blender/intern/cycles/integrator/denoiser_gpu.cpp

327 lines
11 KiB
C++

/* SPDX-FileCopyrightText: 2011-2022 Blender Foundation
*
* SPDX-License-Identifier: Apache-2.0 */
#include "integrator/denoiser_gpu.h"
#include "device/denoise.h"
#include "device/device.h"
#include "device/memory.h"
#include "device/queue.h"
#include "integrator/pass_accessor_gpu.h"
#include "session/buffers.h"
#include "util/log.h"
#include "util/progress.h"
CCL_NAMESPACE_BEGIN
DenoiserGPU::DenoiserGPU(Device *path_trace_device, const DenoiseParams &params)
: Denoiser(path_trace_device, params)
{
}
DenoiserGPU::~DenoiserGPU()
{
/* Explicit implementation, to allow forward declaration of Device in the header. */
}
bool DenoiserGPU::denoise_buffer(const BufferParams &buffer_params,
RenderBuffers *render_buffers,
const int num_samples,
bool allow_inplace_modification)
{
Device *denoiser_device = get_denoiser_device();
if (!denoiser_device) {
return false;
}
DenoiseTask task;
task.params = params_;
task.num_samples = num_samples;
task.buffer_params = buffer_params;
task.allow_inplace_modification = allow_inplace_modification;
RenderBuffers local_render_buffers(denoiser_device);
bool local_buffer_used = false;
if (denoiser_device == render_buffers->buffer.device) {
/* The device can access an existing buffer pointer. */
local_buffer_used = false;
task.render_buffers = render_buffers;
}
else {
VLOG_WORK << "Creating temporary buffer on denoiser device.";
/* Create buffer which is available by the device used by denoiser. */
/* TODO(sergey): Optimize data transfers. For example, only copy denoising related passes,
* ignoring other light ad data passes. */
local_buffer_used = true;
render_buffers->copy_from_device();
local_render_buffers.reset(buffer_params);
/* NOTE: The local buffer is allocated for an exact size of the effective render size, while
* the input render buffer is allocated for the lowest resolution divider possible. So it is
* important to only copy actually needed part of the input buffer. */
memcpy(local_render_buffers.buffer.data(),
render_buffers->buffer.data(),
sizeof(float) * local_render_buffers.buffer.size());
denoiser_queue_->copy_to_device(local_render_buffers.buffer);
task.render_buffers = &local_render_buffers;
task.allow_inplace_modification = true;
}
const bool denoise_result = denoise_buffer(task);
if (local_buffer_used) {
local_render_buffers.copy_from_device();
render_buffers_host_copy_denoised(
render_buffers, buffer_params, &local_render_buffers, local_render_buffers.params);
render_buffers->copy_to_device();
}
return denoise_result;
}
Device *DenoiserGPU::ensure_denoiser_device(Progress *progress)
{
Device *denoiser_device = Denoiser::ensure_denoiser_device(progress);
if (!denoiser_device) {
return nullptr;
}
if (!denoiser_queue_) {
denoiser_queue_ = denoiser_device->gpu_queue_create();
if (!denoiser_queue_) {
return nullptr;
}
}
return denoiser_device;
}
DenoiserGPU::DenoiseContext::DenoiseContext(Device *device, const DenoiseTask &task)
: denoise_params(task.params),
render_buffers(task.render_buffers),
buffer_params(task.buffer_params),
guiding_buffer(device, "denoiser guiding passes buffer", true),
num_samples(task.num_samples)
{
num_input_passes = 1;
if (denoise_params.use_pass_albedo) {
num_input_passes += 1;
use_pass_albedo = true;
pass_denoising_albedo = buffer_params.get_pass_offset(PASS_DENOISING_ALBEDO);
if (denoise_params.use_pass_normal) {
num_input_passes += 1;
use_pass_normal = true;
pass_denoising_normal = buffer_params.get_pass_offset(PASS_DENOISING_NORMAL);
}
}
if (denoise_params.temporally_stable) {
prev_output.device_pointer = render_buffers->buffer.device_pointer;
prev_output.offset = buffer_params.get_pass_offset(PASS_DENOISING_PREVIOUS);
prev_output.stride = buffer_params.stride;
prev_output.pass_stride = buffer_params.pass_stride;
num_input_passes += 1;
use_pass_motion = true;
pass_motion = buffer_params.get_pass_offset(PASS_MOTION);
}
use_guiding_passes = (num_input_passes - 1) > 0;
if (use_guiding_passes) {
if (task.allow_inplace_modification) {
guiding_params.device_pointer = render_buffers->buffer.device_pointer;
guiding_params.pass_albedo = pass_denoising_albedo;
guiding_params.pass_normal = pass_denoising_normal;
guiding_params.pass_flow = pass_motion;
guiding_params.stride = buffer_params.stride;
guiding_params.pass_stride = buffer_params.pass_stride;
}
else {
guiding_params.pass_stride = 0;
if (use_pass_albedo) {
guiding_params.pass_albedo = guiding_params.pass_stride;
guiding_params.pass_stride += 3;
}
if (use_pass_normal) {
guiding_params.pass_normal = guiding_params.pass_stride;
guiding_params.pass_stride += 3;
}
if (use_pass_motion) {
guiding_params.pass_flow = guiding_params.pass_stride;
guiding_params.pass_stride += 2;
}
guiding_params.stride = buffer_params.width;
guiding_buffer.alloc_to_device(buffer_params.width * buffer_params.height *
guiding_params.pass_stride);
guiding_params.device_pointer = guiding_buffer.device_pointer;
}
}
pass_sample_count = buffer_params.get_pass_offset(PASS_SAMPLE_COUNT);
}
bool DenoiserGPU::denoise_filter_color_postprocess(const DenoiseContext &context,
const DenoisePass &pass)
{
const BufferParams &buffer_params = context.buffer_params;
const int work_size = buffer_params.width * buffer_params.height;
DeviceKernelArguments args(&context.render_buffers->buffer.device_pointer,
&buffer_params.full_x,
&buffer_params.full_y,
&buffer_params.width,
&buffer_params.height,
&buffer_params.offset,
&buffer_params.stride,
&buffer_params.pass_stride,
&context.num_samples,
&pass.noisy_offset,
&pass.denoised_offset,
&context.pass_sample_count,
&pass.num_components,
&pass.use_compositing);
return denoiser_queue_->enqueue(DEVICE_KERNEL_FILTER_COLOR_POSTPROCESS, work_size, args);
}
bool DenoiserGPU::denoise_filter_color_preprocess(const DenoiseContext &context,
const DenoisePass &pass)
{
const BufferParams &buffer_params = context.buffer_params;
const int work_size = buffer_params.width * buffer_params.height;
DeviceKernelArguments args(&context.render_buffers->buffer.device_pointer,
&buffer_params.full_x,
&buffer_params.full_y,
&buffer_params.width,
&buffer_params.height,
&buffer_params.offset,
&buffer_params.stride,
&buffer_params.pass_stride,
&pass.denoised_offset);
return denoiser_queue_->enqueue(DEVICE_KERNEL_FILTER_COLOR_PREPROCESS, work_size, args);
}
bool DenoiserGPU::denoise_filter_guiding_set_fake_albedo(const DenoiseContext &context)
{
const BufferParams &buffer_params = context.buffer_params;
const int work_size = buffer_params.width * buffer_params.height;
DeviceKernelArguments args(&context.guiding_params.device_pointer,
&context.guiding_params.pass_stride,
&context.guiding_params.pass_albedo,
&buffer_params.width,
&buffer_params.height);
return denoiser_queue_->enqueue(DEVICE_KERNEL_FILTER_GUIDING_SET_FAKE_ALBEDO, work_size, args);
}
void DenoiserGPU::denoise_color_read(const DenoiseContext &context, const DenoisePass &pass)
{
PassAccessor::PassAccessInfo pass_access_info;
pass_access_info.type = pass.type;
pass_access_info.mode = PassMode::NOISY;
pass_access_info.offset = pass.noisy_offset;
/* Denoiser operates on passes which are used to calculate the approximation, and is never used
* on the approximation. The latter is not even possible because OptiX does not support
* denoising of semi-transparent pixels. */
pass_access_info.use_approximate_shadow_catcher = false;
pass_access_info.use_approximate_shadow_catcher_background = false;
pass_access_info.show_active_pixels = false;
/* TODO(sergey): Consider adding support of actual exposure, to avoid clamping in extreme cases.
*/
const PassAccessorGPU pass_accessor(
denoiser_queue_.get(), pass_access_info, 1.0f, context.num_samples);
PassAccessor::Destination destination(pass_access_info.type);
destination.d_pixels = context.render_buffers->buffer.device_pointer +
pass.denoised_offset * sizeof(float);
destination.num_components = 3;
destination.pixel_stride = context.buffer_params.pass_stride;
BufferParams buffer_params = context.buffer_params;
buffer_params.window_x = 0;
buffer_params.window_y = 0;
buffer_params.window_width = buffer_params.width;
buffer_params.window_height = buffer_params.height;
pass_accessor.get_render_tile_pixels(context.render_buffers, buffer_params, destination);
}
void DenoiserGPU::denoise_pass(DenoiseContext &context, PassType pass_type)
{
const BufferParams &buffer_params = context.buffer_params;
const DenoisePass pass(pass_type, buffer_params);
if (pass.noisy_offset == PASS_UNUSED) {
return;
}
if (pass.denoised_offset == PASS_UNUSED) {
LOG(DFATAL) << "Missing denoised pass " << pass_type_as_string(pass_type);
return;
}
if (pass.use_denoising_albedo) {
if (context.albedo_replaced_with_fake) {
LOG(ERROR) << "Pass which requires albedo is denoised after fake albedo has been set.";
return;
}
}
else if (context.use_guiding_passes && !context.albedo_replaced_with_fake) {
context.albedo_replaced_with_fake = true;
if (!denoise_filter_guiding_set_fake_albedo(context)) {
LOG(ERROR) << "Error replacing real albedo with the fake one.";
return;
}
}
/* Read and preprocess noisy color input pass. */
denoise_color_read(context, pass);
if (!denoise_filter_color_preprocess(context, pass)) {
LOG(ERROR) << "Error converting denoising passes to RGB buffer.";
return;
}
if (!denoise_run(context, pass)) {
LOG(ERROR) << "Error running denoiser.";
return;
}
/* Store result in the combined pass of the render buffer.
*
* This will scale the denoiser result up to match the number of, possibly per-pixel, samples. */
if (!denoise_filter_color_postprocess(context, pass)) {
LOG(ERROR) << "Error copying denoiser result to the denoised pass.";
return;
}
denoiser_queue_->synchronize();
}
CCL_NAMESPACE_END