blender/release/scripts/startup/bl_operators/uvcalc_smart_project.py

1053 lines
35 KiB
Python

# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# TODO <pep8 compliant>
from mathutils import Matrix, Vector, geometry
import bpy
from bpy.types import Operator
DEG_TO_RAD = 0.017453292519943295 # pi/180.0
SMALL_NUM = 0.000001 # see bug [#31598] why we dont have smaller values
global USER_FILL_HOLES
global USER_FILL_HOLES_QUALITY
USER_FILL_HOLES = None
USER_FILL_HOLES_QUALITY = None
def pointInTri2D(v, v1, v2, v3):
key = v1.x, v1.y, v2.x, v2.y, v3.x, v3.y
# Commented because its slower to do the bounds check, we should really cache the bounds info for each face.
'''
# BOUNDS CHECK
xmin= 1000000
ymin= 1000000
xmax= -1000000
ymax= -1000000
for i in (0,2,4):
x= key[i]
y= key[i+1]
if xmax<x: xmax= x
if ymax<y: ymax= y
if xmin>x: xmin= x
if ymin>y: ymin= y
x= v.x
y= v.y
if x<xmin or x>xmax or y < ymin or y > ymax:
return False
# Done with bounds check
'''
try:
mtx = dict_matrix[key]
if not mtx:
return False
except:
side1 = v2 - v1
side2 = v3 - v1
nor = side1.cross(side2)
mtx = Matrix((side1, side2, nor))
# Zero area 2d tri, even tho we throw away zero area faces
# the projection UV can result in a zero area UV.
if not mtx.determinant():
dict_matrix[key] = None
return False
mtx.invert()
dict_matrix[key] = mtx
uvw = (v - v1) * mtx
return 0 <= uvw[0] and 0 <= uvw[1] and uvw[0] + uvw[1] <= 1
def boundsIsland(faces):
minx = maxx = faces[0].uv[0][0] # Set initial bounds.
miny = maxy = faces[0].uv[0][1]
# print len(faces), minx, maxx, miny , maxy
for f in faces:
for uv in f.uv:
x= uv.x
y= uv.y
if x<minx: minx= x
if y<miny: miny= y
if x>maxx: maxx= x
if y>maxy: maxy= y
return minx, miny, maxx, maxy
"""
def boundsEdgeLoop(edges):
minx = maxx = edges[0][0] # Set initial bounds.
miny = maxy = edges[0][1]
# print len(faces), minx, maxx, miny , maxy
for ed in edges:
for pt in ed:
x= pt[0]
y= pt[1]
if x<minx: x= minx
if y<miny: y= miny
if x>maxx: x= maxx
if y>maxy: y= maxy
return minx, miny, maxx, maxy
"""
# Turns the islands into a list of unpordered edges (Non internal)
# Only for UV's
# only returns outline edges for intersection tests. and unique points.
def island2Edge(island):
# Vert index edges
edges = {}
unique_points= {}
for f in island:
f_uvkey= map(tuple, f.uv)
for vIdx, edkey in enumerate(f.edge_keys):
unique_points[f_uvkey[vIdx]] = f.uv[vIdx]
if f.v[vIdx].index > f.v[vIdx-1].index:
i1= vIdx-1; i2= vIdx
else:
i1= vIdx; i2= vIdx-1
try: edges[ f_uvkey[i1], f_uvkey[i2] ] *= 0 # sets any edge with more than 1 user to 0 are not returned.
except: edges[ f_uvkey[i1], f_uvkey[i2] ] = (f.uv[i1] - f.uv[i2]).length,
# If 2 are the same then they will be together, but full [a,b] order is not correct.
# Sort by length
length_sorted_edges = [(Vector(key[0]), Vector(key[1]), value) for key, value in edges.items() if value != 0]
try: length_sorted_edges.sort(key = lambda A: -A[2]) # largest first
except: length_sorted_edges.sort(lambda A, B: cmp(B[2], A[2]))
# Its okay to leave the length in there.
#for e in length_sorted_edges:
# e.pop(2)
# return edges and unique points
return length_sorted_edges, [v.to_3d() for v in unique_points.values()]
# ========================= NOT WORKING????
# Find if a points inside an edge loop, unordered.
# pt is and x/y
# edges are a non ordered loop of edges.
# offsets are the edge x and y offset.
"""
def pointInEdges(pt, edges):
#
x1 = pt[0]
y1 = pt[1]
# Point to the left of this line.
x2 = -100000
y2 = -10000
intersectCount = 0
for ed in edges:
xi, yi = lineIntersection2D(x1,y1, x2,y2, ed[0][0], ed[0][1], ed[1][0], ed[1][1])
if xi is not None: # Is there an intersection.
intersectCount+=1
return intersectCount % 2
"""
def pointInIsland(pt, island):
vec1, vec2, vec3 = Vector(), Vector(), Vector()
for f in island:
vec1.x, vec1.y = f.uv[0]
vec2.x, vec2.y = f.uv[1]
vec3.x, vec3.y = f.uv[2]
if pointInTri2D(pt, vec1, vec2, vec3):
return True
if len(f.v) == 4:
vec1.x, vec1.y = f.uv[0]
vec2.x, vec2.y = f.uv[2]
vec3.x, vec3.y = f.uv[3]
if pointInTri2D(pt, vec1, vec2, vec3):
return True
return False
# box is (left,bottom, right, top)
def islandIntersectUvIsland(source, target, SourceOffset):
# Is 1 point in the box, inside the vertLoops
edgeLoopsSource = source[6] # Pretend this is offset
edgeLoopsTarget = target[6]
# Edge intersect test
for ed in edgeLoopsSource:
for seg in edgeLoopsTarget:
i = geometry.intersect_line_line_2d(seg[0],
seg[1],
SourceOffset+ed[0],
SourceOffset+ed[1],
)
if i:
return 1 # LINE INTERSECTION
# 1 test for source being totally inside target
SourceOffset.resize_3d()
for pv in source[7]:
if pointInIsland(pv+SourceOffset, target[0]):
return 2 # SOURCE INSIDE TARGET
# 2 test for a part of the target being totally inside the source.
for pv in target[7]:
if pointInIsland(pv-SourceOffset, source[0]):
return 3 # PART OF TARGET INSIDE SOURCE.
return 0 # NO INTERSECTION
def optiRotateUvIsland(faces):
uv_points = [uv for f in faces for uv in f.uv]
angle = geometry.box_fit_2d(uv_points)
if angle != 0.0:
mat = Matrix.Rotation(angle, 2)
i = 0 # count the serialized uv/vectors
for f in faces:
for j, k in enumerate(range(i, len(f.v) + i)):
f.uv[j][:] = mat * uv_points[k]
i += len(f.v)
# Takes an island list and tries to find concave, hollow areas to pack smaller islands into.
def mergeUvIslands(islandList):
global USER_FILL_HOLES
global USER_FILL_HOLES_QUALITY
# Pack islands to bottom LHS
# Sync with island
#islandTotFaceArea = [] # A list of floats, each island area
#islandArea = [] # a list of tuples ( area, w,h)
decoratedIslandList = []
islandIdx = len(islandList)
while islandIdx:
islandIdx-=1
minx, miny, maxx, maxy = boundsIsland(islandList[islandIdx])
w, h = maxx-minx, maxy-miny
totFaceArea = 0
offset= Vector((minx, miny))
for f in islandList[islandIdx]:
for uv in f.uv:
uv -= offset
totFaceArea += f.area
islandBoundsArea = w*h
efficiency = abs(islandBoundsArea - totFaceArea)
# UV Edge list used for intersections as well as unique points.
edges, uniqueEdgePoints = island2Edge(islandList[islandIdx])
decoratedIslandList.append([islandList[islandIdx], totFaceArea, efficiency, islandBoundsArea, w,h, edges, uniqueEdgePoints])
# Sort by island bounding box area, smallest face area first.
# no.. chance that to most simple edge loop first.
decoratedIslandListAreaSort =decoratedIslandList[:]
decoratedIslandListAreaSort.sort(key = lambda A: A[3])
# sort by efficiency, Least Efficient first.
decoratedIslandListEfficSort = decoratedIslandList[:]
# decoratedIslandListEfficSort.sort(lambda A, B: cmp(B[2], A[2]))
decoratedIslandListEfficSort.sort(key = lambda A: -A[2])
# ================================================== THESE CAN BE TWEAKED.
# This is a quality value for the number of tests.
# from 1 to 4, generic quality value is from 1 to 100
USER_STEP_QUALITY = ((USER_FILL_HOLES_QUALITY - 1) / 25.0) + 1
# If 100 will test as long as there is enough free space.
# this is rarely enough, and testing takes a while, so lower quality speeds this up.
# 1 means they have the same quality
USER_FREE_SPACE_TO_TEST_QUALITY = 1 + (((100 - USER_FILL_HOLES_QUALITY)/100.0) *5)
#print 'USER_STEP_QUALITY', USER_STEP_QUALITY
#print 'USER_FREE_SPACE_TO_TEST_QUALITY', USER_FREE_SPACE_TO_TEST_QUALITY
removedCount = 0
areaIslandIdx = 0
ctrl = Window.Qual.CTRL
BREAK= False
while areaIslandIdx < len(decoratedIslandListAreaSort) and not BREAK:
sourceIsland = decoratedIslandListAreaSort[areaIslandIdx]
# Already packed?
if not sourceIsland[0]:
areaIslandIdx+=1
else:
efficIslandIdx = 0
while efficIslandIdx < len(decoratedIslandListEfficSort) and not BREAK:
if Window.GetKeyQualifiers() & ctrl:
BREAK= True
break
# Now we have 2 islands, if the efficiency of the islands lowers theres an
# increasing likely hood that we can fit merge into the bigger UV island.
# this ensures a tight fit.
# Just use figures we have about user/unused area to see if they might fit.
targetIsland = decoratedIslandListEfficSort[efficIslandIdx]
if sourceIsland[0] == targetIsland[0] or\
not targetIsland[0] or\
not sourceIsland[0]:
pass
else:
#~ ([island, totFaceArea, efficiency, islandArea, w,h])
# Wasted space on target is greater then UV bounding island area.
#~ if targetIsland[3] > (sourceIsland[2]) and\ #
#~ print USER_FREE_SPACE_TO_TEST_QUALITY
if targetIsland[2] > (sourceIsland[1] * USER_FREE_SPACE_TO_TEST_QUALITY) and\
targetIsland[4] > sourceIsland[4] and\
targetIsland[5] > sourceIsland[5]:
# DEBUG # print '%.10f %.10f' % (targetIsland[3], sourceIsland[1])
# These enough spare space lets move the box until it fits
# How many times does the source fit into the target x/y
blockTestXUnit = targetIsland[4]/sourceIsland[4]
blockTestYUnit = targetIsland[5]/sourceIsland[5]
boxLeft = 0
# Distance we can move between whilst staying inside the targets bounds.
testWidth = targetIsland[4] - sourceIsland[4]
testHeight = targetIsland[5] - sourceIsland[5]
# Increment we move each test. x/y
xIncrement = (testWidth / (blockTestXUnit * ((USER_STEP_QUALITY/50)+0.1)))
yIncrement = (testHeight / (blockTestYUnit * ((USER_STEP_QUALITY/50)+0.1)))
# Make sure were not moving less then a 3rg of our width/height
if xIncrement<sourceIsland[4]/3:
xIncrement= sourceIsland[4]
if yIncrement<sourceIsland[5]/3:
yIncrement= sourceIsland[5]
boxLeft = 0 # Start 1 back so we can jump into the loop.
boxBottom= 0 #-yIncrement
#~ testcount= 0
while boxBottom <= testHeight:
# Should we use this? - not needed for now.
#~ if Window.GetKeyQualifiers() & ctrl:
#~ BREAK= True
#~ break
##testcount+=1
#print 'Testing intersect'
Intersect = islandIntersectUvIsland(sourceIsland, targetIsland, Vector((boxLeft, boxBottom)))
#print 'Done', Intersect
if Intersect == 1: # Line intersect, don't bother with this any more
pass
if Intersect == 2: # Source inside target
"""
We have an intersection, if we are inside the target
then move us 1 whole width across,
Its possible this is a bad idea since 2 skinny Angular faces
could join without 1 whole move, but its a lot more optimal to speed this up
since we have already tested for it.
It gives about 10% speedup with minimal errors.
"""
# Move the test along its width + SMALL_NUM
#boxLeft += sourceIsland[4] + SMALL_NUM
boxLeft += sourceIsland[4]
elif Intersect == 0: # No intersection?? Place it.
# Progress
removedCount +=1
#XXX Window.DrawProgressBar(0.0, 'Merged: %i islands, Ctrl to finish early.' % removedCount)
# Move faces into new island and offset
targetIsland[0].extend(sourceIsland[0])
offset= Vector((boxLeft, boxBottom))
for f in sourceIsland[0]:
for uv in f.uv:
uv+= offset
del sourceIsland[0][:] # Empty
# Move edge loop into new and offset.
# targetIsland[6].extend(sourceIsland[6])
#while sourceIsland[6]:
targetIsland[6].extend( [ (\
(e[0]+offset, e[1]+offset, e[2])\
) for e in sourceIsland[6] ] )
del sourceIsland[6][:] # Empty
# Sort by edge length, reverse so biggest are first.
try: targetIsland[6].sort(key = lambda A: A[2])
except: targetIsland[6].sort(lambda B,A: cmp(A[2], B[2] ))
targetIsland[7].extend(sourceIsland[7])
offset= Vector((boxLeft, boxBottom, 0.0))
for p in sourceIsland[7]:
p+= offset
del sourceIsland[7][:]
# Decrement the efficiency
targetIsland[1]+=sourceIsland[1] # Increment totFaceArea
targetIsland[2]-=sourceIsland[1] # Decrement efficiency
# IF we ever used these again, should set to 0, eg
sourceIsland[2] = 0 # No area if anyone wants to know
break
# INCREMENT NEXT LOCATION
if boxLeft > testWidth:
boxBottom += yIncrement
boxLeft = 0.0
else:
boxLeft += xIncrement
##print testcount
efficIslandIdx+=1
areaIslandIdx+=1
# Remove empty islands
i = len(islandList)
while i:
i-=1
if not islandList[i]:
del islandList[i] # Can increment islands removed here.
# Takes groups of faces. assumes face groups are UV groups.
def getUvIslands(faceGroups, me):
# Get seams so we don't cross over seams
edge_seams = {} # should be a set
for ed in me.edges:
if ed.use_seam:
edge_seams[ed.key] = None # dummy var- use sets!
# Done finding seams
islandList = []
#XXX Window.DrawProgressBar(0.0, 'Splitting %d projection groups into UV islands:' % len(faceGroups))
#print '\tSplitting %d projection groups into UV islands:' % len(faceGroups),
# Find grouped faces
faceGroupIdx = len(faceGroups)
while faceGroupIdx:
faceGroupIdx-=1
faces = faceGroups[faceGroupIdx]
if not faces:
continue
# Build edge dict
edge_users = {}
for i, f in enumerate(faces):
for ed_key in f.edge_keys:
if ed_key in edge_seams: # DELIMIT SEAMS! ;)
edge_users[ed_key] = [] # so as not to raise an error
else:
try: edge_users[ed_key].append(i)
except: edge_users[ed_key] = [i]
# Modes
# 0 - face not yet touched.
# 1 - added to island list, and need to search
# 2 - touched and searched - don't touch again.
face_modes = [0] * len(faces) # initialize zero - untested.
face_modes[0] = 1 # start the search with face 1
newIsland = []
newIsland.append(faces[0])
ok = True
while ok:
ok = True
while ok:
ok= False
for i in range(len(faces)):
if face_modes[i] == 1: # search
for ed_key in faces[i].edge_keys:
for ii in edge_users[ed_key]:
if i != ii and face_modes[ii] == 0:
face_modes[ii] = ok = 1 # mark as searched
newIsland.append(faces[ii])
# mark as searched, don't look again.
face_modes[i] = 2
islandList.append(newIsland)
ok = False
for i in range(len(faces)):
if face_modes[i] == 0:
newIsland = []
newIsland.append(faces[i])
face_modes[i] = ok = 1
break
# if not ok will stop looping
#XXX Window.DrawProgressBar(0.1, 'Optimizing Rotation for %i UV Islands' % len(islandList))
for island in islandList:
optiRotateUvIsland(island)
return islandList
def packIslands(islandList):
if USER_FILL_HOLES:
#XXX Window.DrawProgressBar(0.1, 'Merging Islands (Ctrl: skip merge)...')
mergeUvIslands(islandList) # Modify in place
# Now we have UV islands, we need to pack them.
# Make a synchronized list with the islands
# so we can box pack the islands.
packBoxes = []
# Keep a list of X/Y offset so we can save time by writing the
# uv's and packed data in one pass.
islandOffsetList = []
islandIdx = 0
while islandIdx < len(islandList):
minx, miny, maxx, maxy = boundsIsland(islandList[islandIdx])
w, h = maxx-minx, maxy-miny
if USER_ISLAND_MARGIN:
minx -= USER_ISLAND_MARGIN# *w
miny -= USER_ISLAND_MARGIN# *h
maxx += USER_ISLAND_MARGIN# *w
maxy += USER_ISLAND_MARGIN# *h
# recalc width and height
w, h = maxx-minx, maxy-miny
if w < 0.00001 or h < 0.00001:
del islandList[islandIdx]
islandIdx -=1
continue
"""Save the offset to be applied later,
we could apply to the UVs now and allign them to the bottom left hand area
of the UV coords like the box packer imagines they are
but, its quicker just to remember their offset and
apply the packing and offset in 1 pass """
islandOffsetList.append((minx, miny))
# Add to boxList. use the island idx for the BOX id.
packBoxes.append([0, 0, w, h])
islandIdx+=1
# Now we have a list of boxes to pack that syncs
# with the islands.
#print '\tPacking UV Islands...'
#XXX Window.DrawProgressBar(0.7, "Packing %i UV Islands..." % len(packBoxes) )
# time1 = time.time()
packWidth, packHeight = geometry.box_pack_2d(packBoxes)
# print 'Box Packing Time:', time.time() - time1
#if len(pa ckedLs) != len(islandList):
# raise "Error packed boxes differs from original length"
#print '\tWriting Packed Data to faces'
#XXX Window.DrawProgressBar(0.8, "Writing Packed Data to faces")
# Sort by ID, so there in sync again
islandIdx = len(islandList)
# Having these here avoids divide by 0
if islandIdx:
if USER_STRETCH_ASPECT:
# Maximize to uv area?? Will write a normalize function.
xfactor = 1.0 / packWidth
yfactor = 1.0 / packHeight
else:
# Keep proportions.
xfactor = yfactor = 1.0 / max(packWidth, packHeight)
while islandIdx:
islandIdx -=1
# Write the packed values to the UV's
xoffset = packBoxes[islandIdx][0] - islandOffsetList[islandIdx][0]
yoffset = packBoxes[islandIdx][1] - islandOffsetList[islandIdx][1]
for f in islandList[islandIdx]: # Offsetting the UV's so they fit in there packed box
for uv in f.uv:
uv.x= (uv.x+xoffset) * xfactor
uv.y= (uv.y+yoffset) * yfactor
def VectoQuat(vec):
vec = vec.normalized()
return vec.to_track_quat('Z', 'X' if abs(vec.x) > 0.5 else 'Y').inverted()
class thickface(object):
__slost__= "v", "uv", "no", "area", "edge_keys"
def __init__(self, face, uv_layer, mesh_verts):
self.v = [mesh_verts[i] for i in face.vertices]
self.uv = [uv_layer[i].uv for i in face.loop_indices]
self.no = face.normal.copy()
self.area = face.area
self.edge_keys = face.edge_keys
def main_consts():
from math import radians
global ROTMAT_2D_POS_90D
global ROTMAT_2D_POS_45D
global RotMatStepRotation
ROTMAT_2D_POS_90D = Matrix.Rotation(radians(90.0), 2)
ROTMAT_2D_POS_45D = Matrix.Rotation(radians(45.0), 2)
RotMatStepRotation = []
rot_angle = 22.5 #45.0/2
while rot_angle > 0.1:
RotMatStepRotation.append([
Matrix.Rotation(radians(+rot_angle), 2),
Matrix.Rotation(radians(-rot_angle), 2),
])
rot_angle = rot_angle/2.0
global ob
ob = None
def main(context,
island_margin,
projection_limit,
user_area_weight,
):
global USER_FILL_HOLES
global USER_FILL_HOLES_QUALITY
global USER_STRETCH_ASPECT
global USER_ISLAND_MARGIN
from math import cos
import time
global dict_matrix
dict_matrix = {}
# Constants:
# Takes a list of faces that make up a UV island and rotate
# until they optimally fit inside a square.
global ROTMAT_2D_POS_90D
global ROTMAT_2D_POS_45D
global RotMatStepRotation
main_consts()
# Create the variables.
USER_PROJECTION_LIMIT = projection_limit
USER_ONLY_SELECTED_FACES = True
USER_SHARE_SPACE = 1 # Only for hole filling.
USER_STRETCH_ASPECT = 1 # Only for hole filling.
USER_ISLAND_MARGIN = island_margin # Only for hole filling.
USER_FILL_HOLES = 0
USER_FILL_HOLES_QUALITY = 50 # Only for hole filling.
USER_VIEW_INIT = 0 # Only for hole filling.
is_editmode = (context.active_object.mode == 'EDIT')
if is_editmode:
obList = [ob for ob in [context.active_object] if ob and ob.type == 'MESH']
else:
obList = [ob for ob in context.selected_editable_objects if ob and ob.type == 'MESH']
USER_ONLY_SELECTED_FACES = False
if not obList:
raise Exception("error, no selected mesh objects")
# Reuse variable
if len(obList) == 1:
ob = "Unwrap %i Selected Mesh"
else:
ob = "Unwrap %i Selected Meshes"
# HACK, loop until mouse is lifted.
'''
while Window.GetMouseButtons() != 0:
time.sleep(10)
'''
#~ XXX if not Draw.PupBlock(ob % len(obList), pup_block):
#~ XXX return
#~ XXX del ob
# Convert from being button types
USER_PROJECTION_LIMIT_CONVERTED = cos(USER_PROJECTION_LIMIT * DEG_TO_RAD)
USER_PROJECTION_LIMIT_HALF_CONVERTED = cos((USER_PROJECTION_LIMIT/2) * DEG_TO_RAD)
# Toggle Edit mode
is_editmode = (context.active_object.mode == 'EDIT')
if is_editmode:
bpy.ops.object.mode_set(mode='OBJECT')
# Assume face select mode! an annoying hack to toggle face select mode because Mesh doesn't like faceSelectMode.
if USER_SHARE_SPACE:
# Sort by data name so we get consistent results
obList.sort(key = lambda ob: ob.data.name)
collected_islandList= []
#XXX Window.WaitCursor(1)
time1 = time.time()
# Tag as False so we don't operate on the same mesh twice.
#XXX bpy.data.meshes.tag = False
for me in bpy.data.meshes:
me.tag = False
for ob in obList:
me = ob.data
if me.tag or me.library:
continue
# Tag as used
me.tag = True
if not me.uv_textures: # Mesh has no UV Coords, don't bother.
me.uv_textures.new()
uv_layer = me.uv_layers.active.data
me_verts = list(me.vertices)
if USER_ONLY_SELECTED_FACES:
meshFaces = [thickface(f, uv_layer, me_verts) for i, f in enumerate(me.polygons) if f.select]
else:
meshFaces = [thickface(f, uv_layer, me_verts) for i, f in enumerate(me.polygons)]
if not meshFaces:
continue
#XXX Window.DrawProgressBar(0.1, 'SmartProj UV Unwrapper, mapping "%s", %i faces.' % (me.name, len(meshFaces)))
# =======
# Generate a projection list from face normals, this is meant to be smart :)
# make a list of face props that are in sync with meshFaces
# Make a Face List that is sorted by area.
# meshFaces = []
# meshFaces.sort( lambda a, b: cmp(b.area , a.area) ) # Biggest first.
meshFaces.sort(key=lambda a: -a.area)
# remove all zero area faces
while meshFaces and meshFaces[-1].area <= SMALL_NUM:
# Set their UV's to 0,0
for uv in meshFaces[-1].uv:
uv.zero()
meshFaces.pop()
# Smallest first is slightly more efficient, but if the user cancels early then its better we work on the larger data.
# Generate Projection Vecs
# 0d is 1.0
# 180 IS -0.59846
# Initialize projectVecs
if USER_VIEW_INIT:
# Generate Projection
projectVecs = [Vector(Window.GetViewVector()) * ob.matrix_world.inverted().to_3x3()] # We add to this along the way
else:
projectVecs = []
newProjectVec = meshFaces[0].no
newProjectMeshFaces = [] # Popping stuffs it up.
# Pretend that the most unique angle is ages away to start the loop off
mostUniqueAngle = -1.0
# This is popped
tempMeshFaces = meshFaces[:]
# This while only gathers projection vecs, faces are assigned later on.
while 1:
# If theres none there then start with the largest face
# add all the faces that are close.
for fIdx in range(len(tempMeshFaces)-1, -1, -1):
# Use half the angle limit so we don't overweight faces towards this
# normal and hog all the faces.
if newProjectVec.dot(tempMeshFaces[fIdx].no) > USER_PROJECTION_LIMIT_HALF_CONVERTED:
newProjectMeshFaces.append(tempMeshFaces.pop(fIdx))
# Add the average of all these faces normals as a projectionVec
averageVec = Vector((0.0, 0.0, 0.0))
if user_area_weight == 0.0:
for fprop in newProjectMeshFaces:
averageVec += fprop.no
elif user_area_weight == 1.0:
for fprop in newProjectMeshFaces:
averageVec += fprop.no * fprop.area
else:
for fprop in newProjectMeshFaces:
averageVec += fprop.no * ((fprop.area * user_area_weight) + (1.0 - user_area_weight))
if averageVec.x != 0 or averageVec.y != 0 or averageVec.z != 0: # Avoid NAN
projectVecs.append(averageVec.normalized())
# Get the next vec!
# Pick the face thats most different to all existing angles :)
mostUniqueAngle = 1.0 # 1.0 is 0d. no difference.
mostUniqueIndex = 0 # dummy
for fIdx in range(len(tempMeshFaces)-1, -1, -1):
angleDifference = -1.0 # 180d difference.
# Get the closest vec angle we are to.
for p in projectVecs:
temp_angle_diff= p.dot(tempMeshFaces[fIdx].no)
if angleDifference < temp_angle_diff:
angleDifference= temp_angle_diff
if angleDifference < mostUniqueAngle:
# We have a new most different angle
mostUniqueIndex = fIdx
mostUniqueAngle = angleDifference
if mostUniqueAngle < USER_PROJECTION_LIMIT_CONVERTED:
#print 'adding', mostUniqueAngle, USER_PROJECTION_LIMIT, len(newProjectMeshFaces)
# Now weight the vector to all its faces, will give a more direct projection
# if the face its self was not representative of the normal from surrounding faces.
newProjectVec = tempMeshFaces[mostUniqueIndex].no
newProjectMeshFaces = [tempMeshFaces.pop(mostUniqueIndex)]
else:
if len(projectVecs) >= 1: # Must have at least 2 projections
break
# If there are only zero area faces then its possible
# there are no projectionVecs
if not len(projectVecs):
Draw.PupMenu('error, no projection vecs where generated, 0 area faces can cause this.')
return
faceProjectionGroupList =[[] for i in range(len(projectVecs)) ]
# MAP and Arrange # We know there are 3 or 4 faces here
for fIdx in range(len(meshFaces)-1, -1, -1):
fvec = meshFaces[fIdx].no
i = len(projectVecs)
# Initialize first
bestAng = fvec.dot(projectVecs[0])
bestAngIdx = 0
# Cycle through the remaining, first already done
while i-1:
i-=1
newAng = fvec.dot(projectVecs[i])
if newAng > bestAng: # Reverse logic for dotvecs
bestAng = newAng
bestAngIdx = i
# Store the area for later use.
faceProjectionGroupList[bestAngIdx].append(meshFaces[fIdx])
# Cull faceProjectionGroupList,
# Now faceProjectionGroupList is full of faces that face match the project Vecs list
for i in range(len(projectVecs)):
# Account for projectVecs having no faces.
if not faceProjectionGroupList[i]:
continue
# Make a projection matrix from a unit length vector.
MatQuat = VectoQuat(projectVecs[i])
# Get the faces UV's from the projected vertex.
for f in faceProjectionGroupList[i]:
f_uv = f.uv
for j, v in enumerate(f.v):
# XXX - note, between mathutils in 2.4 and 2.5 the order changed.
f_uv[j][:] = (MatQuat * v.co).xy
if USER_SHARE_SPACE:
# Should we collect and pack later?
islandList = getUvIslands(faceProjectionGroupList, me)
collected_islandList.extend(islandList)
else:
# Should we pack the islands for this 1 object?
islandList = getUvIslands(faceProjectionGroupList, me)
packIslands(islandList)
# update the mesh here if we need to.
# We want to pack all in 1 go, so pack now
if USER_SHARE_SPACE:
#XXX Window.DrawProgressBar(0.9, "Box Packing for all objects...")
packIslands(collected_islandList)
print("Smart Projection time: %.2f" % (time.time() - time1))
# Window.DrawProgressBar(0.9, "Smart Projections done, time: %.2f sec" % (time.time() - time1))
if is_editmode:
bpy.ops.object.mode_set(mode='EDIT')
dict_matrix.clear()
#XXX Window.DrawProgressBar(1.0, "")
#XXX Window.WaitCursor(0)
#XXX Window.RedrawAll()
"""
pup_block = [\
'Projection',\
('Selected Faces Only', USER_ONLY_SELECTED_FACES, 'Use only selected faces from all selected meshes.'),\
('Init from view', USER_VIEW_INIT, 'The first projection will be from the view vector.'),\
'',\
'UV Layout',\
('Share Tex Space', USER_SHARE_SPACE, 'Objects Share texture space, map all objects into 1 uvmap.'),\
('Stretch to bounds', USER_STRETCH_ASPECT, 'Stretch the final output to texture bounds.'),\
* ('Island Margin:', USER_ISLAND_MARGIN, 0.0, 0.5, ''),\
'Fill in empty areas',\
('Fill Holes', USER_FILL_HOLES, 'Fill in empty areas reduced texture waistage (slow).'),\
('Fill Quality:', USER_FILL_HOLES_QUALITY, 1, 100, 'Depends on fill holes, how tightly to fill UV holes, (higher is slower)'),\
]
"""
from bpy.props import FloatProperty
class SmartProject(Operator):
"""This script projection unwraps the selected faces of a mesh """ \
"""(it operates on all selected mesh objects, and can be used """ \
"""to unwrap selected faces, or all faces)"""
bl_idname = "uv.smart_project"
bl_label = "Smart UV Project"
bl_options = {'REGISTER', 'UNDO'}
angle_limit = FloatProperty(
name="Angle Limit",
description="Lower for more projection groups, higher for less distortion",
min=1.0, max=89.0,
default=66.0,
)
island_margin = FloatProperty(
name="Island Margin",
description="Margin to reduce bleed from adjacent islands",
min=0.0, max=1.0,
default=0.0,
)
user_area_weight = FloatProperty(
name="Area Weight",
description="Weight projections vector by faces with larger areas",
min=0.0, max=1.0,
default=0.0,
)
@classmethod
def poll(cls, context):
return context.active_object is not None
def execute(self, context):
main(context,
self.island_margin,
self.angle_limit,
self.user_area_weight,
)
return {'FINISHED'}
def invoke(self, context, event):
wm = context.window_manager
return wm.invoke_props_dialog(self)