blender/source/gameengine/Ketsji/KX_ObjectActuator.cpp
Mitchell Stokes b90de0331d BGE: Cleaning up the BGE's physics code and removing KX_IPhysicsController and KX_BulletPhysicsController. Instead, we just use PHY_IPhysicsController, which removes a lot of duplicate code.
This is a squashed commit of the following:
    BGE Physics Cleanup: Fix crashes with LibLoading and replication. Also fixing some memory leaks.
    BGE Physics Cleanup: Removing KX_IPhysicsController and KX_BulletPhysicsController.
    BGE Physics Cleanup: Moving the replication code outside of KX_BlenderBulletController and switching KX_ConvertPhysicsObjects to create a CcdPhysicsController instead of a KX_BlenderBulletController.
    BGE Physics Cleanup: Getting rid of an unsued KX_BulletPhysicsController.h include in KX_Scene.cpp.
    BGE Physics Cleanup: Removing unused KX_IPhysicsController and KX_BulletPhysicsController includes.
    BGE Physics Cleanup: Removing m_pPhysicsController1 and GetPhysicsController1() from KX_GameObject.
    BGE Physics Cleanup: Remove SetRigidBody() from KX_IPhysicsController and remove GetName() from CcdPhysicsController.
    BGE Physics Cleanup: Moving Add/RemoveCompoundChild() from KX_IPhysicsController to PHY_IPhysicsController.
    BGE Physics Cleanup: Removing GetLocalInertia() from KX_IPhysicsController.
    BGE Physics Cleanup: Making BlenderBulletCharacterController derive from PHY_ICharacter and removing CharacterWrapper from CcdPhysicsEnvironment.cpp. Also removing the character functions from KX_IPhysicsController.
    BGE Physics Cleanup: Removing GetOrientation(), SetOrientation(), SetPosition(), SetScaling(), and GetRadius() from KX_IPhysicsController.
    BGE Physics Cleanup: Removing GetReactionForce() since all implementations returned (0, 0, 0). The Python interface for KX_GameObject still has reaction force code, but it still also returns (0, 0, 0). This can probably be removed as well, but removing it can break scripts, so I'll leave it for now.
    BGE Physics Cleanup: Removing Get/SetLinVelocityMin() and Get/SetLinVelocityMax() from KX_IPhysicsController.
    BGE Physics Cleanup: Removing SetMargin(), RelativeTranslate(), and RelativeRotate() from KX_IPhysicsController.
    BGE Physics Cleanup: Using constant references for function arguments in PHY_IPhysicsController where appropriate.
    BGE Physics Cleanup: Removing ApplyImpulse() from KX_IPhysicsController.
    BGE Physics Cleanup: Removing ResolveCombinedVelocities() from KX_IPhysicsController.
    BGE Physics Cleanup: Accidently removed a return when cleaning up KX_GameObject::PyGetVelocity().
    BGE Physics Cleanup: Remove GetLinearVelocity(), GetAngularVelocity() and GetVelocity() from KX_IPhysicsController. The corresponding PHY_IPhysicsController functions now also take Moto types instead of scalars to match the KX_IPhysicsController interface.
    BGE Physics Cleanup: Moving SuspendDynamics, RestoreDynamics, SetMass, GetMass, and SetTransform from KX_IPhysicsController to PHY_IPhysicsController.
    BGE Physics Cleanup: PHY_IPhysicsEnvironment and derived classes now use the same naming scheme as PHY_IController.
    BGE Physics Cleanup: PHY_IMotionState and derived classes now use the same naming convention as PHY_IController.
    BGE Phsyics Cleanup: Making PHY_IController and its derived classes follow a consistent naming scheme for member functions. They now all start with capital letters (e.g., setWorldOrientation becomes SetWorldOrientation).
    BGE Physics Cleanup: Getting rid of KX_GameObject::SuspendDynamics() and KX_GameObject::RestoreDynamics(). Instead, use the functions from the physics controller.
    BGE: Some first steps in trying to cleanup the KX_IPhysicsController mess. KX_GameObject now has a GetPhysicsController() and a GetPhysicsController1(). The former returns a PHY_IPhysicsController* while the latter returns a KX_IPhysicsController. The goal is to get everything using GetPhysicsController() instead of GetPhysicsController1().
2013-11-04 19:22:47 +00:00

699 lines
21 KiB
C++

/*
* Do translation/rotation actions
*
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file gameengine/Ketsji/KX_ObjectActuator.cpp
* \ingroup ketsji
*/
#include "KX_ObjectActuator.h"
#include "KX_GameObject.h"
#include "KX_PyMath.h" // For PyVecTo - should this include be put in PyObjectPlus?
#include "PHY_IPhysicsController.h"
#include "PHY_ICharacter.h"
#include "PHY_IPhysicsEnvironment.h"
/* ------------------------------------------------------------------------- */
/* Native functions */
/* ------------------------------------------------------------------------- */
KX_ObjectActuator::
KX_ObjectActuator(
SCA_IObject* gameobj,
KX_GameObject* refobj,
const MT_Vector3& force,
const MT_Vector3& torque,
const MT_Vector3& dloc,
const MT_Vector3& drot,
const MT_Vector3& linV,
const MT_Vector3& angV,
const short damping,
const KX_LocalFlags& flag
) :
SCA_IActuator(gameobj, KX_ACT_OBJECT),
m_force(force),
m_torque(torque),
m_dloc(dloc),
m_drot(drot),
m_linear_velocity(linV),
m_angular_velocity(angV),
m_linear_length2(0.0),
m_current_linear_factor(0.0),
m_current_angular_factor(0.0),
m_damping(damping),
m_previous_error(0.0,0.0,0.0),
m_error_accumulator(0.0,0.0,0.0),
m_bitLocalFlag (flag),
m_reference(refobj),
m_active_combined_velocity (false),
m_linear_damping_active(false),
m_angular_damping_active(false)
{
if (m_bitLocalFlag.ServoControl)
{
// in servo motion, the force is local if the target velocity is local
m_bitLocalFlag.Force = m_bitLocalFlag.LinearVelocity;
m_pid = m_torque;
}
if (m_bitLocalFlag.CharacterMotion)
{
KX_GameObject *parent = static_cast<KX_GameObject *>(GetParent());
PHY_ICharacter *character = parent->GetScene()->GetPhysicsEnvironment()->GetCharacterController(parent);
if (!character)
{
printf("Character motion enabled on non-character object (%s), falling back to simple motion.\n", parent->GetName().Ptr());
m_bitLocalFlag.CharacterMotion = false;
}
}
if (m_reference)
m_reference->RegisterActuator(this);
UpdateFuzzyFlags();
}
KX_ObjectActuator::~KX_ObjectActuator()
{
if (m_reference)
m_reference->UnregisterActuator(this);
}
bool KX_ObjectActuator::Update()
{
bool bNegativeEvent = IsNegativeEvent();
RemoveAllEvents();
KX_GameObject *parent = static_cast<KX_GameObject *>(GetParent());
PHY_ICharacter *character = parent->GetScene()->GetPhysicsEnvironment()->GetCharacterController(parent);
if (bNegativeEvent) {
// If we previously set the linear velocity we now have to inform
// the physics controller that we no longer wish to apply it and that
// it should reconcile the externally set velocity with it's
// own velocity.
if (m_active_combined_velocity) {
if (parent)
parent->ResolveCombinedVelocities(
m_linear_velocity,
m_angular_velocity,
(m_bitLocalFlag.LinearVelocity) != 0,
(m_bitLocalFlag.AngularVelocity) != 0
);
m_active_combined_velocity = false;
}
// Explicitly stop the movement if we're using character motion
if (m_bitLocalFlag.CharacterMotion) {
character->SetWalkDirection(MT_Vector3 (0.0, 0.0, 0.0));
}
m_linear_damping_active = false;
m_angular_damping_active = false;
m_error_accumulator.setValue(0.0,0.0,0.0);
m_previous_error.setValue(0.0,0.0,0.0);
return false;
} else if (parent)
{
if (m_bitLocalFlag.ServoControl)
{
// In this mode, we try to reach a target speed using force
// As we don't know the friction, we must implement a generic
// servo control to achieve the speed in a configurable
// v = current velocity
// V = target velocity
// e = V-v = speed error
// dt = time interval since previous update
// I = sum(e(t)*dt)
// dv = e(t) - e(t-1)
// KP, KD, KI : coefficient
// F = KP*e+KI*I+KD*dv
MT_Scalar mass = parent->GetMass();
if (mass < MT_EPSILON)
return false;
MT_Vector3 v = parent->GetLinearVelocity(m_bitLocalFlag.LinearVelocity);
if (m_reference)
{
const MT_Point3& mypos = parent->NodeGetWorldPosition();
const MT_Point3& refpos = m_reference->NodeGetWorldPosition();
MT_Point3 relpos;
relpos = (mypos-refpos);
MT_Vector3 vel= m_reference->GetVelocity(relpos);
if (m_bitLocalFlag.LinearVelocity)
// must convert in local space
vel = parent->NodeGetWorldOrientation().transposed()*vel;
v -= vel;
}
MT_Vector3 e = m_linear_velocity - v;
MT_Vector3 dv = e - m_previous_error;
MT_Vector3 I = m_error_accumulator + e;
m_force = m_pid.x()*e+m_pid.y()*I+m_pid.z()*dv;
// to automatically adapt the PID coefficient to mass;
m_force *= mass;
if (m_bitLocalFlag.Torque)
{
if (m_force[0] > m_dloc[0])
{
m_force[0] = m_dloc[0];
I[0] = m_error_accumulator[0];
} else if (m_force[0] < m_drot[0])
{
m_force[0] = m_drot[0];
I[0] = m_error_accumulator[0];
}
}
if (m_bitLocalFlag.DLoc)
{
if (m_force[1] > m_dloc[1])
{
m_force[1] = m_dloc[1];
I[1] = m_error_accumulator[1];
} else if (m_force[1] < m_drot[1])
{
m_force[1] = m_drot[1];
I[1] = m_error_accumulator[1];
}
}
if (m_bitLocalFlag.DRot)
{
if (m_force[2] > m_dloc[2])
{
m_force[2] = m_dloc[2];
I[2] = m_error_accumulator[2];
} else if (m_force[2] < m_drot[2])
{
m_force[2] = m_drot[2];
I[2] = m_error_accumulator[2];
}
}
m_previous_error = e;
m_error_accumulator = I;
parent->ApplyForce(m_force,(m_bitLocalFlag.LinearVelocity) != 0);
}
else if (m_bitLocalFlag.CharacterMotion) {
MT_Vector3 dir = m_dloc;
if (m_bitLocalFlag.AddOrSetCharLoc) {
MT_Vector3 old_dir = character->GetWalkDirection();
if (!old_dir.fuzzyZero()) {
MT_Scalar mag = old_dir.length();
dir = dir + old_dir;
if (!dir.fuzzyZero())
dir = dir.normalized() * mag;
}
}
// We always want to set the walk direction since a walk direction of (0, 0, 0) should stop the character
if (m_bitLocalFlag.DLoc)
{
MT_Matrix3x3 basis = parent->GetPhysicsController()->GetOrientation();
dir = basis*dir;
}
character->SetWalkDirection(dir/parent->GetScene()->GetPhysicsEnvironment()->GetNumTimeSubSteps());
if (!m_bitLocalFlag.ZeroDRot)
{
parent->ApplyRotation(m_drot,(m_bitLocalFlag.DRot) != 0);
}
if (m_bitLocalFlag.CharacterJump)
{
character->Jump();
}
}
else {
if (!m_bitLocalFlag.ZeroForce)
{
parent->ApplyForce(m_force,(m_bitLocalFlag.Force) != 0);
}
if (!m_bitLocalFlag.ZeroTorque)
{
parent->ApplyTorque(m_torque,(m_bitLocalFlag.Torque) != 0);
}
if (!m_bitLocalFlag.ZeroDLoc)
{
parent->ApplyMovement(m_dloc,(m_bitLocalFlag.DLoc) != 0);
}
if (!m_bitLocalFlag.ZeroDRot)
{
parent->ApplyRotation(m_drot,(m_bitLocalFlag.DRot) != 0);
}
if (!m_bitLocalFlag.ZeroLinearVelocity)
{
if (m_bitLocalFlag.AddOrSetLinV) {
parent->addLinearVelocity(m_linear_velocity,(m_bitLocalFlag.LinearVelocity) != 0);
} else {
m_active_combined_velocity = true;
if (m_damping > 0) {
MT_Vector3 linV;
if (!m_linear_damping_active) {
// delta and the start speed (depends on the existing speed in that direction)
linV = parent->GetLinearVelocity(m_bitLocalFlag.LinearVelocity);
// keep only the projection along the desired direction
m_current_linear_factor = linV.dot(m_linear_velocity)/m_linear_length2;
m_linear_damping_active = true;
}
if (m_current_linear_factor < 1.0)
m_current_linear_factor += 1.0/m_damping;
if (m_current_linear_factor > 1.0)
m_current_linear_factor = 1.0;
linV = m_current_linear_factor * m_linear_velocity;
parent->setLinearVelocity(linV,(m_bitLocalFlag.LinearVelocity) != 0);
} else {
parent->setLinearVelocity(m_linear_velocity,(m_bitLocalFlag.LinearVelocity) != 0);
}
}
}
if (!m_bitLocalFlag.ZeroAngularVelocity)
{
m_active_combined_velocity = true;
if (m_damping > 0) {
MT_Vector3 angV;
if (!m_angular_damping_active) {
// delta and the start speed (depends on the existing speed in that direction)
angV = parent->GetAngularVelocity(m_bitLocalFlag.AngularVelocity);
// keep only the projection along the desired direction
m_current_angular_factor = angV.dot(m_angular_velocity)/m_angular_length2;
m_angular_damping_active = true;
}
if (m_current_angular_factor < 1.0)
m_current_angular_factor += 1.0/m_damping;
if (m_current_angular_factor > 1.0)
m_current_angular_factor = 1.0;
angV = m_current_angular_factor * m_angular_velocity;
parent->setAngularVelocity(angV,(m_bitLocalFlag.AngularVelocity) != 0);
} else {
parent->setAngularVelocity(m_angular_velocity,(m_bitLocalFlag.AngularVelocity) != 0);
}
}
}
}
return true;
}
CValue* KX_ObjectActuator::GetReplica()
{
KX_ObjectActuator* replica = new KX_ObjectActuator(*this);//m_float,GetName());
replica->ProcessReplica();
return replica;
}
void KX_ObjectActuator::ProcessReplica()
{
SCA_IActuator::ProcessReplica();
if (m_reference)
m_reference->RegisterActuator(this);
}
bool KX_ObjectActuator::UnlinkObject(SCA_IObject* clientobj)
{
if (clientobj == (SCA_IObject*)m_reference)
{
// this object is being deleted, we cannot continue to use it as reference.
m_reference = NULL;
return true;
}
return false;
}
void KX_ObjectActuator::Relink(CTR_Map<CTR_HashedPtr, void*> *obj_map)
{
void **h_obj = (*obj_map)[m_reference];
if (h_obj) {
if (m_reference)
m_reference->UnregisterActuator(this);
m_reference = (KX_GameObject*)(*h_obj);
m_reference->RegisterActuator(this);
}
}
/* some 'standard' utilities... */
bool KX_ObjectActuator::isValid(KX_ObjectActuator::KX_OBJECT_ACT_VEC_TYPE type)
{
bool res = false;
res = (type > KX_OBJECT_ACT_NODEF) && (type < KX_OBJECT_ACT_MAX);
return res;
}
#ifdef WITH_PYTHON
/* ------------------------------------------------------------------------- */
/* Python functions */
/* ------------------------------------------------------------------------- */
/* Integration hooks ------------------------------------------------------- */
PyTypeObject KX_ObjectActuator::Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"KX_ObjectActuator",
sizeof(PyObjectPlus_Proxy),
0,
py_base_dealloc,
0,
0,
0,
0,
py_base_repr,
0,0,0,0,0,0,0,0,0,
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
0,0,0,0,0,0,0,
Methods,
0,
0,
&SCA_IActuator::Type,
0,0,0,0,0,0,
py_base_new
};
PyMethodDef KX_ObjectActuator::Methods[] = {
{NULL,NULL} //Sentinel
};
PyAttributeDef KX_ObjectActuator::Attributes[] = {
KX_PYATTRIBUTE_VECTOR_RW_CHECK("force", -1000, 1000, false, KX_ObjectActuator, m_force, PyUpdateFuzzyFlags),
KX_PYATTRIBUTE_BOOL_RW("useLocalForce", KX_ObjectActuator, m_bitLocalFlag.Force),
KX_PYATTRIBUTE_VECTOR_RW_CHECK("torque", -1000, 1000, false, KX_ObjectActuator, m_torque, PyUpdateFuzzyFlags),
KX_PYATTRIBUTE_BOOL_RW("useLocalTorque", KX_ObjectActuator, m_bitLocalFlag.Torque),
KX_PYATTRIBUTE_VECTOR_RW_CHECK("dLoc", -1000, 1000, false, KX_ObjectActuator, m_dloc, PyUpdateFuzzyFlags),
KX_PYATTRIBUTE_BOOL_RW("useLocalDLoc", KX_ObjectActuator, m_bitLocalFlag.DLoc),
KX_PYATTRIBUTE_VECTOR_RW_CHECK("dRot", -1000, 1000, false, KX_ObjectActuator, m_drot, PyUpdateFuzzyFlags),
KX_PYATTRIBUTE_BOOL_RW("useLocalDRot", KX_ObjectActuator, m_bitLocalFlag.DRot),
#ifdef USE_MATHUTILS
KX_PYATTRIBUTE_RW_FUNCTION("linV", KX_ObjectActuator, pyattr_get_linV, pyattr_set_linV),
KX_PYATTRIBUTE_RW_FUNCTION("angV", KX_ObjectActuator, pyattr_get_angV, pyattr_set_angV),
#else
KX_PYATTRIBUTE_VECTOR_RW_CHECK("linV", -1000, 1000, false, KX_ObjectActuator, m_linear_velocity, PyUpdateFuzzyFlags),
KX_PYATTRIBUTE_VECTOR_RW_CHECK("angV", -1000, 1000, false, KX_ObjectActuator, m_angular_velocity, PyUpdateFuzzyFlags),
#endif
KX_PYATTRIBUTE_BOOL_RW("useLocalLinV", KX_ObjectActuator, m_bitLocalFlag.LinearVelocity),
KX_PYATTRIBUTE_BOOL_RW("useLocalAngV", KX_ObjectActuator, m_bitLocalFlag.AngularVelocity),
KX_PYATTRIBUTE_SHORT_RW("damping", 0, 1000, false, KX_ObjectActuator, m_damping),
KX_PYATTRIBUTE_RW_FUNCTION("forceLimitX", KX_ObjectActuator, pyattr_get_forceLimitX, pyattr_set_forceLimitX),
KX_PYATTRIBUTE_RW_FUNCTION("forceLimitY", KX_ObjectActuator, pyattr_get_forceLimitY, pyattr_set_forceLimitY),
KX_PYATTRIBUTE_RW_FUNCTION("forceLimitZ", KX_ObjectActuator, pyattr_get_forceLimitZ, pyattr_set_forceLimitZ),
KX_PYATTRIBUTE_VECTOR_RW_CHECK("pid", -100, 200, true, KX_ObjectActuator, m_pid, PyCheckPid),
KX_PYATTRIBUTE_RW_FUNCTION("reference", KX_ObjectActuator,pyattr_get_reference,pyattr_set_reference),
{ NULL } //Sentinel
};
/* Attribute get/set functions */
#ifdef USE_MATHUTILS
/* These require an SGNode */
#define MATHUTILS_VEC_CB_LINV 1
#define MATHUTILS_VEC_CB_ANGV 2
static unsigned char mathutils_kxobactu_vector_cb_index = -1; /* index for our callbacks */
static int mathutils_obactu_generic_check(BaseMathObject *bmo)
{
KX_ObjectActuator* self = static_cast<KX_ObjectActuator*>BGE_PROXY_REF(bmo->cb_user);
if (self == NULL)
return -1;
return 0;
}
static int mathutils_obactu_vector_get(BaseMathObject *bmo, int subtype)
{
KX_ObjectActuator* self = static_cast<KX_ObjectActuator*>BGE_PROXY_REF(bmo->cb_user);
if (self == NULL)
return -1;
switch (subtype) {
case MATHUTILS_VEC_CB_LINV:
self->m_linear_velocity.getValue(bmo->data);
break;
case MATHUTILS_VEC_CB_ANGV:
self->m_angular_velocity.getValue(bmo->data);
break;
}
return 0;
}
static int mathutils_obactu_vector_set(BaseMathObject *bmo, int subtype)
{
KX_ObjectActuator* self = static_cast<KX_ObjectActuator*>BGE_PROXY_REF(bmo->cb_user);
if (self == NULL)
return -1;
switch (subtype) {
case MATHUTILS_VEC_CB_LINV:
self->m_linear_velocity.setValue(bmo->data);
break;
case MATHUTILS_VEC_CB_ANGV:
self->m_angular_velocity.setValue(bmo->data);
break;
}
return 0;
}
static int mathutils_obactu_vector_get_index(BaseMathObject *bmo, int subtype, int index)
{
/* lazy, avoid repeteing the case statement */
if (mathutils_obactu_vector_get(bmo, subtype) == -1)
return -1;
return 0;
}
static int mathutils_obactu_vector_set_index(BaseMathObject *bmo, int subtype, int index)
{
float f = bmo->data[index];
/* lazy, avoid repeteing the case statement */
if (mathutils_obactu_vector_get(bmo, subtype) == -1)
return -1;
bmo->data[index] = f;
return mathutils_obactu_vector_set(bmo, subtype);
}
static Mathutils_Callback mathutils_obactu_vector_cb = {
mathutils_obactu_generic_check,
mathutils_obactu_vector_get,
mathutils_obactu_vector_set,
mathutils_obactu_vector_get_index,
mathutils_obactu_vector_set_index
};
PyObject *KX_ObjectActuator::pyattr_get_linV(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
return Vector_CreatePyObject_cb(BGE_PROXY_FROM_REF(self_v), 3, mathutils_kxobactu_vector_cb_index, MATHUTILS_VEC_CB_LINV);
}
int KX_ObjectActuator::pyattr_set_linV(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_ObjectActuator* self = static_cast<KX_ObjectActuator*>(self_v);
if (!PyVecTo(value, self->m_linear_velocity))
return PY_SET_ATTR_FAIL;
self->UpdateFuzzyFlags();
return PY_SET_ATTR_SUCCESS;
}
PyObject *KX_ObjectActuator::pyattr_get_angV(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
return Vector_CreatePyObject_cb(BGE_PROXY_FROM_REF(self_v), 3, mathutils_kxobactu_vector_cb_index, MATHUTILS_VEC_CB_ANGV);
}
int KX_ObjectActuator::pyattr_set_angV(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_ObjectActuator* self = static_cast<KX_ObjectActuator*>(self_v);
if (!PyVecTo(value, self->m_angular_velocity))
return PY_SET_ATTR_FAIL;
self->UpdateFuzzyFlags();
return PY_SET_ATTR_SUCCESS;
}
void KX_ObjectActuator_Mathutils_Callback_Init(void)
{
// register mathutils callbacks, ok to run more than once.
mathutils_kxobactu_vector_cb_index = Mathutils_RegisterCallback(&mathutils_obactu_vector_cb);
}
#endif // USE_MATHUTILS
PyObject *KX_ObjectActuator::pyattr_get_forceLimitX(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
PyObject *retVal = PyList_New(3);
PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(self->m_drot[0]));
PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(self->m_dloc[0]));
PyList_SET_ITEM(retVal, 2, PyBool_FromLong(self->m_bitLocalFlag.Torque));
return retVal;
}
int KX_ObjectActuator::pyattr_set_forceLimitX(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
PyObject *seq = PySequence_Fast(value, "");
if (seq && PySequence_Fast_GET_SIZE(seq) == 3)
{
self->m_drot[0] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 0));
self->m_dloc[0] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 1));
self->m_bitLocalFlag.Torque = (PyLong_AsLong(PySequence_Fast_GET_ITEM(value, 2)) != 0);
if (!PyErr_Occurred())
{
Py_DECREF(seq);
return PY_SET_ATTR_SUCCESS;
}
}
Py_XDECREF(seq);
PyErr_SetString(PyExc_ValueError, "expected a sequence of 2 floats and a bool");
return PY_SET_ATTR_FAIL;
}
PyObject *KX_ObjectActuator::pyattr_get_forceLimitY(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
PyObject *retVal = PyList_New(3);
PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(self->m_drot[1]));
PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(self->m_dloc[1]));
PyList_SET_ITEM(retVal, 2, PyBool_FromLong(self->m_bitLocalFlag.DLoc));
return retVal;
}
int KX_ObjectActuator::pyattr_set_forceLimitY(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
PyObject *seq = PySequence_Fast(value, "");
if (seq && PySequence_Fast_GET_SIZE(seq) == 3)
{
self->m_drot[1] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 0));
self->m_dloc[1] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 1));
self->m_bitLocalFlag.DLoc = (PyLong_AsLong(PySequence_Fast_GET_ITEM(value, 2)) != 0);
if (!PyErr_Occurred())
{
Py_DECREF(seq);
return PY_SET_ATTR_SUCCESS;
}
}
Py_XDECREF(seq);
PyErr_SetString(PyExc_ValueError, "expected a sequence of 2 floats and a bool");
return PY_SET_ATTR_FAIL;
}
PyObject *KX_ObjectActuator::pyattr_get_forceLimitZ(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef)
{
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
PyObject *retVal = PyList_New(3);
PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(self->m_drot[2]));
PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(self->m_dloc[2]));
PyList_SET_ITEM(retVal, 2, PyBool_FromLong(self->m_bitLocalFlag.DRot));
return retVal;
}
int KX_ObjectActuator::pyattr_set_forceLimitZ(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_ObjectActuator* self = reinterpret_cast<KX_ObjectActuator*>(self_v);
PyObject *seq = PySequence_Fast(value, "");
if (seq && PySequence_Fast_GET_SIZE(seq) == 3)
{
self->m_drot[2] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 0));
self->m_dloc[2] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 1));
self->m_bitLocalFlag.DRot = (PyLong_AsLong(PySequence_Fast_GET_ITEM(value, 2)) != 0);
if (!PyErr_Occurred())
{
Py_DECREF(seq);
return PY_SET_ATTR_SUCCESS;
}
}
Py_XDECREF(seq);
PyErr_SetString(PyExc_ValueError, "expected a sequence of 2 floats and a bool");
return PY_SET_ATTR_FAIL;
}
PyObject *KX_ObjectActuator::pyattr_get_reference(void *self, const struct KX_PYATTRIBUTE_DEF *attrdef)
{
KX_ObjectActuator* actuator = static_cast<KX_ObjectActuator*>(self);
if (!actuator->m_reference)
Py_RETURN_NONE;
return actuator->m_reference->GetProxy();
}
int KX_ObjectActuator::pyattr_set_reference(void *self, const struct KX_PYATTRIBUTE_DEF *attrdef, PyObject *value)
{
KX_ObjectActuator* actuator = static_cast<KX_ObjectActuator*>(self);
KX_GameObject *refOb;
if (!ConvertPythonToGameObject(value, &refOb, true, "actu.reference = value: KX_ObjectActuator"))
return PY_SET_ATTR_FAIL;
if (actuator->m_reference)
actuator->m_reference->UnregisterActuator(actuator);
if (refOb==NULL) {
actuator->m_reference= NULL;
}
else {
actuator->m_reference = refOb;
actuator->m_reference->RegisterActuator(actuator);
}
return PY_SET_ATTR_SUCCESS;
}
#endif // WITH_PYTHON
/* eof */