blender/intern/cycles/kernel/kernel_camera.h
2016-01-14 17:01:56 +05:00

401 lines
13 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
/* Perspective Camera */
ccl_device float2 camera_sample_aperture(KernelGlobals *kg, float u, float v)
{
float blades = kernel_data.cam.blades;
float2 bokeh;
if(blades == 0.0f) {
/* sample disk */
bokeh = concentric_sample_disk(u, v);
}
else {
/* sample polygon */
float rotation = kernel_data.cam.bladesrotation;
bokeh = regular_polygon_sample(blades, rotation, u, v);
}
/* anamorphic lens bokeh */
bokeh.x *= kernel_data.cam.inv_aperture_ratio;
return bokeh;
}
ccl_device void camera_sample_perspective(KernelGlobals *kg, float raster_x, float raster_y, float lens_u, float lens_v, ccl_addr_space Ray *ray)
{
/* create ray form raster position */
Transform rastertocamera = kernel_data.cam.rastertocamera;
float3 raster = make_float3(raster_x, raster_y, 0.0f);
float3 Pcamera = transform_perspective(&rastertocamera, raster);
#ifdef __CAMERA_MOTION__
if(kernel_data.cam.have_perspective_motion) {
/* TODO(sergey): Currently we interpolate projected coordinate which
* gives nice looking result and which is simple, but is in fact a bit
* different comparing to constructing projective matrix from an
* interpolated field of view.
*/
if(ray->time < 0.5f) {
Transform rastertocamera_pre = kernel_data.cam.perspective_motion.pre;
float3 Pcamera_pre =
transform_perspective(&rastertocamera_pre, raster);
Pcamera = interp(Pcamera_pre, Pcamera, ray->time * 2.0f);
}
else {
Transform rastertocamera_post = kernel_data.cam.perspective_motion.post;
float3 Pcamera_post =
transform_perspective(&rastertocamera_post, raster);
Pcamera = interp(Pcamera, Pcamera_post, (ray->time - 0.5f) * 2.0f);
}
}
#endif
ray->P = make_float3(0.0f, 0.0f, 0.0f);
ray->D = Pcamera;
/* modify ray for depth of field */
float aperturesize = kernel_data.cam.aperturesize;
if(aperturesize > 0.0f) {
/* sample point on aperture */
float2 lensuv = camera_sample_aperture(kg, lens_u, lens_v)*aperturesize;
/* compute point on plane of focus */
float ft = kernel_data.cam.focaldistance/ray->D.z;
float3 Pfocus = ray->D*ft;
/* update ray for effect of lens */
ray->P = make_float3(lensuv.x, lensuv.y, 0.0f);
ray->D = normalize(Pfocus - ray->P);
}
/* transform ray from camera to world */
Transform cameratoworld = kernel_data.cam.cameratoworld;
#ifdef __CAMERA_MOTION__
if(kernel_data.cam.have_motion) {
#ifdef __KERNEL_OPENCL__
const MotionTransform tfm = kernel_data.cam.motion;
transform_motion_interpolate(&cameratoworld,
((const DecompMotionTransform*)&tfm),
ray->time);
#else
transform_motion_interpolate(&cameratoworld,
((const DecompMotionTransform*)&kernel_data.cam.motion),
ray->time);
#endif
}
#endif
ray->P = transform_point(&cameratoworld, ray->P);
ray->D = transform_direction(&cameratoworld, ray->D);
ray->D = normalize(ray->D);
#ifdef __RAY_DIFFERENTIALS__
/* ray differential */
float3 Ddiff = transform_direction(&cameratoworld, Pcamera);
ray->dP = differential3_zero();
ray->dD.dx = normalize(Ddiff + float4_to_float3(kernel_data.cam.dx)) - normalize(Ddiff);
ray->dD.dy = normalize(Ddiff + float4_to_float3(kernel_data.cam.dy)) - normalize(Ddiff);
#endif
#ifdef __CAMERA_CLIPPING__
/* clipping */
float3 Pclip = normalize(Pcamera);
float z_inv = 1.0f / Pclip.z;
ray->P += kernel_data.cam.nearclip*ray->D * z_inv;
ray->t = kernel_data.cam.cliplength * z_inv;
#else
ray->t = FLT_MAX;
#endif
}
/* Orthographic Camera */
ccl_device void camera_sample_orthographic(KernelGlobals *kg, float raster_x, float raster_y, float lens_u, float lens_v, ccl_addr_space Ray *ray)
{
/* create ray form raster position */
Transform rastertocamera = kernel_data.cam.rastertocamera;
float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
ray->D = make_float3(0.0f, 0.0f, 1.0f);
/* modify ray for depth of field */
float aperturesize = kernel_data.cam.aperturesize;
if(aperturesize > 0.0f) {
/* sample point on aperture */
float2 lensuv = camera_sample_aperture(kg, lens_u, lens_v)*aperturesize;
/* compute point on plane of focus */
float3 Pfocus = ray->D * kernel_data.cam.focaldistance;
/* update ray for effect of lens */
float3 lensuvw = make_float3(lensuv.x, lensuv.y, 0.0f);
ray->P = Pcamera + lensuvw;
ray->D = normalize(Pfocus - lensuvw);
}
else {
ray->P = Pcamera;
}
/* transform ray from camera to world */
Transform cameratoworld = kernel_data.cam.cameratoworld;
#ifdef __CAMERA_MOTION__
if(kernel_data.cam.have_motion) {
#ifdef __KERNEL_OPENCL__
const MotionTransform tfm = kernel_data.cam.motion;
transform_motion_interpolate(&cameratoworld,
(const DecompMotionTransform*)&tfm,
ray->time);
#else
transform_motion_interpolate(&cameratoworld,
(const DecompMotionTransform*)&kernel_data.cam.motion,
ray->time);
#endif
}
#endif
ray->P = transform_point(&cameratoworld, ray->P);
ray->D = transform_direction(&cameratoworld, ray->D);
ray->D = normalize(ray->D);
#ifdef __RAY_DIFFERENTIALS__
/* ray differential */
ray->dP.dx = float4_to_float3(kernel_data.cam.dx);
ray->dP.dy = float4_to_float3(kernel_data.cam.dy);
ray->dD = differential3_zero();
#endif
#ifdef __CAMERA_CLIPPING__
/* clipping */
ray->t = kernel_data.cam.cliplength;
#else
ray->t = FLT_MAX;
#endif
}
/* Panorama Camera */
ccl_device void camera_sample_panorama(KernelGlobals *kg, float raster_x, float raster_y, float lens_u, float lens_v, ccl_addr_space Ray *ray)
{
Transform rastertocamera = kernel_data.cam.rastertocamera;
float3 Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
/* create ray form raster position */
ray->P = make_float3(0.0f, 0.0f, 0.0f);
#ifdef __CAMERA_CLIPPING__
/* clipping */
ray->t = kernel_data.cam.cliplength;
#else
ray->t = FLT_MAX;
#endif
ray->D = panorama_to_direction(kg, Pcamera.x, Pcamera.y);
/* indicates ray should not receive any light, outside of the lens */
if(is_zero(ray->D)) {
ray->t = 0.0f;
return;
}
/* modify ray for depth of field */
float aperturesize = kernel_data.cam.aperturesize;
if(aperturesize > 0.0f) {
/* sample point on aperture */
float2 lensuv = camera_sample_aperture(kg, lens_u, lens_v)*aperturesize;
/* compute point on plane of focus */
float3 D = normalize(ray->D);
float3 Pfocus = D * kernel_data.cam.focaldistance;
/* calculate orthonormal coordinates perpendicular to D */
float3 U, V;
U = normalize(make_float3(1.0f, 0.0f, 0.0f) - D.x * D);
V = normalize(cross(D, U));
/* update ray for effect of lens */
ray->P = U * lensuv.x + V * lensuv.y;
ray->D = normalize(Pfocus - ray->P);
}
/* transform ray from camera to world */
Transform cameratoworld = kernel_data.cam.cameratoworld;
#ifdef __CAMERA_MOTION__
if(kernel_data.cam.have_motion) {
#ifdef __KERNEL_OPENCL__
const MotionTransform tfm = kernel_data.cam.motion;
transform_motion_interpolate(&cameratoworld,
(const DecompMotionTransform*)&tfm,
ray->time);
#else
transform_motion_interpolate(&cameratoworld,
(const DecompMotionTransform*)&kernel_data.cam.motion,
ray->time);
#endif
}
#endif
ray->P = transform_point(&cameratoworld, ray->P);
ray->D = transform_direction(&cameratoworld, ray->D);
ray->D = normalize(ray->D);
#ifdef __RAY_DIFFERENTIALS__
/* ray differential */
ray->dP = differential3_zero();
Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
float3 Ddiff = normalize(transform_direction(&cameratoworld, panorama_to_direction(kg, Pcamera.x, Pcamera.y)));
Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x + 1.0f, raster_y, 0.0f));
ray->dD.dx = normalize(transform_direction(&cameratoworld, panorama_to_direction(kg, Pcamera.x, Pcamera.y))) - Ddiff;
Pcamera = transform_perspective(&rastertocamera, make_float3(raster_x, raster_y + 1.0f, 0.0f));
ray->dD.dy = normalize(transform_direction(&cameratoworld, panorama_to_direction(kg, Pcamera.x, Pcamera.y))) - Ddiff;
#endif
}
/* Common */
ccl_device void camera_sample(KernelGlobals *kg, int x, int y, float filter_u, float filter_v,
float lens_u, float lens_v, float time, ccl_addr_space Ray *ray)
{
/* pixel filter */
int filter_table_offset = kernel_data.film.filter_table_offset;
float raster_x = x + lookup_table_read(kg, filter_u, filter_table_offset, FILTER_TABLE_SIZE);
float raster_y = y + lookup_table_read(kg, filter_v, filter_table_offset, FILTER_TABLE_SIZE);
#ifdef __CAMERA_MOTION__
/* motion blur */
if(kernel_data.cam.shuttertime == -1.0f) {
ray->time = TIME_INVALID;
}
else {
/* TODO(sergey): Such lookup is unneeded when there's rolling shutter
* effect in use but rolling shutter duration is set to 0.0.
*/
const int shutter_table_offset = kernel_data.cam.shutter_table_offset;
ray->time = lookup_table_read(kg, time, shutter_table_offset, SHUTTER_TABLE_SIZE);
/* TODO(sergey): Currently single rolling shutter effect type only
* where scanlines are acquired from top to bottom and whole scanline
* is acquired at once (no delay in acquisition happens between pixels
* of single scanline).
*
* Might want to support more models in the future.
*/
if(kernel_data.cam.rolling_shutter_type) {
/* Time corresponding to a fully rolling shutter only effect:
* top of the frame is time 0.0, bottom of the frame is time 1.0.
*/
const float time = 1.0f - (float)y / kernel_data.cam.height;
const float duration = kernel_data.cam.rolling_shutter_duration;
if(duration != 0.0f) {
/* This isn't fully physical correct, but lets us to have simple
* controls in the interface. The idea here is basically sort of
* linear interpolation between how much rolling shutter effect
* exist on the frame and how much of it is a motion blur effect.
*/
ray->time = (ray->time - 0.5f) * duration;
ray->time += (time - 0.5f) * (1.0f - duration) + 0.5f;
}
else {
ray->time = time;
}
}
}
#endif
/* sample */
if(kernel_data.cam.type == CAMERA_PERSPECTIVE)
camera_sample_perspective(kg, raster_x, raster_y, lens_u, lens_v, ray);
else if(kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
camera_sample_orthographic(kg, raster_x, raster_y, lens_u, lens_v, ray);
else
camera_sample_panorama(kg, raster_x, raster_y, lens_u, lens_v, ray);
}
/* Utilities */
ccl_device_inline float3 camera_position(KernelGlobals *kg)
{
Transform cameratoworld = kernel_data.cam.cameratoworld;
return make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
}
ccl_device_inline float camera_distance(KernelGlobals *kg, float3 P)
{
Transform cameratoworld = kernel_data.cam.cameratoworld;
float3 camP = make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
if(kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) {
float3 camD = make_float3(cameratoworld.x.z, cameratoworld.y.z, cameratoworld.z.z);
return fabsf(dot((P - camP), camD));
}
else
return len(P - camP);
}
ccl_device_inline float3 camera_direction_from_point(KernelGlobals *kg, float3 P)
{
Transform cameratoworld = kernel_data.cam.cameratoworld;
if(kernel_data.cam.type == CAMERA_ORTHOGRAPHIC) {
float3 camD = make_float3(cameratoworld.x.z, cameratoworld.y.z, cameratoworld.z.z);
return -camD;
}
else {
float3 camP = make_float3(cameratoworld.x.w, cameratoworld.y.w, cameratoworld.z.w);
return normalize(camP - P);
}
}
ccl_device_inline float3 camera_world_to_ndc(KernelGlobals *kg, ShaderData *sd, float3 P)
{
if(kernel_data.cam.type != CAMERA_PANORAMA) {
/* perspective / ortho */
if(ccl_fetch(sd, object) == PRIM_NONE && kernel_data.cam.type == CAMERA_PERSPECTIVE)
P += camera_position(kg);
Transform tfm = kernel_data.cam.worldtondc;
return transform_perspective(&tfm, P);
}
else {
/* panorama */
Transform tfm = kernel_data.cam.worldtocamera;
if(ccl_fetch(sd, object) != OBJECT_NONE)
P = normalize(transform_point(&tfm, P));
else
P = normalize(transform_direction(&tfm, P));
float2 uv = direction_to_panorama(kg, P);
return make_float3(uv.x, uv.y, 0.0f);
}
}
CCL_NAMESPACE_END