blender/intern/cycles/device/device_cuda.cpp
Patrick Mours 9f7d84b656 Cycles: Add support for P2P memory distribution (e.g. via NVLink)
This change modifies the multi-device implementation to support memory distribution
across devices, to reduce the overall memory footprint of large scenes and allow scenes to
fit entirely into combined GPU memory that previously had to fall back to host memory.

Reviewed By: brecht

Differential Revision: https://developer.blender.org/D7426
2020-06-08 17:55:49 +02:00

316 lines
10 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef WITH_CUDA
# include "device/cuda/device_cuda.h"
# include "device/device.h"
# include "device/device_intern.h"
# include "util/util_logging.h"
# include "util/util_string.h"
# include "util/util_windows.h"
CCL_NAMESPACE_BEGIN
bool device_cuda_init()
{
# ifdef WITH_CUDA_DYNLOAD
static bool initialized = false;
static bool result = false;
if (initialized)
return result;
initialized = true;
int cuew_result = cuewInit(CUEW_INIT_CUDA);
if (cuew_result == CUEW_SUCCESS) {
VLOG(1) << "CUEW initialization succeeded";
if (CUDADevice::have_precompiled_kernels()) {
VLOG(1) << "Found precompiled kernels";
result = true;
}
else if (cuewCompilerPath() != NULL) {
VLOG(1) << "Found CUDA compiler " << cuewCompilerPath();
result = true;
}
else {
VLOG(1) << "Neither precompiled kernels nor CUDA compiler was found,"
<< " unable to use CUDA";
}
}
else {
VLOG(1) << "CUEW initialization failed: "
<< ((cuew_result == CUEW_ERROR_ATEXIT_FAILED) ? "Error setting up atexit() handler" :
"Error opening the library");
}
return result;
# else /* WITH_CUDA_DYNLOAD */
return true;
# endif /* WITH_CUDA_DYNLOAD */
}
Device *device_cuda_create(DeviceInfo &info, Stats &stats, Profiler &profiler, bool background)
{
return new CUDADevice(info, stats, profiler, background);
}
static CUresult device_cuda_safe_init()
{
# ifdef _WIN32
__try {
return cuInit(0);
}
__except (EXCEPTION_EXECUTE_HANDLER) {
/* Ignore crashes inside the CUDA driver and hope we can
* survive even with corrupted CUDA installs. */
fprintf(stderr, "Cycles CUDA: driver crashed, continuing without CUDA.\n");
}
return CUDA_ERROR_NO_DEVICE;
# else
return cuInit(0);
# endif
}
void device_cuda_info(vector<DeviceInfo> &devices)
{
CUresult result = device_cuda_safe_init();
if (result != CUDA_SUCCESS) {
if (result != CUDA_ERROR_NO_DEVICE)
fprintf(stderr, "CUDA cuInit: %s\n", cuewErrorString(result));
return;
}
int count = 0;
result = cuDeviceGetCount(&count);
if (result != CUDA_SUCCESS) {
fprintf(stderr, "CUDA cuDeviceGetCount: %s\n", cuewErrorString(result));
return;
}
vector<DeviceInfo> display_devices;
for (int num = 0; num < count; num++) {
char name[256];
result = cuDeviceGetName(name, 256, num);
if (result != CUDA_SUCCESS) {
fprintf(stderr, "CUDA cuDeviceGetName: %s\n", cuewErrorString(result));
continue;
}
int major;
cuDeviceGetAttribute(&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, num);
if (major < 3) {
VLOG(1) << "Ignoring device \"" << name << "\", this graphics card is no longer supported.";
continue;
}
DeviceInfo info;
info.type = DEVICE_CUDA;
info.description = string(name);
info.num = num;
info.has_half_images = (major >= 3);
info.has_volume_decoupled = false;
info.has_adaptive_stop_per_sample = false;
/* Check if the device has P2P access to any other device in the system. */
for (int peer_num = 0; peer_num < count && !info.has_peer_memory; peer_num++) {
if (num != peer_num) {
int can_access = 0;
cuDeviceCanAccessPeer(&can_access, num, peer_num);
info.has_peer_memory = (can_access != 0);
}
}
int pci_location[3] = {0, 0, 0};
cuDeviceGetAttribute(&pci_location[0], CU_DEVICE_ATTRIBUTE_PCI_DOMAIN_ID, num);
cuDeviceGetAttribute(&pci_location[1], CU_DEVICE_ATTRIBUTE_PCI_BUS_ID, num);
cuDeviceGetAttribute(&pci_location[2], CU_DEVICE_ATTRIBUTE_PCI_DEVICE_ID, num);
info.id = string_printf("CUDA_%s_%04x:%02x:%02x",
name,
(unsigned int)pci_location[0],
(unsigned int)pci_location[1],
(unsigned int)pci_location[2]);
/* If device has a kernel timeout and no compute preemption, we assume
* it is connected to a display and will freeze the display while doing
* computations. */
int timeout_attr = 0, preempt_attr = 0;
cuDeviceGetAttribute(&timeout_attr, CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT, num);
cuDeviceGetAttribute(&preempt_attr, CU_DEVICE_ATTRIBUTE_COMPUTE_PREEMPTION_SUPPORTED, num);
/* The CUDA driver reports compute preemption as not being available on
* Windows 10 even when it is, due to an issue in application profiles.
* Detect case where we expect it to be available and override. */
if (preempt_attr == 0 && (major >= 6) && system_windows_version_at_least(10, 17134)) {
VLOG(1) << "Assuming device has compute preemption on Windows 10.";
preempt_attr = 1;
}
if (timeout_attr && !preempt_attr) {
VLOG(1) << "Device is recognized as display.";
info.description += " (Display)";
info.display_device = true;
display_devices.push_back(info);
}
else {
VLOG(1) << "Device has compute preemption or is not used for display.";
devices.push_back(info);
}
VLOG(1) << "Added device \"" << name << "\" with id \"" << info.id << "\".";
}
if (!display_devices.empty())
devices.insert(devices.end(), display_devices.begin(), display_devices.end());
}
string device_cuda_capabilities()
{
CUresult result = device_cuda_safe_init();
if (result != CUDA_SUCCESS) {
if (result != CUDA_ERROR_NO_DEVICE) {
return string("Error initializing CUDA: ") + cuewErrorString(result);
}
return "No CUDA device found\n";
}
int count;
result = cuDeviceGetCount(&count);
if (result != CUDA_SUCCESS) {
return string("Error getting devices: ") + cuewErrorString(result);
}
string capabilities = "";
for (int num = 0; num < count; num++) {
char name[256];
if (cuDeviceGetName(name, 256, num) != CUDA_SUCCESS) {
continue;
}
capabilities += string("\t") + name + "\n";
int value;
# define GET_ATTR(attr) \
{ \
if (cuDeviceGetAttribute(&value, CU_DEVICE_ATTRIBUTE_##attr, num) == CUDA_SUCCESS) { \
capabilities += string_printf("\t\tCU_DEVICE_ATTRIBUTE_" #attr "\t\t\t%d\n", value); \
} \
} \
(void)0
/* TODO(sergey): Strip all attributes which are not useful for us
* or does not depend on the driver.
*/
GET_ATTR(MAX_THREADS_PER_BLOCK);
GET_ATTR(MAX_BLOCK_DIM_X);
GET_ATTR(MAX_BLOCK_DIM_Y);
GET_ATTR(MAX_BLOCK_DIM_Z);
GET_ATTR(MAX_GRID_DIM_X);
GET_ATTR(MAX_GRID_DIM_Y);
GET_ATTR(MAX_GRID_DIM_Z);
GET_ATTR(MAX_SHARED_MEMORY_PER_BLOCK);
GET_ATTR(SHARED_MEMORY_PER_BLOCK);
GET_ATTR(TOTAL_CONSTANT_MEMORY);
GET_ATTR(WARP_SIZE);
GET_ATTR(MAX_PITCH);
GET_ATTR(MAX_REGISTERS_PER_BLOCK);
GET_ATTR(REGISTERS_PER_BLOCK);
GET_ATTR(CLOCK_RATE);
GET_ATTR(TEXTURE_ALIGNMENT);
GET_ATTR(GPU_OVERLAP);
GET_ATTR(MULTIPROCESSOR_COUNT);
GET_ATTR(KERNEL_EXEC_TIMEOUT);
GET_ATTR(INTEGRATED);
GET_ATTR(CAN_MAP_HOST_MEMORY);
GET_ATTR(COMPUTE_MODE);
GET_ATTR(MAXIMUM_TEXTURE1D_WIDTH);
GET_ATTR(MAXIMUM_TEXTURE2D_WIDTH);
GET_ATTR(MAXIMUM_TEXTURE2D_HEIGHT);
GET_ATTR(MAXIMUM_TEXTURE3D_WIDTH);
GET_ATTR(MAXIMUM_TEXTURE3D_HEIGHT);
GET_ATTR(MAXIMUM_TEXTURE3D_DEPTH);
GET_ATTR(MAXIMUM_TEXTURE2D_LAYERED_WIDTH);
GET_ATTR(MAXIMUM_TEXTURE2D_LAYERED_HEIGHT);
GET_ATTR(MAXIMUM_TEXTURE2D_LAYERED_LAYERS);
GET_ATTR(MAXIMUM_TEXTURE2D_ARRAY_WIDTH);
GET_ATTR(MAXIMUM_TEXTURE2D_ARRAY_HEIGHT);
GET_ATTR(MAXIMUM_TEXTURE2D_ARRAY_NUMSLICES);
GET_ATTR(SURFACE_ALIGNMENT);
GET_ATTR(CONCURRENT_KERNELS);
GET_ATTR(ECC_ENABLED);
GET_ATTR(TCC_DRIVER);
GET_ATTR(MEMORY_CLOCK_RATE);
GET_ATTR(GLOBAL_MEMORY_BUS_WIDTH);
GET_ATTR(L2_CACHE_SIZE);
GET_ATTR(MAX_THREADS_PER_MULTIPROCESSOR);
GET_ATTR(ASYNC_ENGINE_COUNT);
GET_ATTR(UNIFIED_ADDRESSING);
GET_ATTR(MAXIMUM_TEXTURE1D_LAYERED_WIDTH);
GET_ATTR(MAXIMUM_TEXTURE1D_LAYERED_LAYERS);
GET_ATTR(CAN_TEX2D_GATHER);
GET_ATTR(MAXIMUM_TEXTURE2D_GATHER_WIDTH);
GET_ATTR(MAXIMUM_TEXTURE2D_GATHER_HEIGHT);
GET_ATTR(MAXIMUM_TEXTURE3D_WIDTH_ALTERNATE);
GET_ATTR(MAXIMUM_TEXTURE3D_HEIGHT_ALTERNATE);
GET_ATTR(MAXIMUM_TEXTURE3D_DEPTH_ALTERNATE);
GET_ATTR(TEXTURE_PITCH_ALIGNMENT);
GET_ATTR(MAXIMUM_TEXTURECUBEMAP_WIDTH);
GET_ATTR(MAXIMUM_TEXTURECUBEMAP_LAYERED_WIDTH);
GET_ATTR(MAXIMUM_TEXTURECUBEMAP_LAYERED_LAYERS);
GET_ATTR(MAXIMUM_SURFACE1D_WIDTH);
GET_ATTR(MAXIMUM_SURFACE2D_WIDTH);
GET_ATTR(MAXIMUM_SURFACE2D_HEIGHT);
GET_ATTR(MAXIMUM_SURFACE3D_WIDTH);
GET_ATTR(MAXIMUM_SURFACE3D_HEIGHT);
GET_ATTR(MAXIMUM_SURFACE3D_DEPTH);
GET_ATTR(MAXIMUM_SURFACE1D_LAYERED_WIDTH);
GET_ATTR(MAXIMUM_SURFACE1D_LAYERED_LAYERS);
GET_ATTR(MAXIMUM_SURFACE2D_LAYERED_WIDTH);
GET_ATTR(MAXIMUM_SURFACE2D_LAYERED_HEIGHT);
GET_ATTR(MAXIMUM_SURFACE2D_LAYERED_LAYERS);
GET_ATTR(MAXIMUM_SURFACECUBEMAP_WIDTH);
GET_ATTR(MAXIMUM_SURFACECUBEMAP_LAYERED_WIDTH);
GET_ATTR(MAXIMUM_SURFACECUBEMAP_LAYERED_LAYERS);
GET_ATTR(MAXIMUM_TEXTURE1D_LINEAR_WIDTH);
GET_ATTR(MAXIMUM_TEXTURE2D_LINEAR_WIDTH);
GET_ATTR(MAXIMUM_TEXTURE2D_LINEAR_HEIGHT);
GET_ATTR(MAXIMUM_TEXTURE2D_LINEAR_PITCH);
GET_ATTR(MAXIMUM_TEXTURE2D_MIPMAPPED_WIDTH);
GET_ATTR(MAXIMUM_TEXTURE2D_MIPMAPPED_HEIGHT);
GET_ATTR(COMPUTE_CAPABILITY_MAJOR);
GET_ATTR(COMPUTE_CAPABILITY_MINOR);
GET_ATTR(MAXIMUM_TEXTURE1D_MIPMAPPED_WIDTH);
GET_ATTR(STREAM_PRIORITIES_SUPPORTED);
GET_ATTR(GLOBAL_L1_CACHE_SUPPORTED);
GET_ATTR(LOCAL_L1_CACHE_SUPPORTED);
GET_ATTR(MAX_SHARED_MEMORY_PER_MULTIPROCESSOR);
GET_ATTR(MAX_REGISTERS_PER_MULTIPROCESSOR);
GET_ATTR(MANAGED_MEMORY);
GET_ATTR(MULTI_GPU_BOARD);
GET_ATTR(MULTI_GPU_BOARD_GROUP_ID);
# undef GET_ATTR
capabilities += "\n";
}
return capabilities;
}
CCL_NAMESPACE_END
#endif