index ( aFace.v.no[2] ) )
else:
aN.append ( NORMALS.index ( aFace.no ) )
aN.append ( NORMALS.index ( aFace.no ) )
aN.append ( NORMALS.index ( aFace.no ) )
# aN.append ( NORMALS.index ( mesh.faces[fi[0]].no ) )
# aN.append ( NORMALS.index ( mesh.faces[fi[0]].no ) )
# aN.append ( NORMALS.index ( mesh.faces[fi[0]].no ) )
aNL.append ( aN )
return aNL
# copy of code to triangulate mesh
##################################
def triangulate_face(f):
if len(f.v) <= 3:
#newFaces = [ [f.v[0].index, f.v[1].index, f.v[2].index] ]
newFaces = [ [f.v[0].index, f.v[2].index, f.v[1].index] ]
mats.append ( f.materialIndex )
else:
#newFaces = [ [f.v[0].index, f.v[1].index, f.v[2].index] ]
#newFaces.append ( [f.v[3].index, f.v[0].index, f.v[2].index] )
newFaces = [ [f.v[0].index, f.v[2].index, f.v[1].index] ]
newFaces.append ( [f.v[3].index, f.v[2].index, f.v[0].index] )
mats.append ( f.materialIndex )
mats.append ( f.materialIndex )
return newFaces
# copy of code to triangulate mesh
##################################
def triangulate_normals(mesh, f):
if len(f.v) <= 3:
if f.smooth:
n1 = get_normal_index ( mesh, [f.v[0].no[0], f.v[0].no[1], f.v[0].no[2]] )
n2 = get_normal_index ( mesh, [f.v[1].no[0], f.v[1].no[1], f.v[1].no[2]] )
n3 = get_normal_index ( mesh, [f.v[2].no[0], f.v[2].no[1], f.v[2].no[2]] )
newNormals = [[ n1, n2, n3 ]]
else:
n1 = get_normal_index ( mesh, [f.no[0], f.no[1], f.no[2]] )
newNormals = [[ n1, n1, n1 ]]
else:
if f.smooth:
n1 = get_normal_index ( mesh, [f.v[0].no[0], f.v[0].no[1], f.v[0].no[2]] )
n2 = get_normal_index ( mesh, [f.v[1].no[0], f.v[1].no[1], f.v[1].no[2]] )
n3 = get_normal_index ( mesh, [f.v[2].no[0], f.v[2].no[1], f.v[2].no[2]] )
n4 = get_normal_index ( mesh, [f.v[3].no[0], f.v[3].no[1], f.v[3].no[2]] )
newNormals = [ [ n1, n2, n3 ] ]
newNormals.append ( [ n4, n1, n3 ] )
# newNormals = [[ n1, n3, n2 ]]
# newNormals.append ( [ n4, n3, n1 ] )
else:
n1 = get_normal_index ( mesh, [f.no[0], f.no[1], f.no[2]] )
newNormals = [[ n1, n1, n1 ]]
newNormals.append ( [ n1, n1, n1 ] )
return newNormals
##################################
def get_normal_index(mesh,normal):
global NORMALS
indx=NORMALS.index(normal)
return indx
# ---------------------------------------------------------------------------
# do_model_mesh outputs the shape/triangelist wrapper block
# ---------------------------------------------------------------------------
def do_model_mesh(obj):
global FD
# output the shell
FD.write(" SI_Mesh MSH-" + removeSpacesFromName(obj.getName()) + " {\n")
# todo, add calc normals and calc uv here
# these can be used in both the following sections.
# next the shape
do_mesh_shape(obj)
# finally the trangle list
do_mesh_faces(obj)
# finally close this mesh off
FD.write(" }\n\n")
# ---------------------------------------------------------------------------
# do_model actually outputs a mesh model
# ---------------------------------------------------------------------------
def do_model(obj):
global FD
# we only want meshes for now.
if 'Mesh' != obj.getType():
return
# check if the mesh is valid
if validMesh(obj) <> 0:
print "INVALID MESH " + obj.getName ()
return
print "Exporting model " + obj.getName ()
# start model
FD.write(" SI_Model MDL-" + removeSpacesFromName(obj.getName()) + " {\n")
# do transform
do_model_transform(obj)
# do visibility
do_model_visibility(obj)
# do global material
do_model_material(obj)
# do the mesh
do_model_mesh(obj)
# close this model
FD.write(" }\n")
#
# check for invalid mesh ( faces that have < 3 vertices )
#
def validMesh (obj):
mesh = Blender.NMesh.GetRaw(obj.data.name)
for f in mesh.faces:
if len(f.v) < 3:
print "MESH HAS FACES WITH < 3 VERTICES"
return 1
if len (mesh.faces) == 0:
print "MESH HAS NO FACES"
return 1
return 0
# ---------------------------------------------------------------------------
# do_models is the process which allows us to write out a bunch of models
# ---------------------------------------------------------------------------
def do_models():
global OBJ, MAT, FD
#create the full scene wrapper object
FD.write("SI_Model MDL-SceneRoot {\n")
FD.write(" SI_Transform SRT-SceneRoot {\n" )
FD.write(" 1.000000,\n")
FD.write(" 1.000000,\n")
FD.write(" 1.000000,\n")
FD.write(" -90.000000,\n")
FD.write(" 0.000000,\n")
FD.write(" 0.000000,\n")
FD.write(" 0.000000,\n")
FD.write(" 0.000000,\n")
FD.write(" 0.000000,\n")
FD.write(" }\n\n")
# now process the actual selected meshes themselves
for obj in OBJ:
do_model(obj)
for obj in OBJ:
do_light(obj)
for obj in OBJ:
do_camera(obj)
do_light_ambient ()
# finally close off the model list
FD.write("}\n")
# ---------------------------------------------------------------------------
# do_light actually outputs a light model
# ---------------------------------------------------------------------------
def do_light(obj):
global FD
# we only want lights for now.
if 'Lamp' != obj.getType():
return
print "Exporting light " + obj.getName ()
aLampType = 1
lmpName=Lamp.Get(obj.data.getName())
lmpType=lmpName.getType()
if lmpType == Lamp.Types.Lamp:
aLampType = 0
elif lmpType == Lamp.Types.Spot:
aLampType = 0
elif lmpType == Lamp.Types.Sun:
aLampType = 1
else:
aLampType = 0
# start model
FD.write(" SI_Light " + removeSpacesFromName(obj.getName()) + " {\n")
# do type
FD.write(" %d,\n" % aLampType)
lampName=Lamp.Get(obj.data.getName())
colour = lampName.col
# do color
FD.write(" %f,\n" % colour[0] )
FD.write(" %f,\n" % colour[1] )
FD.write(" %f,\n" % colour[2] )
# do position
FD.write(" %f,\n" % obj.LocX )
FD.write(" %f,\n" % obj.LocY )
FD.write(" %f,\n" % obj.LocZ )
# close this model
FD.write(" }\n")
# ---------------------------------------------------------------------------
# do_light actually outputs a light model
# ---------------------------------------------------------------------------
def do_camera(obj):
global FD
# we only want cameras for now.
if 'Camera' != obj.getType():
return
print "Exporting camera " + obj.getName ()
# start model
FD.write(" SI_Camera " + removeSpacesFromName(obj.getName()) + " {\n")
cameraName=Camera.Get(obj.data.getName())
# colour = cameraName.col
# do position
FD.write(" %f,\n" % obj.LocX )
FD.write(" %f,\n" % obj.LocY )
FD.write(" %f,\n" % obj.LocZ )
# looking at
FD.write(" %f,\n" % 0.0 )
FD.write(" %f,\n" % 0.0 )
FD.write(" %f,\n" % 0.0 )
# roll
FD.write(" %f,\n" % 0.0 )
aLens = cameraName.getLens()
# field of view
FD.write(" %f,\n" % aLens )
# near plane
FD.write(" %f,\n" % 1.0 )
# far plane
FD.write(" %f,\n" % 10000000.0 )
# close this model
FD.write(" }\n")
# ---------------------------------------------------------------------------
# write out the ambient light ( for Shockwave 3D converter )
# ---------------------------------------------------------------------------
def do_light_ambient():
ambient = WORLD[0].getAmb()
if ambient == [0.0,0.0,0.0]:
ambient = [0.5,0.5,0.5]
FD.write(" SI_Light ambient_sw3d {\n")
FD.write(" 9,\n")
FD.write(" %f,\n" % ambient[0])
FD.write(" %f,\n" % ambient[1])
FD.write(" %f,\n" % ambient[2])
FD.write(" 0.00000000,\n")
FD.write(" 0.00000000,\n")
FD.write(" 0.00000000,\n")
FD.write(" }\n")
# ---------------------------------------------------------------------------
# export_xsi is the wrapper function to process the loading of an xsi model.
# ---------------------------------------------------------------------------
def export_xsi(filename):
global OBJ, MAT, FD, EXPORT_DIR
# safety check
if filename.find('.xsi', -4) <= 0:
print "XSI not found"
filename += '.xsi'
export_dir = bsys.dirname(filename)
if export_dir != EXPORT_DIR:
EXPORT_DIR = export_dir
# open our output
FD = open(filename, 'w')
# get the selected objects, otherwise get them all
#OBJ = Blender.Object.GetSelected()
#if not OBJ:
OBJ = Blender.Object.Get()
# we need some objects, if none specified stop
if not OBJ:
return
# if any exist, grab the materials
MAT = Blender.Material.Get()
# output the header data
do_header()
# output the materials used by the selected objects.
do_materiallibrary()
# we punch out the models, that is, the meshes themselves
do_models()
# finally close our file
FD.close()
# ---------------------------------------------------------------------------
# Lets trigger it off now
# Blender.Window.FileSelector(export_xsi, 'Export SoftImage XSI')
fname = bsys.makename(ext=".xsi")
if EXPORT_DIR <> '':
fname = bsys.join(EXPORT_DIR, bsys.basename(fname))
Blender.Window.FileSelector(export_xsi, "Export SoftImage XSI", fname)