blender/source/gameengine/Ketsji/KX_SteeringActuator.cpp
Campbell Barton 2fb8292005 style cleanup
2012-09-16 04:58:18 +00:00

633 lines
17 KiB
C++

/*
* Add steering behaviors
*
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "BLI_math.h"
#include "KX_SteeringActuator.h"
#include "KX_GameObject.h"
#include "KX_NavMeshObject.h"
#include "KX_ObstacleSimulation.h"
#include "KX_PythonInit.h"
#include "KX_PyMath.h"
#include "Recast.h"
/* ------------------------------------------------------------------------- */
/* Native functions */
/* ------------------------------------------------------------------------- */
KX_SteeringActuator::KX_SteeringActuator(SCA_IObject *gameobj,
int mode,
KX_GameObject *target,
KX_GameObject *navmesh,
float distance,
float velocity,
float acceleration,
float turnspeed,
bool isSelfTerminated,
int pathUpdatePeriod,
KX_ObstacleSimulation* simulation,
short facingmode,
bool normalup,
bool enableVisualization)
: SCA_IActuator(gameobj, KX_ACT_STEERING),
m_target(target),
m_mode(mode),
m_distance(distance),
m_velocity(velocity),
m_acceleration(acceleration),
m_turnspeed(turnspeed),
m_simulation(simulation),
m_updateTime(0),
m_obstacle(NULL),
m_isActive(false),
m_isSelfTerminated(isSelfTerminated),
m_enableVisualization(enableVisualization),
m_facingMode(facingmode),
m_normalUp(normalup),
m_pathLen(0),
m_pathUpdatePeriod(pathUpdatePeriod),
m_wayPointIdx(-1),
m_steerVec(MT_Vector3(0, 0, 0))
{
m_navmesh = static_cast<KX_NavMeshObject*>(navmesh);
if (m_navmesh)
m_navmesh->RegisterActuator(this);
if (m_target)
m_target->RegisterActuator(this);
if (m_simulation)
m_obstacle = m_simulation->GetObstacle((KX_GameObject*)gameobj);
KX_GameObject* parent = ((KX_GameObject*)gameobj)->GetParent();
if (m_facingMode>0 && parent)
{
m_parentlocalmat = parent->GetSGNode()->GetLocalOrientation();
}
else
m_parentlocalmat.setIdentity();
}
KX_SteeringActuator::~KX_SteeringActuator()
{
if (m_navmesh)
m_navmesh->UnregisterActuator(this);
if (m_target)
m_target->UnregisterActuator(this);
}
CValue* KX_SteeringActuator::GetReplica()
{
KX_SteeringActuator* replica = new KX_SteeringActuator(*this);
// replication just copy the m_base pointer => common random generator
replica->ProcessReplica();
return replica;
}
void KX_SteeringActuator::ProcessReplica()
{
if (m_target)
m_target->RegisterActuator(this);
if (m_navmesh)
m_navmesh->RegisterActuator(this);
SCA_IActuator::ProcessReplica();
}
void KX_SteeringActuator::ReParent(SCA_IObject* parent)
{
SCA_IActuator::ReParent(parent);
if (m_simulation)
m_obstacle = m_simulation->GetObstacle((KX_GameObject*)m_gameobj);
}
bool KX_SteeringActuator::UnlinkObject(SCA_IObject* clientobj)
{
if (clientobj == m_target)
{
m_target = NULL;
return true;
}
else if (clientobj == m_navmesh)
{
m_navmesh = NULL;
return true;
}
return false;
}
void KX_SteeringActuator::Relink(CTR_Map<CTR_HashedPtr, void*> *obj_map)
{
void **h_obj = (*obj_map)[m_target];
if (h_obj) {
if (m_target)
m_target->UnregisterActuator(this);
m_target = (KX_GameObject*)(*h_obj);
m_target->RegisterActuator(this);
}
h_obj = (*obj_map)[m_navmesh];
if (h_obj) {
if (m_navmesh)
m_navmesh->UnregisterActuator(this);
m_navmesh = (KX_NavMeshObject*)(*h_obj);
m_navmesh->RegisterActuator(this);
}
}
bool KX_SteeringActuator::Update(double curtime, bool frame)
{
if (frame)
{
double delta = curtime - m_updateTime;
m_updateTime = curtime;
if (m_posevent && !m_isActive)
{
delta = 0;
m_pathUpdateTime = -1;
m_updateTime = curtime;
m_isActive = true;
}
bool bNegativeEvent = IsNegativeEvent();
if (bNegativeEvent)
m_isActive = false;
RemoveAllEvents();
if (!delta)
return true;
if (bNegativeEvent || !m_target)
return false; // do nothing on negative events
KX_GameObject *obj = (KX_GameObject*) GetParent();
const MT_Point3& mypos = obj->NodeGetWorldPosition();
const MT_Point3& targpos = m_target->NodeGetWorldPosition();
MT_Vector3 vectotarg = targpos - mypos;
MT_Vector3 vectotarg2d = vectotarg;
vectotarg2d.z() = 0;
m_steerVec = MT_Vector3(0, 0, 0);
bool apply_steerforce = false;
bool terminate = true;
switch (m_mode) {
case KX_STEERING_SEEK:
if (vectotarg2d.length2()>m_distance*m_distance)
{
terminate = false;
m_steerVec = vectotarg;
m_steerVec.normalize();
apply_steerforce = true;
}
break;
case KX_STEERING_FLEE:
if (vectotarg2d.length2()<m_distance*m_distance)
{
terminate = false;
m_steerVec = -vectotarg;
m_steerVec.normalize();
apply_steerforce = true;
}
break;
case KX_STEERING_PATHFOLLOWING:
if (m_navmesh && vectotarg.length2()>m_distance*m_distance)
{
terminate = false;
static const MT_Scalar WAYPOINT_RADIUS(0.25);
if (m_pathUpdateTime<0 || (m_pathUpdatePeriod>=0 &&
curtime - m_pathUpdateTime>((double)m_pathUpdatePeriod/1000)))
{
m_pathUpdateTime = curtime;
m_pathLen = m_navmesh->FindPath(mypos, targpos, m_path, MAX_PATH_LENGTH);
m_wayPointIdx = m_pathLen > 1 ? 1 : -1;
}
if (m_wayPointIdx>0)
{
MT_Vector3 waypoint(&m_path[3*m_wayPointIdx]);
if ((waypoint-mypos).length2()<WAYPOINT_RADIUS*WAYPOINT_RADIUS)
{
m_wayPointIdx++;
if (m_wayPointIdx>=m_pathLen)
{
m_wayPointIdx = -1;
terminate = true;
}
else
waypoint.setValue(&m_path[3*m_wayPointIdx]);
}
m_steerVec = waypoint - mypos;
apply_steerforce = true;
if (m_enableVisualization)
{
//debug draw
static const MT_Vector3 PATH_COLOR(1,0,0);
m_navmesh->DrawPath(m_path, m_pathLen, PATH_COLOR);
}
}
}
break;
}
if (apply_steerforce)
{
bool isdyna = obj->IsDynamic();
if (isdyna)
m_steerVec.z() = 0;
if (!m_steerVec.fuzzyZero())
m_steerVec.normalize();
MT_Vector3 newvel = m_velocity*m_steerVec;
//adjust velocity to avoid obstacles
if (m_simulation && m_obstacle /*&& !newvel.fuzzyZero()*/)
{
if (m_enableVisualization)
KX_RasterizerDrawDebugLine(mypos, mypos + newvel, MT_Vector3(1.0, 0.0, 0.0));
m_simulation->AdjustObstacleVelocity(m_obstacle, m_mode!=KX_STEERING_PATHFOLLOWING ? m_navmesh : NULL,
newvel, m_acceleration*delta, m_turnspeed/180.0f*M_PI*delta);
if (m_enableVisualization)
KX_RasterizerDrawDebugLine(mypos, mypos + newvel, MT_Vector3(0.0, 1.0, 0.0));
}
HandleActorFace(newvel);
if (isdyna)
{
//temporary solution: set 2D steering velocity directly to obj
//correct way is to apply physical force
MT_Vector3 curvel = obj->GetLinearVelocity();
newvel.z() = curvel.z();
obj->setLinearVelocity(newvel, false);
}
else
{
MT_Vector3 movement = delta*newvel;
obj->ApplyMovement(movement, false);
}
}
else
{
if (m_simulation && m_obstacle)
{
m_obstacle->dvel[0] = 0.f;
m_obstacle->dvel[1] = 0.f;
}
}
if (terminate && m_isSelfTerminated)
return false;
}
return true;
}
const MT_Vector3& KX_SteeringActuator::GetSteeringVec()
{
static MT_Vector3 ZERO_VECTOR(0, 0, 0);
if (m_isActive)
return m_steerVec;
else
return ZERO_VECTOR;
}
inline float vdot2(const float* a, const float* b)
{
return a[0]*b[0] + a[2]*b[2];
}
static bool barDistSqPointToTri(const float* p, const float* a, const float* b, const float* c)
{
float v0[3], v1[3], v2[3];
rcVsub(v0, c,a);
rcVsub(v1, b,a);
rcVsub(v2, p,a);
const float dot00 = vdot2(v0, v0);
const float dot01 = vdot2(v0, v1);
const float dot02 = vdot2(v0, v2);
const float dot11 = vdot2(v1, v1);
const float dot12 = vdot2(v1, v2);
// Compute barycentric coordinates
float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01);
float u = (dot11 * dot02 - dot01 * dot12) * invDenom;
float v = (dot00 * dot12 - dot01 * dot02) * invDenom;
float ud = u<0.f ? -u : (u>1.f ? u-1.f : 0.f);
float vd = v<0.f ? -v : (v>1.f ? v-1.f : 0.f);
return ud * ud + vd * vd;
}
inline void flipAxes(float* vec)
{
std::swap(vec[1],vec[2]);
}
static bool getNavmeshNormal(dtStatNavMesh* navmesh, const MT_Vector3& pos, MT_Vector3& normal)
{
static const float polyPickExt[3] = {2, 4, 2};
float spos[3];
pos.getValue(spos);
flipAxes(spos);
dtStatPolyRef sPolyRef = navmesh->findNearestPoly(spos, polyPickExt);
if (sPolyRef == 0)
return false;
const dtStatPoly* p = navmesh->getPoly(sPolyRef-1);
const dtStatPolyDetail* pd = navmesh->getPolyDetail(sPolyRef-1);
float distMin = FLT_MAX;
int idxMin = -1;
for (int i = 0; i < pd->ntris; ++i)
{
const unsigned char* t = navmesh->getDetailTri(pd->tbase+i);
const float* v[3];
for (int j = 0; j < 3; ++j)
{
if (t[j] < p->nv)
v[j] = navmesh->getVertex(p->v[t[j]]);
else
v[j] = navmesh->getDetailVertex(pd->vbase+(t[j]-p->nv));
}
float dist = barDistSqPointToTri(spos, v[0], v[1], v[2]);
if (dist<distMin)
{
distMin = dist;
idxMin = i;
}
}
if (idxMin>=0)
{
const unsigned char* t = navmesh->getDetailTri(pd->tbase+idxMin);
const float* v[3];
for (int j = 0; j < 3; ++j)
{
if (t[j] < p->nv)
v[j] = navmesh->getVertex(p->v[t[j]]);
else
v[j] = navmesh->getDetailVertex(pd->vbase+(t[j]-p->nv));
}
MT_Vector3 tri[3];
for (size_t j=0; j<3; j++)
tri[j].setValue(v[j][0],v[j][2],v[j][1]);
MT_Vector3 a,b;
a = tri[1]-tri[0];
b = tri[2]-tri[0];
normal = b.cross(a).safe_normalized();
return true;
}
return false;
}
void KX_SteeringActuator::HandleActorFace(MT_Vector3& velocity)
{
if (m_facingMode==0 && (!m_navmesh || !m_normalUp))
return;
KX_GameObject* curobj = (KX_GameObject*) GetParent();
MT_Vector3 dir = m_facingMode==0 ? curobj->NodeGetLocalOrientation().getColumn(1) : velocity;
if (dir.fuzzyZero())
return;
dir.normalize();
MT_Vector3 up(0,0,1);
MT_Vector3 left;
MT_Matrix3x3 mat;
if (m_navmesh && m_normalUp)
{
dtStatNavMesh* navmesh = m_navmesh->GetNavMesh();
MT_Vector3 normal;
MT_Vector3 trpos = m_navmesh->TransformToLocalCoords(curobj->NodeGetWorldPosition());
if (getNavmeshNormal(navmesh, trpos, normal))
{
left = (dir.cross(up)).safe_normalized();
dir = (-left.cross(normal)).safe_normalized();
up = normal;
}
}
switch (m_facingMode)
{
case 1: // TRACK X
{
left = dir.safe_normalized();
dir = -(left.cross(up)).safe_normalized();
break;
};
case 2: // TRACK Y
{
left = (dir.cross(up)).safe_normalized();
break;
}
case 3: // track Z
{
left = up.safe_normalized();
up = dir.safe_normalized();
dir = left;
left = (dir.cross(up)).safe_normalized();
break;
}
case 4: // TRACK -X
{
left = -dir.safe_normalized();
dir = -(left.cross(up)).safe_normalized();
break;
};
case 5: // TRACK -Y
{
left = (-dir.cross(up)).safe_normalized();
dir = -dir;
break;
}
case 6: // track -Z
{
left = up.safe_normalized();
up = -dir.safe_normalized();
dir = left;
left = (dir.cross(up)).safe_normalized();
break;
}
}
mat.setValue (
left[0], dir[0],up[0],
left[1], dir[1],up[1],
left[2], dir[2],up[2]
);
KX_GameObject* parentObject = curobj->GetParent();
if (parentObject)
{
MT_Point3 localpos;
localpos = curobj->GetSGNode()->GetLocalPosition();
MT_Matrix3x3 parentmatinv;
parentmatinv = parentObject->NodeGetWorldOrientation ().inverse ();
mat = parentmatinv * mat;
mat = m_parentlocalmat * mat;
curobj->NodeSetLocalOrientation(mat);
curobj->NodeSetLocalPosition(localpos);
}
else
{
curobj->NodeSetLocalOrientation(mat);
}
}
#ifdef WITH_PYTHON
/* ------------------------------------------------------------------------- */
/* Python functions */
/* ------------------------------------------------------------------------- */
/* Integration hooks ------------------------------------------------------- */
PyTypeObject KX_SteeringActuator::Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"KX_SteeringActuator",
sizeof(PyObjectPlus_Proxy),
0,
py_base_dealloc,
0,
0,
0,
0,
py_base_repr,
0,0,0,0,0,0,0,0,0,
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
0,0,0,0,0,0,0,
Methods,
0,
0,
&SCA_IActuator::Type,
0,0,0,0,0,0,
py_base_new
};
PyMethodDef KX_SteeringActuator::Methods[] = {
{NULL,NULL} //Sentinel
};
PyAttributeDef KX_SteeringActuator::Attributes[] = {
KX_PYATTRIBUTE_INT_RW("behavior", KX_STEERING_NODEF+1, KX_STEERING_MAX-1, true, KX_SteeringActuator, m_mode),
KX_PYATTRIBUTE_RW_FUNCTION("target", KX_SteeringActuator, pyattr_get_target, pyattr_set_target),
KX_PYATTRIBUTE_RW_FUNCTION("navmesh", KX_SteeringActuator, pyattr_get_navmesh, pyattr_set_navmesh),
KX_PYATTRIBUTE_FLOAT_RW("distance", 0.0f, 1000.0f, KX_SteeringActuator, m_distance),
KX_PYATTRIBUTE_FLOAT_RW("velocity", 0.0f, 1000.0f, KX_SteeringActuator, m_velocity),
KX_PYATTRIBUTE_FLOAT_RW("acceleration", 0.0f, 1000.0f, KX_SteeringActuator, m_acceleration),
KX_PYATTRIBUTE_FLOAT_RW("turnspeed", 0.0f, 720.0f, KX_SteeringActuator, m_turnspeed),
KX_PYATTRIBUTE_BOOL_RW("selfterminated", KX_SteeringActuator, m_isSelfTerminated),
KX_PYATTRIBUTE_BOOL_RW("enableVisualization", KX_SteeringActuator, m_enableVisualization),
KX_PYATTRIBUTE_RO_FUNCTION("steeringVec", KX_SteeringActuator, pyattr_get_steeringVec),
KX_PYATTRIBUTE_SHORT_RW("facingMode", 0, 6, true, KX_SteeringActuator, m_facingMode),
KX_PYATTRIBUTE_INT_RW("pathUpdatePeriod", -1, 100000, true, KX_SteeringActuator, m_pathUpdatePeriod),
{ NULL } //Sentinel
};
PyObject *KX_SteeringActuator::pyattr_get_target(void *self, const struct KX_PYATTRIBUTE_DEF *attrdef)
{
KX_SteeringActuator* actuator = static_cast<KX_SteeringActuator*>(self);
if (!actuator->m_target)
Py_RETURN_NONE;
else
return actuator->m_target->GetProxy();
}
int KX_SteeringActuator::pyattr_set_target(void *self, const struct KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_SteeringActuator* actuator = static_cast<KX_SteeringActuator*>(self);
KX_GameObject *gameobj;
if (!ConvertPythonToGameObject(value, &gameobj, true, "actuator.object = value: KX_SteeringActuator"))
return PY_SET_ATTR_FAIL; // ConvertPythonToGameObject sets the error
if (actuator->m_target != NULL)
actuator->m_target->UnregisterActuator(actuator);
actuator->m_target = (KX_GameObject*) gameobj;
if (actuator->m_target)
actuator->m_target->RegisterActuator(actuator);
return PY_SET_ATTR_SUCCESS;
}
PyObject *KX_SteeringActuator::pyattr_get_navmesh(void *self, const struct KX_PYATTRIBUTE_DEF *attrdef)
{
KX_SteeringActuator* actuator = static_cast<KX_SteeringActuator*>(self);
if (!actuator->m_navmesh)
Py_RETURN_NONE;
else
return actuator->m_navmesh->GetProxy();
}
int KX_SteeringActuator::pyattr_set_navmesh(void *self, const struct KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_SteeringActuator* actuator = static_cast<KX_SteeringActuator*>(self);
KX_GameObject *gameobj;
if (!ConvertPythonToGameObject(value, &gameobj, true, "actuator.object = value: KX_SteeringActuator"))
return PY_SET_ATTR_FAIL; // ConvertPythonToGameObject sets the error
if (!PyObject_TypeCheck(value, &KX_NavMeshObject::Type))
{
PyErr_Format(PyExc_TypeError, "KX_NavMeshObject is expected");
return PY_SET_ATTR_FAIL;
}
if (actuator->m_navmesh != NULL)
actuator->m_navmesh->UnregisterActuator(actuator);
actuator->m_navmesh = static_cast<KX_NavMeshObject*>(gameobj);
if (actuator->m_navmesh)
actuator->m_navmesh->RegisterActuator(actuator);
return PY_SET_ATTR_SUCCESS;
}
PyObject *KX_SteeringActuator::pyattr_get_steeringVec(void *self, const struct KX_PYATTRIBUTE_DEF *attrdef)
{
KX_SteeringActuator* actuator = static_cast<KX_SteeringActuator*>(self);
const MT_Vector3& steeringVec = actuator->GetSteeringVec();
return PyObjectFrom(steeringVec);
}
#endif // WITH_PYTHON
/* eof */