blender/intern/cycles/render/osl.cpp
Kévin Dietrich 429afe0c62 Cycles: introduce an ownership system to protect nodes from unwanted deletions.
Problem: the Blender synchronization process creates and tags nodes for usage. It does
this by directly adding and removing nodes from the scene data. If some node is not tagged
as used at the end of a synchronization, it then deletes the node from the scene. This poses
a problem when it comes to supporting procedural nodes who can create other nodes not known
by the Blender synchonization system, which will remove them.

Nodes now have a NodeOwner, which is set after creation. Those owners for now are the Scene
for scene level nodes and ShaderGraph for shader nodes. Instead of creating and deleting
nodes using `new` and `delete` explicitely, we now use `create_node` and `delete_node` methods
found on the owners. `delete_node` will assert that the owner is the right one.

Whenever a scene level node is created or deleted, the appropriate node manager is tagged for
an update, freeing this responsability from BlenderSync or other software exporters.

Concerning BlenderSync, the `id_maps` do not explicitely manipulate scene data anymore, they
only keep track of which nodes are used, employing the scene to create and delete them. To
achieve this, the ParticleSystem is now a Node, although it does not have any sockets.

This is part of T79131.

Reviewed By: #cycles, brecht

Maniphest Tasks: T79131

Differential Revision: https://developer.blender.org/D8540
2020-08-30 23:49:38 +02:00

1284 lines
38 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "device/device.h"
#include "render/background.h"
#include "render/colorspace.h"
#include "render/graph.h"
#include "render/light.h"
#include "render/nodes.h"
#include "render/osl.h"
#include "render/scene.h"
#include "render/shader.h"
#ifdef WITH_OSL
# include "kernel/osl/osl_globals.h"
# include "kernel/osl/osl_services.h"
# include "kernel/osl/osl_shader.h"
# include "util/util_aligned_malloc.h"
# include "util/util_foreach.h"
# include "util/util_logging.h"
# include "util/util_md5.h"
# include "util/util_path.h"
# include "util/util_progress.h"
# include "util/util_projection.h"
#endif
CCL_NAMESPACE_BEGIN
#ifdef WITH_OSL
/* Shared Texture and Shading System */
OSL::TextureSystem *OSLShaderManager::ts_shared = NULL;
int OSLShaderManager::ts_shared_users = 0;
thread_mutex OSLShaderManager::ts_shared_mutex;
OSL::ShadingSystem *OSLShaderManager::ss_shared = NULL;
OSLRenderServices *OSLShaderManager::services_shared = NULL;
int OSLShaderManager::ss_shared_users = 0;
thread_mutex OSLShaderManager::ss_shared_mutex;
thread_mutex OSLShaderManager::ss_mutex;
int OSLCompiler::texture_shared_unique_id = 0;
/* Shader Manager */
OSLShaderManager::OSLShaderManager()
{
texture_system_init();
shading_system_init();
}
OSLShaderManager::~OSLShaderManager()
{
shading_system_free();
texture_system_free();
}
void OSLShaderManager::free_memory()
{
# ifdef OSL_HAS_BLENDER_CLEANUP_FIX
/* There is a problem with llvm+osl: The order global destructors across
* different compilation units run cannot be guaranteed, on windows this means
* that the llvm destructors run before the osl destructors, causing a crash
* when the process exits. the OSL in svn has a special cleanup hack to
* sidestep this behavior */
OSL::pvt::LLVM_Util::Cleanup();
# endif
}
void OSLShaderManager::reset(Scene * /*scene*/)
{
shading_system_free();
shading_system_init();
}
void OSLShaderManager::device_update(Device *device,
DeviceScene *dscene,
Scene *scene,
Progress &progress)
{
if (!need_update)
return;
VLOG(1) << "Total " << scene->shaders.size() << " shaders.";
device_free(device, dscene, scene);
/* set texture system */
scene->image_manager->set_osl_texture_system((void *)ts);
/* create shaders */
OSLGlobals *og = (OSLGlobals *)device->osl_memory();
Shader *background_shader = scene->background->get_shader(scene);
foreach (Shader *shader, scene->shaders) {
assert(shader->graph);
if (progress.get_cancel())
return;
/* we can only compile one shader at the time as the OSL ShadingSytem
* has a single state, but we put the lock here so different renders can
* compile shaders alternating */
thread_scoped_lock lock(ss_mutex);
OSLCompiler compiler(this, services, ss, scene);
compiler.background = (shader == background_shader);
compiler.compile(og, shader);
if (shader->use_mis && shader->has_surface_emission)
scene->light_manager->need_update = true;
}
/* setup shader engine */
og->ss = ss;
og->ts = ts;
og->services = services;
int background_id = scene->shader_manager->get_shader_id(background_shader);
og->background_state = og->surface_state[background_id & SHADER_MASK];
og->use = true;
foreach (Shader *shader, scene->shaders)
shader->need_update = false;
need_update = false;
/* add special builtin texture types */
services->textures.insert(ustring("@ao"), new OSLTextureHandle(OSLTextureHandle::AO));
services->textures.insert(ustring("@bevel"), new OSLTextureHandle(OSLTextureHandle::BEVEL));
device_update_common(device, dscene, scene, progress);
{
/* Perform greedyjit optimization.
*
* This might waste time on optimizing groups which are never actually
* used, but this prevents OSL from allocating data on TLS at render
* time.
*
* This is much better for us because this way we aren't required to
* stop task scheduler threads to make sure all TLS is clean and don't
* have issues with TLS data free accessing freed memory if task scheduler
* is being freed after the Session is freed.
*/
thread_scoped_lock lock(ss_shared_mutex);
ss->optimize_all_groups();
}
}
void OSLShaderManager::device_free(Device *device, DeviceScene *dscene, Scene *scene)
{
OSLGlobals *og = (OSLGlobals *)device->osl_memory();
device_free_common(device, dscene, scene);
/* clear shader engine */
og->use = false;
og->ss = NULL;
og->ts = NULL;
og->surface_state.clear();
og->volume_state.clear();
og->displacement_state.clear();
og->bump_state.clear();
og->background_state.reset();
}
void OSLShaderManager::texture_system_init()
{
/* create texture system, shared between different renders to reduce memory usage */
thread_scoped_lock lock(ts_shared_mutex);
if (ts_shared_users == 0) {
ts_shared = TextureSystem::create(true);
ts_shared->attribute("automip", 1);
ts_shared->attribute("autotile", 64);
ts_shared->attribute("gray_to_rgb", 1);
/* effectively unlimited for now, until we support proper mipmap lookups */
ts_shared->attribute("max_memory_MB", 16384);
}
ts = ts_shared;
ts_shared_users++;
}
void OSLShaderManager::texture_system_free()
{
/* shared texture system decrease users and destroy if no longer used */
thread_scoped_lock lock(ts_shared_mutex);
ts_shared_users--;
if (ts_shared_users == 0) {
ts_shared->invalidate_all(true);
OSL::TextureSystem::destroy(ts_shared);
ts_shared = NULL;
}
ts = NULL;
}
void OSLShaderManager::shading_system_init()
{
/* create shading system, shared between different renders to reduce memory usage */
thread_scoped_lock lock(ss_shared_mutex);
if (ss_shared_users == 0) {
/* Must use aligned new due to concurrent hash map. */
services_shared = util_aligned_new<OSLRenderServices>(ts_shared);
string shader_path = path_get("shader");
# ifdef _WIN32
/* Annoying thing, Cycles stores paths in UTF-8 codepage, so it can
* operate with file paths with any character. This requires to use wide
* char functions, but OSL uses old fashioned ANSI functions which means:
*
* - We have to convert our paths to ANSI before passing to OSL
* - OSL can't be used when there's a multi-byte character in the path
* to the shaders folder.
*/
shader_path = string_to_ansi(shader_path);
# endif
ss_shared = new OSL::ShadingSystem(services_shared, ts_shared, &errhandler);
ss_shared->attribute("lockgeom", 1);
ss_shared->attribute("commonspace", "world");
ss_shared->attribute("searchpath:shader", shader_path);
ss_shared->attribute("greedyjit", 1);
VLOG(1) << "Using shader search path: " << shader_path;
/* our own ray types */
static const char *raytypes[] = {
"camera", /* PATH_RAY_CAMERA */
"reflection", /* PATH_RAY_REFLECT */
"refraction", /* PATH_RAY_TRANSMIT */
"diffuse", /* PATH_RAY_DIFFUSE */
"glossy", /* PATH_RAY_GLOSSY */
"singular", /* PATH_RAY_SINGULAR */
"transparent", /* PATH_RAY_TRANSPARENT */
"shadow", /* PATH_RAY_SHADOW_OPAQUE_NON_CATCHER */
"shadow", /* PATH_RAY_SHADOW_OPAQUE_CATCHER */
"shadow", /* PATH_RAY_SHADOW_TRANSPARENT_NON_CATCHER */
"shadow", /* PATH_RAY_SHADOW_TRANSPARENT_CATCHER */
"__unused__", "volume_scatter", /* PATH_RAY_VOLUME_SCATTER */
"__unused__",
"__unused__", "diffuse_ancestor", /* PATH_RAY_DIFFUSE_ANCESTOR */
"__unused__", "__unused__", "__unused__", "__unused__",
"__unused__", "__unused__", "__unused__",
};
const int nraytypes = sizeof(raytypes) / sizeof(raytypes[0]);
ss_shared->attribute("raytypes", TypeDesc(TypeDesc::STRING, nraytypes), raytypes);
OSLShader::register_closures((OSLShadingSystem *)ss_shared);
loaded_shaders.clear();
}
ss = ss_shared;
services = services_shared;
ss_shared_users++;
}
void OSLShaderManager::shading_system_free()
{
/* shared shading system decrease users and destroy if no longer used */
thread_scoped_lock lock(ss_shared_mutex);
ss_shared_users--;
if (ss_shared_users == 0) {
delete ss_shared;
ss_shared = NULL;
util_aligned_delete(services_shared);
services_shared = NULL;
}
ss = NULL;
services = NULL;
}
bool OSLShaderManager::osl_compile(const string &inputfile, const string &outputfile)
{
vector<string> options;
string stdosl_path;
string shader_path = path_get("shader");
/* specify output file name */
options.push_back("-o");
options.push_back(outputfile);
/* specify standard include path */
string include_path_arg = string("-I") + shader_path;
options.push_back(include_path_arg);
stdosl_path = path_get("shader/stdcycles.h");
/* compile */
OSL::OSLCompiler *compiler = new OSL::OSLCompiler(&OSL::ErrorHandler::default_handler());
bool ok = compiler->compile(string_view(inputfile), options, string_view(stdosl_path));
delete compiler;
return ok;
}
bool OSLShaderManager::osl_query(OSL::OSLQuery &query, const string &filepath)
{
string searchpath = path_user_get("shaders");
return query.open(filepath, searchpath);
}
static string shader_filepath_hash(const string &filepath, uint64_t modified_time)
{
/* compute a hash from filepath and modified time to detect changes */
MD5Hash md5;
md5.append((const uint8_t *)filepath.c_str(), filepath.size());
md5.append((const uint8_t *)&modified_time, sizeof(modified_time));
return md5.get_hex();
}
const char *OSLShaderManager::shader_test_loaded(const string &hash)
{
map<string, OSLShaderInfo>::iterator it = loaded_shaders.find(hash);
return (it == loaded_shaders.end()) ? NULL : it->first.c_str();
}
OSLShaderInfo *OSLShaderManager::shader_loaded_info(const string &hash)
{
map<string, OSLShaderInfo>::iterator it = loaded_shaders.find(hash);
return (it == loaded_shaders.end()) ? NULL : &it->second;
}
const char *OSLShaderManager::shader_load_filepath(string filepath)
{
size_t len = filepath.size();
string extension = filepath.substr(len - 4);
uint64_t modified_time = path_modified_time(filepath);
if (extension == ".osl") {
/* .OSL File */
string osopath = filepath.substr(0, len - 4) + ".oso";
uint64_t oso_modified_time = path_modified_time(osopath);
/* test if we have loaded the corresponding .OSO already */
if (oso_modified_time != 0) {
const char *hash = shader_test_loaded(shader_filepath_hash(osopath, oso_modified_time));
if (hash)
return hash;
}
/* autocompile .OSL to .OSO if needed */
if (oso_modified_time == 0 || (oso_modified_time < modified_time)) {
OSLShaderManager::osl_compile(filepath, osopath);
modified_time = path_modified_time(osopath);
}
else
modified_time = oso_modified_time;
filepath = osopath;
}
else {
if (extension == ".oso") {
/* .OSO File, nothing to do */
}
else if (path_dirname(filepath) == "") {
/* .OSO File in search path */
filepath = path_join(path_user_get("shaders"), filepath + ".oso");
}
else {
/* unknown file */
return NULL;
}
/* test if we have loaded this .OSO already */
const char *hash = shader_test_loaded(shader_filepath_hash(filepath, modified_time));
if (hash)
return hash;
}
/* read oso bytecode from file */
string bytecode_hash = shader_filepath_hash(filepath, modified_time);
string bytecode;
if (!path_read_text(filepath, bytecode)) {
fprintf(stderr, "Cycles shader graph: failed to read file %s\n", filepath.c_str());
OSLShaderInfo info;
loaded_shaders[bytecode_hash] = info; /* to avoid repeat tries */
return NULL;
}
return shader_load_bytecode(bytecode_hash, bytecode);
}
const char *OSLShaderManager::shader_load_bytecode(const string &hash, const string &bytecode)
{
ss->LoadMemoryCompiledShader(hash.c_str(), bytecode.c_str());
OSLShaderInfo info;
if (!info.query.open_bytecode(bytecode)) {
fprintf(stderr, "OSL query error: %s\n", info.query.geterror().c_str());
}
/* this is a bit weak, but works */
info.has_surface_emission = (bytecode.find("\"emission\"") != string::npos);
info.has_surface_transparent = (bytecode.find("\"transparent\"") != string::npos);
info.has_surface_bssrdf = (bytecode.find("\"bssrdf\"") != string::npos);
loaded_shaders[hash] = info;
return loaded_shaders.find(hash)->first.c_str();
}
/* This is a static function to avoid RTTI link errors with only this
* file being compiled without RTTI to match OSL and LLVM libraries. */
OSLNode *OSLShaderManager::osl_node(ShaderGraph *graph,
ShaderManager *manager,
const std::string &filepath,
const std::string &bytecode_hash,
const std::string &bytecode)
{
if (!manager->use_osl()) {
return NULL;
}
/* create query */
OSLShaderManager *osl_manager = static_cast<OSLShaderManager *>(manager);
const char *hash;
if (!filepath.empty()) {
hash = osl_manager->shader_load_filepath(filepath);
}
else {
hash = osl_manager->shader_test_loaded(bytecode_hash);
if (!hash)
hash = osl_manager->shader_load_bytecode(bytecode_hash, bytecode);
}
if (!hash) {
return NULL;
}
OSLShaderInfo *info = osl_manager->shader_loaded_info(hash);
/* count number of inputs */
size_t num_inputs = 0;
for (int i = 0; i < info->query.nparams(); i++) {
const OSL::OSLQuery::Parameter *param = info->query.getparam(i);
/* skip unsupported types */
if (param->varlenarray || param->isstruct || param->type.arraylen > 1)
continue;
if (!param->isoutput)
num_inputs++;
}
/* create node */
OSLNode *node = OSLNode::create(graph, num_inputs);
/* add new sockets from parameters */
set<void *> used_sockets;
for (int i = 0; i < info->query.nparams(); i++) {
const OSL::OSLQuery::Parameter *param = info->query.getparam(i);
/* skip unsupported types */
if (param->varlenarray || param->isstruct || param->type.arraylen > 1)
continue;
SocketType::Type socket_type;
if (param->isclosure) {
socket_type = SocketType::CLOSURE;
}
else if (param->type.vecsemantics != TypeDesc::NOSEMANTICS) {
if (param->type.vecsemantics == TypeDesc::COLOR)
socket_type = SocketType::COLOR;
else if (param->type.vecsemantics == TypeDesc::POINT)
socket_type = SocketType::POINT;
else if (param->type.vecsemantics == TypeDesc::VECTOR)
socket_type = SocketType::VECTOR;
else if (param->type.vecsemantics == TypeDesc::NORMAL)
socket_type = SocketType::NORMAL;
else
continue;
if (!param->isoutput && param->validdefault) {
float3 *default_value = (float3 *)node->input_default_value();
default_value->x = param->fdefault[0];
default_value->y = param->fdefault[1];
default_value->z = param->fdefault[2];
}
}
else if (param->type.aggregate == TypeDesc::SCALAR) {
if (param->type.basetype == TypeDesc::INT) {
socket_type = SocketType::INT;
if (!param->isoutput && param->validdefault) {
*(int *)node->input_default_value() = param->idefault[0];
}
}
else if (param->type.basetype == TypeDesc::FLOAT) {
socket_type = SocketType::FLOAT;
if (!param->isoutput && param->validdefault) {
*(float *)node->input_default_value() = param->fdefault[0];
}
}
else if (param->type.basetype == TypeDesc::STRING) {
socket_type = SocketType::STRING;
if (!param->isoutput && param->validdefault) {
*(ustring *)node->input_default_value() = param->sdefault[0];
}
}
else
continue;
}
else
continue;
if (param->isoutput) {
node->add_output(param->name, socket_type);
}
else {
node->add_input(param->name, socket_type);
}
}
/* set bytcode hash or filepath */
if (!bytecode_hash.empty()) {
node->bytecode_hash = bytecode_hash;
}
else {
node->filepath = filepath;
}
/* Generate inputs and outputs */
node->create_inputs_outputs(node->type);
return node;
}
/* Graph Compiler */
OSLCompiler::OSLCompiler(OSLShaderManager *manager,
OSLRenderServices *services,
OSL::ShadingSystem *ss,
Scene *scene)
: scene(scene), manager(manager), services(services), ss(ss)
{
current_type = SHADER_TYPE_SURFACE;
current_shader = NULL;
background = false;
}
string OSLCompiler::id(ShaderNode *node)
{
/* assign layer unique name based on pointer address + bump mode */
stringstream stream;
stream << "node_" << node->type->name << "_" << node;
return stream.str();
}
string OSLCompiler::compatible_name(ShaderNode *node, ShaderInput *input)
{
string sname(input->name().string());
size_t i;
/* strip whitespace */
while ((i = sname.find(" ")) != string::npos)
sname.replace(i, 1, "");
/* if output exists with the same name, add "In" suffix */
foreach (ShaderOutput *output, node->outputs) {
if (input->name() == output->name()) {
sname += "In";
break;
}
}
return sname;
}
string OSLCompiler::compatible_name(ShaderNode *node, ShaderOutput *output)
{
string sname(output->name().string());
size_t i;
/* strip whitespace */
while ((i = sname.find(" ")) != string::npos)
sname.replace(i, 1, "");
/* if input exists with the same name, add "Out" suffix */
foreach (ShaderInput *input, node->inputs) {
if (input->name() == output->name()) {
sname += "Out";
break;
}
}
return sname;
}
bool OSLCompiler::node_skip_input(ShaderNode *node, ShaderInput *input)
{
/* exception for output node, only one input is actually used
* depending on the current shader type */
if (input->flags() & SocketType::SVM_INTERNAL)
return true;
if (node->special_type == SHADER_SPECIAL_TYPE_OUTPUT) {
if (input->name() == "Surface" && current_type != SHADER_TYPE_SURFACE)
return true;
if (input->name() == "Volume" && current_type != SHADER_TYPE_VOLUME)
return true;
if (input->name() == "Displacement" && current_type != SHADER_TYPE_DISPLACEMENT)
return true;
if (input->name() == "Normal" && current_type != SHADER_TYPE_BUMP)
return true;
}
else if (node->special_type == SHADER_SPECIAL_TYPE_BUMP) {
if (input->name() == "Height")
return true;
}
else if (current_type == SHADER_TYPE_DISPLACEMENT && input->link &&
input->link->parent->special_type == SHADER_SPECIAL_TYPE_BUMP)
return true;
return false;
}
void OSLCompiler::add(ShaderNode *node, const char *name, bool isfilepath)
{
/* load filepath */
if (isfilepath) {
name = manager->shader_load_filepath(name);
if (name == NULL)
return;
}
/* pass in fixed parameter values */
foreach (ShaderInput *input, node->inputs) {
if (!input->link) {
/* checks to untangle graphs */
if (node_skip_input(node, input))
continue;
string param_name = compatible_name(node, input);
const SocketType &socket = input->socket_type;
switch (input->type()) {
case SocketType::COLOR:
parameter_color(param_name.c_str(), node->get_float3(socket));
break;
case SocketType::POINT:
parameter_point(param_name.c_str(), node->get_float3(socket));
break;
case SocketType::VECTOR:
parameter_vector(param_name.c_str(), node->get_float3(socket));
break;
case SocketType::NORMAL:
parameter_normal(param_name.c_str(), node->get_float3(socket));
break;
case SocketType::FLOAT:
parameter(param_name.c_str(), node->get_float(socket));
break;
case SocketType::INT:
parameter(param_name.c_str(), node->get_int(socket));
break;
case SocketType::STRING:
parameter(param_name.c_str(), node->get_string(socket));
break;
case SocketType::CLOSURE:
case SocketType::UNDEFINED:
default:
break;
}
}
}
/* create shader of the appropriate type. OSL only distinguishes between "surface"
* and "displacement" atm */
if (current_type == SHADER_TYPE_SURFACE)
ss->Shader("surface", name, id(node).c_str());
else if (current_type == SHADER_TYPE_VOLUME)
ss->Shader("surface", name, id(node).c_str());
else if (current_type == SHADER_TYPE_DISPLACEMENT)
ss->Shader("displacement", name, id(node).c_str());
else if (current_type == SHADER_TYPE_BUMP)
ss->Shader("displacement", name, id(node).c_str());
else
assert(0);
/* link inputs to other nodes */
foreach (ShaderInput *input, node->inputs) {
if (input->link) {
if (node_skip_input(node, input))
continue;
/* connect shaders */
string id_from = id(input->link->parent);
string id_to = id(node);
string param_from = compatible_name(input->link->parent, input->link);
string param_to = compatible_name(node, input);
ss->ConnectShaders(id_from.c_str(), param_from.c_str(), id_to.c_str(), param_to.c_str());
}
}
/* test if we shader contains specific closures */
OSLShaderInfo *info = manager->shader_loaded_info(name);
if (current_type == SHADER_TYPE_SURFACE) {
if (info) {
if (info->has_surface_emission)
current_shader->has_surface_emission = true;
if (info->has_surface_transparent)
current_shader->has_surface_transparent = true;
if (info->has_surface_bssrdf) {
current_shader->has_surface_bssrdf = true;
current_shader->has_bssrdf_bump = true; /* can't detect yet */
}
current_shader->has_bump = true; /* can't detect yet */
}
if (node->has_spatial_varying()) {
current_shader->has_surface_spatial_varying = true;
}
}
else if (current_type == SHADER_TYPE_VOLUME) {
if (node->has_spatial_varying())
current_shader->has_volume_spatial_varying = true;
if (node->has_attribute_dependency())
current_shader->has_volume_attribute_dependency = true;
}
if (node->has_integrator_dependency()) {
current_shader->has_integrator_dependency = true;
}
}
static TypeDesc array_typedesc(TypeDesc typedesc, int arraylength)
{
return TypeDesc((TypeDesc::BASETYPE)typedesc.basetype,
(TypeDesc::AGGREGATE)typedesc.aggregate,
(TypeDesc::VECSEMANTICS)typedesc.vecsemantics,
arraylength);
}
void OSLCompiler::parameter(ShaderNode *node, const char *name)
{
ustring uname = ustring(name);
const SocketType &socket = *(node->type->find_input(uname));
switch (socket.type) {
case SocketType::BOOLEAN: {
int value = node->get_bool(socket);
ss->Parameter(name, TypeDesc::TypeInt, &value);
break;
}
case SocketType::FLOAT: {
float value = node->get_float(socket);
ss->Parameter(uname, TypeDesc::TypeFloat, &value);
break;
}
case SocketType::INT: {
int value = node->get_int(socket);
ss->Parameter(uname, TypeDesc::TypeInt, &value);
break;
}
case SocketType::COLOR: {
float3 value = node->get_float3(socket);
ss->Parameter(uname, TypeDesc::TypeColor, &value);
break;
}
case SocketType::VECTOR: {
float3 value = node->get_float3(socket);
ss->Parameter(uname, TypeDesc::TypeVector, &value);
break;
}
case SocketType::POINT: {
float3 value = node->get_float3(socket);
ss->Parameter(uname, TypeDesc::TypePoint, &value);
break;
}
case SocketType::NORMAL: {
float3 value = node->get_float3(socket);
ss->Parameter(uname, TypeDesc::TypeNormal, &value);
break;
}
case SocketType::POINT2: {
float2 value = node->get_float2(socket);
ss->Parameter(uname, TypeDesc(TypeDesc::FLOAT, TypeDesc::VEC2, TypeDesc::POINT), &value);
break;
}
case SocketType::STRING: {
ustring value = node->get_string(socket);
ss->Parameter(uname, TypeDesc::TypeString, &value);
break;
}
case SocketType::ENUM: {
ustring value = node->get_string(socket);
ss->Parameter(uname, TypeDesc::TypeString, &value);
break;
}
case SocketType::TRANSFORM: {
Transform value = node->get_transform(socket);
ProjectionTransform projection(value);
projection = projection_transpose(projection);
ss->Parameter(uname, TypeDesc::TypeMatrix, &projection);
break;
}
case SocketType::BOOLEAN_ARRAY: {
// OSL does not support booleans, so convert to int
const array<bool> &value = node->get_bool_array(socket);
array<int> intvalue(value.size());
for (size_t i = 0; i < value.size(); i++)
intvalue[i] = value[i];
ss->Parameter(uname, array_typedesc(TypeDesc::TypeInt, value.size()), intvalue.data());
break;
}
case SocketType::FLOAT_ARRAY: {
const array<float> &value = node->get_float_array(socket);
ss->Parameter(uname, array_typedesc(TypeDesc::TypeFloat, value.size()), value.data());
break;
}
case SocketType::INT_ARRAY: {
const array<int> &value = node->get_int_array(socket);
ss->Parameter(uname, array_typedesc(TypeDesc::TypeInt, value.size()), value.data());
break;
}
case SocketType::COLOR_ARRAY:
case SocketType::VECTOR_ARRAY:
case SocketType::POINT_ARRAY:
case SocketType::NORMAL_ARRAY: {
TypeDesc typedesc;
switch (socket.type) {
case SocketType::COLOR_ARRAY:
typedesc = TypeDesc::TypeColor;
break;
case SocketType::VECTOR_ARRAY:
typedesc = TypeDesc::TypeVector;
break;
case SocketType::POINT_ARRAY:
typedesc = TypeDesc::TypePoint;
break;
case SocketType::NORMAL_ARRAY:
typedesc = TypeDesc::TypeNormal;
break;
default:
assert(0);
break;
}
// convert to tightly packed array since float3 has padding
const array<float3> &value = node->get_float3_array(socket);
array<float> fvalue(value.size() * 3);
for (size_t i = 0, j = 0; i < value.size(); i++) {
fvalue[j++] = value[i].x;
fvalue[j++] = value[i].y;
fvalue[j++] = value[i].z;
}
ss->Parameter(uname, array_typedesc(typedesc, value.size()), fvalue.data());
break;
}
case SocketType::POINT2_ARRAY: {
const array<float2> &value = node->get_float2_array(socket);
ss->Parameter(
uname,
array_typedesc(TypeDesc(TypeDesc::FLOAT, TypeDesc::VEC2, TypeDesc::POINT), value.size()),
value.data());
break;
}
case SocketType::STRING_ARRAY: {
const array<ustring> &value = node->get_string_array(socket);
ss->Parameter(uname, array_typedesc(TypeDesc::TypeString, value.size()), value.data());
break;
}
case SocketType::TRANSFORM_ARRAY: {
const array<Transform> &value = node->get_transform_array(socket);
array<ProjectionTransform> fvalue(value.size());
for (size_t i = 0; i < value.size(); i++) {
fvalue[i] = projection_transpose(ProjectionTransform(value[i]));
}
ss->Parameter(uname, array_typedesc(TypeDesc::TypeMatrix, fvalue.size()), fvalue.data());
break;
}
case SocketType::CLOSURE:
case SocketType::NODE:
case SocketType::NODE_ARRAY:
case SocketType::UNDEFINED:
case SocketType::UINT: {
assert(0);
break;
}
}
}
void OSLCompiler::parameter(const char *name, float f)
{
ss->Parameter(name, TypeDesc::TypeFloat, &f);
}
void OSLCompiler::parameter_color(const char *name, float3 f)
{
ss->Parameter(name, TypeDesc::TypeColor, &f);
}
void OSLCompiler::parameter_point(const char *name, float3 f)
{
ss->Parameter(name, TypeDesc::TypePoint, &f);
}
void OSLCompiler::parameter_normal(const char *name, float3 f)
{
ss->Parameter(name, TypeDesc::TypeNormal, &f);
}
void OSLCompiler::parameter_vector(const char *name, float3 f)
{
ss->Parameter(name, TypeDesc::TypeVector, &f);
}
void OSLCompiler::parameter(const char *name, int f)
{
ss->Parameter(name, TypeDesc::TypeInt, &f);
}
void OSLCompiler::parameter(const char *name, const char *s)
{
ss->Parameter(name, TypeDesc::TypeString, &s);
}
void OSLCompiler::parameter(const char *name, ustring s)
{
const char *str = s.c_str();
ss->Parameter(name, TypeDesc::TypeString, &str);
}
void OSLCompiler::parameter(const char *name, const Transform &tfm)
{
ProjectionTransform projection(tfm);
projection = projection_transpose(projection);
ss->Parameter(name, TypeDesc::TypeMatrix, (float *)&projection);
}
void OSLCompiler::parameter_array(const char *name, const float f[], int arraylen)
{
TypeDesc type = TypeDesc::TypeFloat;
type.arraylen = arraylen;
ss->Parameter(name, type, f);
}
void OSLCompiler::parameter_color_array(const char *name, const array<float3> &f)
{
/* NB: cycles float3 type is actually 4 floats! need to use an explicit array */
array<float[3]> table(f.size());
for (int i = 0; i < f.size(); ++i) {
table[i][0] = f[i].x;
table[i][1] = f[i].y;
table[i][2] = f[i].z;
}
TypeDesc type = TypeDesc::TypeColor;
type.arraylen = table.size();
ss->Parameter(name, type, table.data());
}
void OSLCompiler::parameter_attribute(const char *name, ustring s)
{
if (Attribute::name_standard(s.c_str()))
parameter(name, (string("geom:") + s.c_str()).c_str());
else
parameter(name, s.c_str());
}
void OSLCompiler::find_dependencies(ShaderNodeSet &dependencies, ShaderInput *input)
{
ShaderNode *node = (input->link) ? input->link->parent : NULL;
if (node != NULL && dependencies.find(node) == dependencies.end()) {
foreach (ShaderInput *in, node->inputs)
if (!node_skip_input(node, in))
find_dependencies(dependencies, in);
dependencies.insert(node);
}
}
void OSLCompiler::generate_nodes(const ShaderNodeSet &nodes)
{
ShaderNodeSet done;
bool nodes_done;
do {
nodes_done = true;
foreach (ShaderNode *node, nodes) {
if (done.find(node) == done.end()) {
bool inputs_done = true;
foreach (ShaderInput *input, node->inputs)
if (!node_skip_input(node, input))
if (input->link && done.find(input->link->parent) == done.end())
inputs_done = false;
if (inputs_done) {
node->compile(*this);
done.insert(node);
if (current_type == SHADER_TYPE_SURFACE) {
if (node->has_surface_emission())
current_shader->has_surface_emission = true;
if (node->has_surface_transparent())
current_shader->has_surface_transparent = true;
if (node->has_spatial_varying())
current_shader->has_surface_spatial_varying = true;
if (node->has_surface_bssrdf()) {
current_shader->has_surface_bssrdf = true;
if (node->has_bssrdf_bump())
current_shader->has_bssrdf_bump = true;
}
if (node->has_bump()) {
current_shader->has_bump = true;
}
}
else if (current_type == SHADER_TYPE_VOLUME) {
if (node->has_spatial_varying())
current_shader->has_volume_spatial_varying = true;
}
}
else
nodes_done = false;
}
}
} while (!nodes_done);
}
OSL::ShaderGroupRef OSLCompiler::compile_type(Shader *shader, ShaderGraph *graph, ShaderType type)
{
current_type = type;
OSL::ShaderGroupRef group = ss->ShaderGroupBegin(shader->name.c_str());
ShaderNode *output = graph->output();
ShaderNodeSet dependencies;
if (type == SHADER_TYPE_SURFACE) {
/* generate surface shader */
find_dependencies(dependencies, output->input("Surface"));
generate_nodes(dependencies);
output->compile(*this);
}
else if (type == SHADER_TYPE_BUMP) {
/* generate bump shader */
find_dependencies(dependencies, output->input("Normal"));
generate_nodes(dependencies);
output->compile(*this);
}
else if (type == SHADER_TYPE_VOLUME) {
/* generate volume shader */
find_dependencies(dependencies, output->input("Volume"));
generate_nodes(dependencies);
output->compile(*this);
}
else if (type == SHADER_TYPE_DISPLACEMENT) {
/* generate displacement shader */
find_dependencies(dependencies, output->input("Displacement"));
generate_nodes(dependencies);
output->compile(*this);
}
else
assert(0);
ss->ShaderGroupEnd();
return group;
}
void OSLCompiler::compile(OSLGlobals *og, Shader *shader)
{
if (shader->need_update) {
ShaderGraph *graph = shader->graph;
ShaderNode *output = (graph) ? graph->output() : NULL;
bool has_bump = (shader->displacement_method != DISPLACE_TRUE) &&
output->input("Surface")->link && output->input("Displacement")->link;
/* finalize */
shader->graph->finalize(scene,
has_bump,
shader->has_integrator_dependency,
shader->displacement_method == DISPLACE_BOTH);
current_shader = shader;
shader->has_surface = false;
shader->has_surface_emission = false;
shader->has_surface_transparent = false;
shader->has_surface_bssrdf = false;
shader->has_bump = has_bump;
shader->has_bssrdf_bump = has_bump;
shader->has_volume = false;
shader->has_displacement = false;
shader->has_surface_spatial_varying = false;
shader->has_volume_spatial_varying = false;
shader->has_volume_attribute_dependency = false;
shader->has_integrator_dependency = false;
/* generate surface shader */
if (shader->used && graph && output->input("Surface")->link) {
shader->osl_surface_ref = compile_type(shader, shader->graph, SHADER_TYPE_SURFACE);
if (has_bump)
shader->osl_surface_bump_ref = compile_type(shader, shader->graph, SHADER_TYPE_BUMP);
else
shader->osl_surface_bump_ref = OSL::ShaderGroupRef();
shader->has_surface = true;
}
else {
shader->osl_surface_ref = OSL::ShaderGroupRef();
shader->osl_surface_bump_ref = OSL::ShaderGroupRef();
}
/* generate volume shader */
if (shader->used && graph && output->input("Volume")->link) {
shader->osl_volume_ref = compile_type(shader, shader->graph, SHADER_TYPE_VOLUME);
shader->has_volume = true;
}
else
shader->osl_volume_ref = OSL::ShaderGroupRef();
/* generate displacement shader */
if (shader->used && graph && output->input("Displacement")->link) {
shader->osl_displacement_ref = compile_type(shader, shader->graph, SHADER_TYPE_DISPLACEMENT);
shader->has_displacement = true;
}
else
shader->osl_displacement_ref = OSL::ShaderGroupRef();
}
/* push state to array for lookup */
og->surface_state.push_back(shader->osl_surface_ref);
og->volume_state.push_back(shader->osl_volume_ref);
og->displacement_state.push_back(shader->osl_displacement_ref);
og->bump_state.push_back(shader->osl_surface_bump_ref);
}
void OSLCompiler::parameter_texture(const char *name, ustring filename, ustring colorspace)
{
/* Textured loaded through the OpenImageIO texture cache. For this
* case we need to do runtime color space conversion. */
OSLTextureHandle *handle = new OSLTextureHandle(OSLTextureHandle::OIIO);
handle->processor = ColorSpaceManager::get_processor(colorspace);
services->textures.insert(filename, handle);
parameter(name, filename);
}
void OSLCompiler::parameter_texture(const char *name, int svm_slot)
{
/* Texture loaded through SVM image texture system. We generate a unique
* name, which ends up being used in OSLRenderServices::get_texture_handle
* to get handle again. Note that this name must be unique between multiple
* render sessions as the render services are shared. */
ustring filename(string_printf("@svm%d", texture_shared_unique_id++).c_str());
services->textures.insert(filename, new OSLTextureHandle(OSLTextureHandle::SVM, svm_slot));
parameter(name, filename);
}
void OSLCompiler::parameter_texture_ies(const char *name, int svm_slot)
{
/* IES light textures stored in SVM. */
ustring filename(string_printf("@svm%d", texture_shared_unique_id++).c_str());
services->textures.insert(filename, new OSLTextureHandle(OSLTextureHandle::IES, svm_slot));
parameter(name, filename);
}
#else
void OSLCompiler::add(ShaderNode * /*node*/, const char * /*name*/, bool /*isfilepath*/)
{
}
void OSLCompiler::parameter(ShaderNode * /*node*/, const char * /*name*/)
{
}
void OSLCompiler::parameter(const char * /*name*/, float /*f*/)
{
}
void OSLCompiler::parameter_color(const char * /*name*/, float3 /*f*/)
{
}
void OSLCompiler::parameter_vector(const char * /*name*/, float3 /*f*/)
{
}
void OSLCompiler::parameter_point(const char * /*name*/, float3 /*f*/)
{
}
void OSLCompiler::parameter_normal(const char * /*name*/, float3 /*f*/)
{
}
void OSLCompiler::parameter(const char * /*name*/, int /*f*/)
{
}
void OSLCompiler::parameter(const char * /*name*/, const char * /*s*/)
{
}
void OSLCompiler::parameter(const char * /*name*/, ustring /*s*/)
{
}
void OSLCompiler::parameter(const char * /*name*/, const Transform & /*tfm*/)
{
}
void OSLCompiler::parameter_array(const char * /*name*/, const float /*f*/[], int /*arraylen*/)
{
}
void OSLCompiler::parameter_color_array(const char * /*name*/, const array<float3> & /*f*/)
{
}
void OSLCompiler::parameter_texture(const char * /* name */,
ustring /* filename */,
ustring /* colorspace */)
{
}
void OSLCompiler::parameter_texture(const char * /* name */, int /* svm_slot */)
{
}
void OSLCompiler::parameter_texture_ies(const char * /* name */, int /* svm_slot */)
{
}
#endif /* WITH_OSL */
CCL_NAMESPACE_END