blender/release/scripts/wizard_bolt_factory.py
2009-06-11 10:46:13 +00:00

2812 lines
85 KiB
Python

#!BPY
# -*- coding: latin-1 -*-
"""
Name: 'Bolt Factory'
Blender: 248
Group: 'Wizards'
Tooltip: 'Create models of various types of screw fasteners.'
"""
__author__ = " Aaron Keith (Spudmn) "
__version__ = "2.02 2009/06/10"
__url__ = ["Author's site,http://sourceforge.net/projects/boltfactory/", "Blender,http://wiki.blender.org/index.php/Extensions:Py/Scripts/Manual/Misc/Bolt_Factory"]
__bpydoc__ = """\
Bolt_Factory.py
Bolt Factory is a Python script for Blender 3D.
The script allows the user to create models of various types of screw fasteners.
For best results set the material to smooth and apply a Edge Split modifier
with default settings.
History:
V2.02 10/06/09 by Aaron Keith
-Added changes made by the Blender team.
V2.01 26/05/09 by Aaron Keith
- Fixed normal's on Lock Nut
V2.00 22/05/09 by Aaron Keith
- Better error checking.
- Lock Nut and Hex Nut meshes added.
- Pre-sets for common metric bolts and nuts.
- Improved GUI.
- Meshes scaled to a smaller size
- Fixed bug when using crest and root percent other than 10%
- Can now create meshes in Edit Mode. This will add to the
current mesh and align with the current view.
V1.00 01/04/08 by Aaron Keith
- This version is very much a work in progress.
- This is my first attempt to program in Python. This version is
unpolished and doesn't do much error checking. Therefore
if the user sets strange variable the model created will be
as equally strange.
- To Do:
- Better error checking.
- More Head and Bit types.
- Better documentation.
"""
# --------------------------------------------------------------------------
# Bolt_Factory.py
# --------------------------------------------------------------------------
# ***** BEGIN GPL LICENSE BLOCK *****
#
# Copyright (C) 2009: Aaron Keith
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# ***** END GPL LICENCE BLOCK *****
# --------------------------------------------------------------------------
import Blender
from Blender import Draw, BGL,Mesh
from Blender import *
from math import *
from Blender import Mathutils
from Blender.Mathutils import *
#Global_Scale = 0.001 #1 blender unit = X mm
Global_Scale = 0.1 #1 blender unit = X mm
#Global_Scale = 1.0 #1 blender unit = X mm
Global_NutRad = 0.0
MAX_INPUT_NUMBER = 50
No_Event,On_Preset_Click,On_Apply_Click,On_Create_Click,On_Hex_Click, On_Cap_Click,On_Dome_Click,On_Pan_Click,On_Bit_None_Click,On_Bit_Allen_Click,On_Bit_Philips_Click,On_Exit_Click,On_Model_Bolt_Click,On_Model_Nut_Click,On_Hex_Nut_Click,On_Lock_Nut_Click,On_Test_Click = range(17) # this is like a ENUM
Head_Type={'HEX' : [Draw.Create(1),On_Hex_Click,""],
'CAP' : [Draw.Create(0),On_Cap_Click,""],
'DOME': [Draw.Create(0),On_Dome_Click,""],
'PAN' : [Draw.Create(0),On_Pan_Click,""]}
Bit_Type={'NONE' : [Draw.Create(1),On_Bit_None_Click,""],
'ALLEN' : [Draw.Create(0),On_Bit_Allen_Click,""],
'PHILLIPS': [Draw.Create(0),On_Bit_Philips_Click,""]}
Model_Type={'BOLT' : [Draw.Create(1),On_Model_Bolt_Click,"Bolt Settings"],
'NUT' : [Draw.Create(0),On_Model_Nut_Click,"Nut Settings"]}
Nut_Type={'HEX' : [Draw.Create(1),On_Hex_Nut_Click,""],
'LOCK' : [Draw.Create(0),On_Lock_Nut_Click,""]}
Phillips_Bit_Depth = Draw.Create(3.27)
Philips_Bit_Dia = Draw.Create(5.20)
Allen_Bit_Depth = Draw.Create(4.0)
Allen_Bit_Flat_Distance = Draw.Create(6.0)
Hex_Head_Height = Draw.Create(5.3)
Hex_Head_Flat_Distance = Draw.Create(13.0)
Cap_Head_Dia = Draw.Create(13.5)
Cap_Head_Height = Draw.Create(8.0)
Dome_Head_Dia = Draw.Create(16.0)
Pan_Head_Dia = Draw.Create(16.0)
Shank_Dia = Draw.Create(8.0)
Shank_Length = Draw.Create(0.0)
Thread_Length = Draw.Create(16.0)
Major_Dia = Draw.Create(8.0)
Minor_Dia = Draw.Create(6.917)
Pitch = Draw.Create(1.0)
Crest_Percent = Draw.Create(10)
Root_Percent = Draw.Create(10)
Hex_Nut_Height = Draw.Create(8.0)
Hex_Nut_Flat_Distance = Draw.Create(13.0)
Preset_Menu = Draw.Create(5)
##########################################################################################
##########################################################################################
## Miscellaneous Utilities
##########################################################################################
##########################################################################################
# Returns a list of verts rotated by the given matrix. Used by SpinDup
def Rot_Mesh(verts,matrix):
return [list(Vector(v) * matrix) for v in verts]
# Returns a list of faces that has there index incremented by offset
def Copy_Faces(faces,offset):
ret = []
for f in faces:
fsub = []
for i in range(len(f)):
fsub.append(f[i]+ offset)
ret.append(fsub)
return ret
# Much like Blenders built in SpinDup.
def SpinDup(VERTS,FACES,DEGREE,DIVISIONS,AXIS):
verts=[]
faces=[]
if DIVISIONS == 0:
DIVISIONS = 1
step = DEGREE/DIVISIONS # set step so pieces * step = degrees in arc
for i in xrange(int(DIVISIONS)):
rotmat = Mathutils.RotationMatrix(step*i, 4, AXIS) # 4x4 rotation matrix, 30d about the x axis.
Rot = Rot_Mesh(VERTS,rotmat)
faces.extend(Copy_Faces(FACES,len(verts)))
verts.extend(Rot)
return verts,faces
# Returns a list of verts that have been moved up the z axis by DISTANCE
def Move_Verts_Up_Z(VERTS,DISTANCE):
return [[v[0],v[1],v[2]+DISTANCE] for v in VERTS]
# Returns a list of verts and faces that has been mirrored in the AXIS
def Mirror_Verts_Faces(VERTS,FACES,AXIS,FLIP_POINT =0):
ret_vert = []
ret_face = []
offset = len(VERTS)
if AXIS == 'y':
for v in VERTS:
Delta = v[0] - FLIP_POINT
ret_vert.append([FLIP_POINT-Delta,v[1],v[2]])
if AXIS == 'x':
for v in VERTS:
Delta = v[1] - FLIP_POINT
ret_vert.append([v[0],FLIP_POINT-Delta,v[2]])
if AXIS == 'z':
for v in VERTS:
Delta = v[2] - FLIP_POINT
ret_vert.append([v[0],v[1],FLIP_POINT-Delta])
for f in FACES:
fsub = []
for i in range(len(f)):
fsub.append(f[i]+ offset)
fsub.reverse() # flip the order to make norm point out
ret_face.append(fsub)
return ret_vert,ret_face
# Returns a list of faces that
# make up an array of 4 point polygon.
def Build_Face_List_Quads(OFFSET,COLUM,ROW,FLIP = 0):
Ret =[]
RowStart = 0;
for j in range(ROW):
for i in range(COLUM):
Res1 = RowStart + i;
Res2 = RowStart + i + (COLUM +1)
Res3 = RowStart + i + (COLUM +1) +1
Res4 = RowStart+i+1
if FLIP:
Ret.append([OFFSET+Res1,OFFSET+Res2,OFFSET+Res3,OFFSET+Res4])
else:
Ret.append([OFFSET+Res4,OFFSET+Res3,OFFSET+Res2,OFFSET+Res1])
RowStart += COLUM+1
return Ret
# Returns a list of faces that makes up a fill pattern for a
# circle
def Fill_Ring_Face(OFFSET,NUM,FACE_DOWN = 0):
Ret =[]
Face = [1,2,0]
TempFace = [0,0,0]
A = 0
B = 1
C = 2
if NUM < 3:
return None
for i in range(NUM-2):
if (i%2):
TempFace[0] = Face[C];
TempFace[1] = Face[C] + 1;
TempFace[2] = Face[B];
if FACE_DOWN:
Ret.append([OFFSET+Face[2],OFFSET+Face[1],OFFSET+Face[0]])
else:
Ret.append([OFFSET+Face[0],OFFSET+Face[1],OFFSET+Face[2]])
else:
TempFace[0] =Face[C];
if Face[C] == 0:
TempFace[1] = NUM-1;
else:
TempFace[1] = Face[C] - 1;
TempFace[2] = Face[B];
if FACE_DOWN:
Ret.append([OFFSET+Face[0],OFFSET+Face[1],OFFSET+Face[2]])
else:
Ret.append([OFFSET+Face[2],OFFSET+Face[1],OFFSET+Face[0]])
Face[0] = TempFace[0]
Face[1] = TempFace[1]
Face[2] = TempFace[2]
return Ret
##########################################################################################
##########################################################################################
## Converter Functions For Bolt Factory
##########################################################################################
##########################################################################################
def Flat_To_Radius(FLAT):
h = (float(FLAT)/2)/cos(radians(30))
return h
def Get_Phillips_Bit_Height(Bit_Dia):
Flat_Width_half = (Bit_Dia*(0.5/1.82))/2.0
Bit_Rad = Bit_Dia / 2.0
x = Bit_Rad - Flat_Width_half
y = tan(radians(60))*x
return y
##########################################################################################
##########################################################################################
## Error Checking
##########################################################################################
##########################################################################################
def Error_Check():
#global Phillips_Bit_Depth
#global Philips_Bit_Dia
#global Allen_Bit_Depth
#global Allen_Bit_Flat_Distance
#global Hex_Head_Height
#global Hex_Head_Flat_Distance
#global Cap_Head_Dia
#global Cap_Head_Height
#global Dome_Head_Dia
#global Pan_Head_Dia
#global Shank_Dia
#global Shank_Length
global Thread_Length
global Major_Dia
global Minor_Dia
global Pitch
global Hex_Nut_Flat_Distance
global Model_Type
#global Crest_Percent
#global Root_Percent
Error_Result = 0
if Minor_Dia.val >= Major_Dia.val:
error_txt = "Error%t|Major Dia must be larger than Minor Dia"
Blender.Draw.PupMenu(error_txt)
print error_txt
Error_Result = TRUE
elif (Model_Type['BOLT'][0].val) and ((Pitch.val*7.0) > Thread_Length.val):
error_txt = "Error%t|Thread length must be at least 7 times the Pitch"
Blender.Draw.PupMenu(error_txt)
print error_txt
Error_Result = TRUE
elif (Model_Type['NUT'][0].val) and (Hex_Nut_Flat_Distance.val < Major_Dia.val):
error_txt = "Error%t|Nut Flat Distance must be greater than Major Dia"
Blender.Draw.PupMenu(error_txt)
print error_txt
Error_Result = TRUE
elif (Model_Type['NUT'][0].val) and ((Pitch.val * 2.5 )> Hex_Nut_Height.val):
error_txt = "Error%t|Nut Height must be greater than 2.5 * Pitch"
Blender.Draw.PupMenu(error_txt)
print error_txt
Error_Result = TRUE
elif (Model_Type['BOLT'][0].val):
Check_Head_Height = None
Check_Bit_Height = None
if (Bit_Type['ALLEN'][0].val):
Check_Bit_Height = Allen_Bit_Depth.val
if (Bit_Type['PHILLIPS'][0].val):
Check_Bit_Height = Phillips_Bit_Depth.val
if (Head_Type['HEX'][0].val):
Check_Head_Height = Hex_Head_Height.val
if (Head_Type['CAP'][0].val):
Check_Head_Height = Cap_Head_Height.val
if Check_Head_Height != None and Check_Bit_Height != None :
if Check_Bit_Height > Check_Head_Height:
error_txt = "Error%t|Bit Depth must not be greater that Head Height"
Blender.Draw.PupMenu(error_txt)
print error_txt
Error_Result = TRUE
return Error_Result
##########################################################################################
##########################################################################################
## Create Allen Bit
##########################################################################################
##########################################################################################
def Allen_Fill(OFFSET,FLIP= 0):
faces = []
Lookup = [[19,1,0],
[19,2,1],
[19,3,2],
[19,20,3],
[20,4,3],
[20,5,4],
[20,6,5],
[20,7,6],
[20,8,7],
[20,9,8],
[20,21,9],
[21,10,9],
[21,11,10],
[21,12,11],
[21,13,12],
[21,14,13],
[21,15,14],
[21,22,15],
[22,16,15],
[22,17,16],
[22,18,17]
]
for i in Lookup:
if FLIP:
faces.append([OFFSET+i[2],OFFSET+i[1],OFFSET+i[0]])
else:
faces.append([OFFSET+i[0],OFFSET+i[1],OFFSET+i[2]])
return faces
def Allen_Bit_Dia(FLAT_DISTANCE):
Flat_Radius = (float(FLAT_DISTANCE)/2.0)/cos(radians(30))
return (Flat_Radius * 1.05) * 2.0
def Allen_Bit_Dia_To_Flat(DIA):
Flat_Radius = (DIA/2.0)/1.05
return (Flat_Radius * cos (radians(30)))* 2.0
def Create_Allen_Bit(FLAT_DISTANCE,HEIGHT):
Div = 36
verts = []
faces = []
Flat_Radius = (float(FLAT_DISTANCE)/2.0)/cos(radians(30))
OUTTER_RADIUS = Flat_Radius * 1.05
Outter_Radius_Height = Flat_Radius * (0.1/5.77)
FaceStart_Outside = len(verts)
Deg_Step = 360.0 /float(Div)
for i in range((Div/2)+1): # only do half and mirror later
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,0])
FaceStart_Inside = len(verts)
Deg_Step = 360.0 /float(6)
for i in range((6/2)+1):
x = sin(radians(i*Deg_Step))* Flat_Radius
y = cos(radians(i*Deg_Step))* Flat_Radius
verts.append([x,y,0-Outter_Radius_Height])
faces.extend(Allen_Fill(FaceStart_Outside,0))
FaceStart_Bottom = len(verts)
Deg_Step = 360.0 /float(6)
for i in range((6/2)+1):
x = sin(radians(i*Deg_Step))* Flat_Radius
y = cos(radians(i*Deg_Step))* Flat_Radius
verts.append([x,y,0-HEIGHT])
faces.extend(Build_Face_List_Quads(FaceStart_Inside,3,1,TRUE))
faces.extend(Fill_Ring_Face(FaceStart_Bottom,4))
M_Verts,M_Faces = Mirror_Verts_Faces(verts,faces,'y')
verts.extend(M_Verts)
faces.extend(M_Faces)
return verts,faces,OUTTER_RADIUS * 2.0
##########################################################################################
##########################################################################################
## Create Phillips Bit
##########################################################################################
##########################################################################################
def Phillips_Fill(OFFSET,FLIP= 0):
faces = []
Lookup = [[0,1,10],
[1,11,10],
[1,2,11],
[2,12,11],
[2,3,12],
[3,4,12],
[4,5,12],
[5,6,12],
[6,7,12],
[7,13,12],
[7,8,13],
[8,14,13],
[8,9,14],
[10,11,16,15],
[11,12,16],
[12,13,16],
[13,14,17,16],
[15,16,17,18]
]
for i in Lookup:
if FLIP:
if len(i) == 3:
faces.append([OFFSET+i[2],OFFSET+i[1],OFFSET+i[0]])
else:
faces.append([OFFSET+i[3],OFFSET+i[2],OFFSET+i[1],OFFSET+i[0]])
else:
if len(i) == 3:
faces.append([OFFSET+i[0],OFFSET+i[1],OFFSET+i[2]])
else:
faces.append([OFFSET+i[0],OFFSET+i[1],OFFSET+i[2],OFFSET+i[3]])
return faces
def Create_Phillips_Bit(FLAT_DIA,FLAT_WIDTH,HEIGHT):
Div = 36
verts = []
faces = []
FLAT_RADIUS = FLAT_DIA * 0.5
OUTTER_RADIUS = FLAT_RADIUS * 1.05
Flat_Half = float(FLAT_WIDTH)/2.0
FaceStart_Outside = len(verts)
Deg_Step = 360.0 /float(Div)
for i in range((Div/4)+1): # only do half and mirror later
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,0])
FaceStart_Inside = len(verts)
verts.append([0,FLAT_RADIUS,0]) #10
verts.append([Flat_Half,FLAT_RADIUS,0]) #11
verts.append([Flat_Half,Flat_Half,0]) #12
verts.append([FLAT_RADIUS,Flat_Half,0]) #13
verts.append([FLAT_RADIUS,0,0]) #14
verts.append([0,Flat_Half,0-HEIGHT]) #15
verts.append([Flat_Half,Flat_Half,0-HEIGHT]) #16
verts.append([Flat_Half,0,0-HEIGHT]) #17
verts.append([0,0,0-HEIGHT]) #18
faces.extend(Phillips_Fill(FaceStart_Outside,TRUE))
Spin_Verts,Spin_Face = SpinDup(verts,faces,360,4,'z')
return Spin_Verts,Spin_Face,OUTTER_RADIUS * 2
##########################################################################################
##########################################################################################
## Create Head Types
##########################################################################################
##########################################################################################
def Max_Pan_Bit_Dia(HEAD_DIA):
HEAD_RADIUS = HEAD_DIA * 0.5
XRad = HEAD_RADIUS * 1.976
return (sin(radians(10))*XRad) * 2.0
def Create_Pan_Head(HOLE_DIA,HEAD_DIA,SHANK_DIA,HEIGHT,RAD1,RAD2,FACE_OFFSET):
DIV = 36
HOLE_RADIUS = HOLE_DIA * 0.5
HEAD_RADIUS = HEAD_DIA * 0.5
SHANK_RADIUS = SHANK_DIA * 0.5
verts = []
faces = []
Row = 0
BEVEL = HEIGHT * 0.01
#Dome_Rad = HEAD_RADIUS * (1.0/1.75)
Dome_Rad = HEAD_RADIUS * 1.12
RAD_Offset = HEAD_RADIUS * 0.96
OtherRad = HEAD_RADIUS * 0.16
OtherRad_X_Offset = HEAD_RADIUS * 0.84
OtherRad_Z_Offset = HEAD_RADIUS * 0.504
XRad = HEAD_RADIUS * 1.976
ZRad = HEAD_RADIUS * 1.768
EndRad = HEAD_RADIUS * 0.284
EndZOffset = HEAD_RADIUS * 0.432
HEIGHT = HEAD_RADIUS * 0.59
# Dome_Rad = 5.6
# RAD_Offset = 4.9
# OtherRad = 0.8
# OtherRad_X_Offset = 4.2
# OtherRad_Z_Offset = 2.52
# XRad = 9.88
# ZRad = 8.84
# EndRad = 1.42
# EndZOffset = 2.16
# HEIGHT = 2.95
FaceStart = FACE_OFFSET
z = cos(radians(10))*ZRad
verts.append([HOLE_RADIUS,0.0,(0.0-ZRad)+z])
Start_Height = 0 - ((0.0-ZRad)+z)
Row += 1
#for i in range(0,30,10): was 0 to 30 more work needed to make this look good.
for i in range(10,30,10):
x = sin(radians(i))*XRad
z = cos(radians(i))*ZRad
verts.append([x,0.0,(0.0-ZRad)+z])
Row += 1
for i in range(20,140,10):
x = sin(radians(i))*EndRad
z = cos(radians(i))*EndRad
if ((0.0 - EndZOffset)+z) < (0.0-HEIGHT):
verts.append([(HEAD_RADIUS -EndRad)+x,0.0,0.0 - HEIGHT])
else:
verts.append([(HEAD_RADIUS -EndRad)+x,0.0,(0.0 - EndZOffset)+z])
Row += 1
verts.append([SHANK_RADIUS,0.0,(0.0-HEIGHT)])
Row += 1
verts.append([SHANK_RADIUS,0.0,(0.0-HEIGHT)-Start_Height])
Row += 1
sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z')
sVerts.extend(verts) #add the start verts to the Spin verts to complete the loop
faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV))
Global_Head_Height = HEIGHT ;
return Move_Verts_Up_Z(sVerts,Start_Height),faces,HEIGHT
def Create_Dome_Head(HOLE_DIA,HEAD_DIA,SHANK_DIA,HEIGHT,RAD1,RAD2,FACE_OFFSET):
DIV = 36
HOLE_RADIUS = HOLE_DIA * 0.5
HEAD_RADIUS = HEAD_DIA * 0.5
SHANK_RADIUS = SHANK_DIA * 0.5
verts = []
faces = []
Row = 0
BEVEL = HEIGHT * 0.01
#Dome_Rad = HEAD_RADIUS * (1.0/1.75)
Dome_Rad = HEAD_RADIUS * 1.12
#Head_Height = HEAD_RADIUS * 0.78
RAD_Offset = HEAD_RADIUS * 0.98
Dome_Height = HEAD_RADIUS * 0.64
OtherRad = HEAD_RADIUS * 0.16
OtherRad_X_Offset = HEAD_RADIUS * 0.84
OtherRad_Z_Offset = HEAD_RADIUS * 0.504
# Dome_Rad = 5.6
# RAD_Offset = 4.9
# Dome_Height = 3.2
# OtherRad = 0.8
# OtherRad_X_Offset = 4.2
# OtherRad_Z_Offset = 2.52
#
FaceStart = FACE_OFFSET
verts.append([HOLE_RADIUS,0.0,0.0])
Row += 1
for i in range(0,60,10):
x = sin(radians(i))*Dome_Rad
z = cos(radians(i))*Dome_Rad
if ((0.0-RAD_Offset)+z) <= 0:
verts.append([x,0.0,(0.0-RAD_Offset)+z])
Row += 1
for i in range(60,160,10):
x = sin(radians(i))*OtherRad
z = cos(radians(i))*OtherRad
z = (0.0-OtherRad_Z_Offset)+z
if z < (0.0-Dome_Height):
z = (0.0-Dome_Height)
verts.append([OtherRad_X_Offset+x,0.0,z])
Row += 1
verts.append([SHANK_RADIUS,0.0,(0.0-Dome_Height)])
Row += 1
sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z')
sVerts.extend(verts) #add the start verts to the Spin verts to complete the loop
faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV))
return sVerts,faces,Dome_Height
def Create_Cap_Head(HOLE_DIA,HEAD_DIA,SHANK_DIA,HEIGHT,RAD1,RAD2):
DIV = 36
HOLE_RADIUS = HOLE_DIA * 0.5
HEAD_RADIUS = HEAD_DIA * 0.5
SHANK_RADIUS = SHANK_DIA * 0.5
verts = []
faces = []
Row = 0
BEVEL = HEIGHT * 0.01
FaceStart = len(verts)
verts.append([HOLE_RADIUS,0.0,0.0])
Row += 1
#rad
for i in range(0,100,10):
x = sin(radians(i))*RAD1
z = cos(radians(i))*RAD1
verts.append([(HEAD_RADIUS-RAD1)+x,0.0,(0.0-RAD1)+z])
Row += 1
verts.append([HEAD_RADIUS,0.0,0.0-HEIGHT+BEVEL])
Row += 1
verts.append([HEAD_RADIUS-BEVEL,0.0,0.0-HEIGHT])
Row += 1
#rad2
for i in range(0,100,10):
x = sin(radians(i))*RAD2
z = cos(radians(i))*RAD2
verts.append([(SHANK_RADIUS+RAD2)-x,0.0,(0.0-HEIGHT-RAD2)+z])
Row += 1
sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z')
sVerts.extend(verts) #add the start verts to the Spin verts to complete the loop
faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV))
return sVerts,faces,HEIGHT+RAD2
def Create_Hex_Head(FLAT,HOLE_DIA,SHANK_DIA,HEIGHT):
verts = []
faces = []
HOLE_RADIUS = HOLE_DIA * 0.5
Half_Flat = FLAT/2
TopBevelRadius = Half_Flat - (Half_Flat* (0.05/8))
Undercut_Height = (Half_Flat* (0.05/8))
Shank_Bevel = (Half_Flat* (0.05/8))
Flat_Height = HEIGHT - Undercut_Height - Shank_Bevel
#Undercut_Height = 5
SHANK_RADIUS = SHANK_DIA/2
Row = 0;
verts.append([0.0,0.0,0.0])
FaceStart = len(verts)
#inner hole
x = sin(radians(0))*HOLE_RADIUS
y = cos(radians(0))*HOLE_RADIUS
verts.append([x,y,0.0])
x = sin(radians(60/6))*HOLE_RADIUS
y = cos(radians(60/6))*HOLE_RADIUS
verts.append([x,y,0.0])
x = sin(radians(60/3))*HOLE_RADIUS
y = cos(radians(60/3))*HOLE_RADIUS
verts.append([x,y,0.0])
x = sin(radians(60/2))*HOLE_RADIUS
y = cos(radians(60/2))*HOLE_RADIUS
verts.append([x,y,0.0])
Row += 1
#bevel
x = sin(radians(0))*TopBevelRadius
y = cos(radians(0))*TopBevelRadius
vec1 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,0.0])
x = sin(radians(60/6))*TopBevelRadius
y = cos(radians(60/6))*TopBevelRadius
vec2 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,0.0])
x = sin(radians(60/3))*TopBevelRadius
y = cos(radians(60/3))*TopBevelRadius
vec3 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,0.0])
x = sin(radians(60/2))*TopBevelRadius
y = cos(radians(60/2))*TopBevelRadius
vec4 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,0.0])
Row += 1
#Flats
x = tan(radians(0))*Half_Flat
dvec = vec1 - Mathutils.Vector([x,Half_Flat,0.0])
verts.append([x,Half_Flat,-dvec.length])
x = tan(radians(60/6))*Half_Flat
dvec = vec2 - Mathutils.Vector([x,Half_Flat,0.0])
verts.append([x,Half_Flat,-dvec.length])
x = tan(radians(60/3))*Half_Flat
dvec = vec3 - Mathutils.Vector([x,Half_Flat,0.0])
Lowest_Point = -dvec.length
verts.append([x,Half_Flat,-dvec.length])
x = tan(radians(60/2))*Half_Flat
dvec = vec4 - Mathutils.Vector([x,Half_Flat,0.0])
Lowest_Point = -dvec.length
verts.append([x,Half_Flat,-dvec.length])
Row += 1
#down Bits Tri
x = tan(radians(0))*Half_Flat
verts.append([x,Half_Flat,Lowest_Point])
x = tan(radians(60/6))*Half_Flat
verts.append([x,Half_Flat,Lowest_Point])
x = tan(radians(60/3))*Half_Flat
verts.append([x,Half_Flat,Lowest_Point])
x = tan(radians(60/2))*Half_Flat
verts.append([x,Half_Flat,Lowest_Point])
Row += 1
#down Bits
x = tan(radians(0))*Half_Flat
verts.append([x,Half_Flat,-Flat_Height])
x = tan(radians(60/6))*Half_Flat
verts.append([x,Half_Flat,-Flat_Height])
x = tan(radians(60/3))*Half_Flat
verts.append([x,Half_Flat,-Flat_Height])
x = tan(radians(60/2))*Half_Flat
verts.append([x,Half_Flat,-Flat_Height])
Row += 1
#under cut
x = sin(radians(0))*Half_Flat
y = cos(radians(0))*Half_Flat
vec1 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,-Flat_Height])
x = sin(radians(60/6))*Half_Flat
y = cos(radians(60/6))*Half_Flat
vec2 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,-Flat_Height])
x = sin(radians(60/3))*Half_Flat
y = cos(radians(60/3))*Half_Flat
vec3 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,-Flat_Height])
x = sin(radians(60/2))*Half_Flat
y = cos(radians(60/2))*Half_Flat
vec3 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,-Flat_Height])
Row += 1
#under cut down bit
x = sin(radians(0))*Half_Flat
y = cos(radians(0))*Half_Flat
vec1 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,-Flat_Height-Undercut_Height])
x = sin(radians(60/6))*Half_Flat
y = cos(radians(60/6))*Half_Flat
vec2 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,-Flat_Height-Undercut_Height])
x = sin(radians(60/3))*Half_Flat
y = cos(radians(60/3))*Half_Flat
vec3 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,-Flat_Height-Undercut_Height])
x = sin(radians(60/2))*Half_Flat
y = cos(radians(60/2))*Half_Flat
vec3 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,-Flat_Height-Undercut_Height])
Row += 1
#under cut to Shank BEVEAL
x = sin(radians(0))*(SHANK_RADIUS+Shank_Bevel)
y = cos(radians(0))*(SHANK_RADIUS+Shank_Bevel)
vec1 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,-Flat_Height-Undercut_Height])
x = sin(radians(60/6))*(SHANK_RADIUS+Shank_Bevel)
y = cos(radians(60/6))*(SHANK_RADIUS+Shank_Bevel)
vec2 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,-Flat_Height-Undercut_Height])
x = sin(radians(60/3))*(SHANK_RADIUS+Shank_Bevel)
y = cos(radians(60/3))*(SHANK_RADIUS+Shank_Bevel)
vec3 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,-Flat_Height-Undercut_Height])
x = sin(radians(60/2))*(SHANK_RADIUS+Shank_Bevel)
y = cos(radians(60/2))*(SHANK_RADIUS+Shank_Bevel)
vec3 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,-Flat_Height-Undercut_Height])
Row += 1
#under cut to Shank BEVEAL
x = sin(radians(0))*SHANK_RADIUS
y = cos(radians(0))*SHANK_RADIUS
vec1 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,-Flat_Height-Undercut_Height-Shank_Bevel])
x = sin(radians(60/6))*SHANK_RADIUS
y = cos(radians(60/6))*SHANK_RADIUS
vec2 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,-Flat_Height-Undercut_Height-Shank_Bevel])
x = sin(radians(60/3))*SHANK_RADIUS
y = cos(radians(60/3))*SHANK_RADIUS
vec3 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,-Flat_Height-Undercut_Height-Shank_Bevel])
x = sin(radians(60/2))*SHANK_RADIUS
y = cos(radians(60/2))*SHANK_RADIUS
vec3 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,-Flat_Height-Undercut_Height-Shank_Bevel])
Row += 1
#Global_Head_Height = 0 - (-HEIGHT-0.1)
faces.extend(Build_Face_List_Quads(FaceStart,3,Row - 1))
Mirror_Verts,Mirror_Faces = Mirror_Verts_Faces(verts,faces,'y')
verts.extend(Mirror_Verts)
faces.extend(Mirror_Faces)
Spin_Verts,Spin_Faces = SpinDup(verts,faces,360,6,'z')
return Spin_Verts,Spin_Faces,0 - (-HEIGHT)
##########################################################################################
##########################################################################################
## Create Bolt
##########################################################################################
##########################################################################################
def MakeBolt():
global Phillips_Bit_Depth
global Philips_Bit_Dia
global Allen_Bit_Depth
global Allen_Bit_Flat_Distance
global Hex_Head_Height
global Hex_Head_Flat_Distance
global Cap_Head_Dia
global Cap_Head_Height
global Dome_Head_Dia
global Pan_Head_Dia
global Shank_Dia
global Shank_Length
global Thread_Length
global Major_Dia
global Minor_Dia
global Pitch
global Crest_Percent
global Root_Percent
verts = []
faces = []
Bit_Verts = []
Bit_Faces = []
Bit_Dia = 0.001
Head_Verts = []
Head_Faces= []
Head_Height = 0.0
ReSized_Allen_Bit_Flat_Distance = Allen_Bit_Flat_Distance.val # set default
Head_Height = Hex_Head_Height.val # will be changed by the Head Functions
if Bit_Type['ALLEN'][0].val and Head_Type['PAN'][0].val:
#need to size Allen bit if it is too big.
if Allen_Bit_Dia(Allen_Bit_Flat_Distance.val) > Max_Pan_Bit_Dia(Pan_Head_Dia.val):
ReSized_Allen_Bit_Flat_Distance = Allen_Bit_Dia_To_Flat(Max_Pan_Bit_Dia(Pan_Head_Dia.val)) * 1.05
print "Resized Allen Bit Flat Distance to ",ReSized_Allen_Bit_Flat_Distance
#bit Mesh
if Bit_Type['ALLEN'][0].val:
Bit_Verts,Bit_Faces,Bit_Dia = Create_Allen_Bit(ReSized_Allen_Bit_Flat_Distance,Allen_Bit_Depth.val)
if Bit_Type['PHILLIPS'][0].val:
Bit_Verts,Bit_Faces,Bit_Dia = Create_Phillips_Bit(Philips_Bit_Dia.val,Philips_Bit_Dia.val*(0.5/1.82),Phillips_Bit_Depth.val)
#Head Mesh
if Head_Type['HEX'][0].val:
Head_Verts,Head_Faces,Head_Height = Create_Hex_Head(Hex_Head_Flat_Distance.val,Bit_Dia,Shank_Dia.val,Hex_Head_Height.val)
elif Head_Type['CAP'][0].val:
Head_Verts,Head_Faces,Head_Height = Create_Cap_Head(Bit_Dia,Cap_Head_Dia.val,Shank_Dia.val,Cap_Head_Height.val,Cap_Head_Dia.val*(1.0/19.0),Cap_Head_Dia.val*(1.0/19.0))
elif Head_Type['DOME'][0].val:
Head_Verts,Head_Faces,Head_Height = Create_Dome_Head(Bit_Dia,Dome_Head_Dia.val,Shank_Dia.val,Hex_Head_Height.val,1,1,0)
elif Head_Type['PAN'][0].val:
Head_Verts,Head_Faces,Head_Height = Create_Pan_Head(Bit_Dia,Pan_Head_Dia.val,Shank_Dia.val,Hex_Head_Height.val,1,1,0)
Face_Start = len(verts)
verts.extend(Move_Verts_Up_Z(Bit_Verts,Head_Height))
faces.extend(Copy_Faces(Bit_Faces,Face_Start))
Face_Start = len(verts)
verts.extend(Move_Verts_Up_Z(Head_Verts,Head_Height))
faces.extend(Copy_Faces(Head_Faces,Face_Start))
Face_Start = len(verts)
Thread_Verts,Thread_Faces,Thread_Height = Create_External_Thread(Shank_Dia.val,Shank_Length.val,Minor_Dia.val,Major_Dia.val,Pitch.val,Thread_Length.val,Crest_Percent.val,Root_Percent.val)
verts.extend(Move_Verts_Up_Z(Thread_Verts,00))
faces.extend(Copy_Faces(Thread_Faces,Face_Start))
return Move_Verts_Up_Z(verts,Thread_Height),faces
##########################################################################################
##########################################################################################
## Create Internal Thread
##########################################################################################
##########################################################################################
def Create_Internal_Thread_Start_Verts(verts,INNER_RADIUS,OUTTER_RADIUS,PITCH,DIV,CREST_PERCENT,ROOT_PERCENT,Height_Offset):
Ret_Row = 0;
Height_Offset = Height_Offset + PITCH #Move the offset up so that the verts start at
#at the correct place (Height_Start)
Half_Pitch = float(PITCH)/2
Height_Start = Height_Offset - PITCH
Height_Step = float(PITCH)/float(DIV)
Deg_Step = 360.0 /float(DIV)
Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100)
Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100)
Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0
Rank = float(OUTTER_RADIUS - INNER_RADIUS)/float(DIV)
for j in range(1):
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
if z > Height_Start:
z = Height_Start
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,z])
Height_Offset -= Crest_Height
Ret_Row += 1
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
if z > Height_Start:
z = Height_Start
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,z ])
Height_Offset -= Crest_to_Root_Height
Ret_Row += 1
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
if z > Height_Start:
z = Height_Start
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
if j == 0:
x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
verts.append([x,y,z ])
Height_Offset -= Root_Height
Ret_Row += 1
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
if z > Height_Start:
z = Height_Start
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
if j == 0:
x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
verts.append([x,y,z ])
Height_Offset -= Root_to_Crest_Height
Ret_Row += 1
return Ret_Row,Height_Offset
def Create_Internal_Thread_End_Verts(verts,INNER_RADIUS,OUTTER_RADIUS,PITCH,DIV,CREST_PERCENT,ROOT_PERCENT,Height_Offset):
Ret_Row = 0;
Half_Pitch = float(PITCH)/2
#Height_End = Height_Offset - PITCH - PITCH - PITCH- PITCH - PITCH- PITCH
Height_End = Height_Offset - PITCH
#Height_End = -2.1
Height_Step = float(PITCH)/float(DIV)
Deg_Step = 360.0 /float(DIV)
Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100)
Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100)
Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0
Rank = float(OUTTER_RADIUS - INNER_RADIUS)/float(DIV)
Num = 0
for j in range(2):
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
if z < Height_End:
z = Height_End
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,z])
Height_Offset -= Crest_Height
Ret_Row += 1
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
if z < Height_End:
z = Height_End
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,z ])
Height_Offset -= Crest_to_Root_Height
Ret_Row += 1
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
if z < Height_End:
z = Height_End
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
if j == Num:
x = sin(radians(i*Deg_Step))*(INNER_RADIUS + (i*Rank))
y = cos(radians(i*Deg_Step))*(INNER_RADIUS + (i*Rank))
if j > Num:
x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS)
y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS )
verts.append([x,y,z ])
Height_Offset -= Root_Height
Ret_Row += 1
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
if z < Height_End:
z = Height_End
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
if j == Num:
x = sin(radians(i*Deg_Step))*(INNER_RADIUS + (i*Rank))
y = cos(radians(i*Deg_Step))*(INNER_RADIUS + (i*Rank))
if j > Num:
x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS )
y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS )
verts.append([x,y,z ])
Height_Offset -= Root_to_Crest_Height
Ret_Row += 1
return Ret_Row,Height_End # send back Height End as this is the lowest point
def Create_Internal_Thread(INNER_DIA,OUTTER_DIA,PITCH,HEIGHT,CREST_PERCENT,ROOT_PERCENT,INTERNAL = 1):
verts = []
faces = []
DIV = 36
INNER_RADIUS = INNER_DIA/2
OUTTER_RADIUS = OUTTER_DIA/2
Half_Pitch = float(PITCH)/2
Deg_Step = 360.0 /float(DIV)
Height_Step = float(PITCH)/float(DIV)
Num = int(round((HEIGHT- PITCH)/PITCH)) # less one pitch for the start and end that is 1/2 pitch high
Col = 0
Row = 0
Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100)
Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100)
Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0
Height_Offset = 0
FaceStart = len(verts)
Row_Inc,Height_Offset = Create_Internal_Thread_Start_Verts(verts,INNER_RADIUS,OUTTER_RADIUS,PITCH,DIV,CREST_PERCENT,ROOT_PERCENT,Height_Offset)
Row += Row_Inc
for j in range(Num):
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,Height_Offset - (Height_Step*i) ])
Height_Offset -= Crest_Height
Row += 1
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,Height_Offset - (Height_Step*i) ])
Height_Offset -= Crest_to_Root_Height
Row += 1
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
verts.append([x,y,Height_Offset - (Height_Step*i) ])
Height_Offset -= Root_Height
Row += 1
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
verts.append([x,y,Height_Offset - (Height_Step*i) ])
Height_Offset -= Root_to_Crest_Height
Row += 1
Row_Inc,Height_Offset = Create_Internal_Thread_End_Verts(verts,INNER_RADIUS,OUTTER_RADIUS,PITCH,DIV,CREST_PERCENT,ROOT_PERCENT,Height_Offset)
Row += Row_Inc
faces.extend(Build_Face_List_Quads(FaceStart,DIV,Row -1,INTERNAL))
return verts,faces,0 - Height_Offset
##########################################################################################
##########################################################################################
## Create External Thread
##########################################################################################
##########################################################################################
def Thread_Start3(verts,INNER_RADIUS,OUTTER_RADIUS,PITCH,DIV,CREST_PERCENT,ROOT_PERCENT,Height_Offset):
Ret_Row = 0;
Half_Pitch = float(PITCH)/2
Height_Start = Height_Offset - PITCH
Height_Step = float(PITCH)/float(DIV)
Deg_Step = 360.0 /float(DIV)
Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100)
Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100)
Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0
#theard start
Rank = float(OUTTER_RADIUS - INNER_RADIUS)/float(DIV)
for j in range(4):
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
if z > Height_Start:
z = Height_Start
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,z])
Height_Offset -= Crest_Height
Ret_Row += 1
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
if z > Height_Start:
z = Height_Start
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,z ])
Height_Offset -= Crest_to_Root_Height
Ret_Row += 1
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
if z > Height_Start:
z = Height_Start
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
if j == 0:
x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
verts.append([x,y,z ])
Height_Offset -= Root_Height
Ret_Row += 1
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
if z > Height_Start:
z = Height_Start
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
if j == 0:
x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
verts.append([x,y,z ])
Height_Offset -= Root_to_Crest_Height
Ret_Row += 1
return Ret_Row,Height_Offset
def Create_Shank_Verts(START_DIA,OUTTER_DIA,LENGTH,Z_LOCATION = 0):
verts = []
DIV = 36
START_RADIUS = START_DIA/2
OUTTER_RADIUS = OUTTER_DIA/2
Opp = abs(START_RADIUS - OUTTER_RADIUS)
Taper_Lentgh = Opp/tan(radians(31));
if Taper_Lentgh > LENGTH:
Taper_Lentgh = 0
Stright_Length = LENGTH - Taper_Lentgh
Deg_Step = 360.0 /float(DIV)
Row = 0
Lowest_Z_Vert = 0;
Height_Offset = Z_LOCATION
#ring
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*START_RADIUS
y = cos(radians(i*Deg_Step))*START_RADIUS
z = Height_Offset - 0
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Stright_Length
Row += 1
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*START_RADIUS
y = cos(radians(i*Deg_Step))*START_RADIUS
z = Height_Offset - 0
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Taper_Lentgh
Row += 1
return verts,Row,Height_Offset
def Create_Thread_Start_Verts(INNER_DIA,OUTTER_DIA,PITCH,CREST_PERCENT,ROOT_PERCENT,Z_LOCATION = 0):
verts = []
DIV = 36
INNER_RADIUS = INNER_DIA/2
OUTTER_RADIUS = OUTTER_DIA/2
Half_Pitch = float(PITCH)/2
Deg_Step = 360.0 /float(DIV)
Height_Step = float(PITCH)/float(DIV)
Row = 0
Lowest_Z_Vert = 0;
Height_Offset = Z_LOCATION
Height_Start = Height_Offset
Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100)
Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100)
Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0
Rank = float(OUTTER_RADIUS - INNER_RADIUS)/float(DIV)
Height_Offset = Z_LOCATION + PITCH
Cut_off = Z_LOCATION
for j in range(1):
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
z = Height_Offset - (Height_Step*i)
if z > Cut_off : z = Cut_off
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Crest_Height
Row += 1
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
z = Height_Offset - (Height_Step*i)
if z > Cut_off : z = Cut_off
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Crest_to_Root_Height
Row += 1
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
z = Height_Offset - (Height_Step*i)
if z > Cut_off : z = Cut_off
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Root_Height
Row += 1
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
z = Height_Offset - (Height_Step*i)
if z > Cut_off : z = Cut_off
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Root_to_Crest_Height
Row += 1
for j in range(2):
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
if z > Height_Start:
z = Height_Start
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Crest_Height
Row += 1
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
if z > Height_Start:
z = Height_Start
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
verts.append([x,y,z ])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Crest_to_Root_Height
Row += 1
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
if z > Height_Start:
z = Height_Start
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
if j == 0:
x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
verts.append([x,y,z ])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Root_Height
Row += 1
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
if z > Height_Start:
z = Height_Start
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
if j == 0:
x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
verts.append([x,y,z ])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Root_to_Crest_Height
Row += 1
return verts,Row,Height_Offset
def Create_Thread_Verts(INNER_DIA,OUTTER_DIA,PITCH,HEIGHT,CREST_PERCENT,ROOT_PERCENT,Z_LOCATION = 0):
verts = []
DIV = 36
INNER_RADIUS = INNER_DIA/2
OUTTER_RADIUS = OUTTER_DIA/2
Half_Pitch = float(PITCH)/2
Deg_Step = 360.0 /float(DIV)
Height_Step = float(PITCH)/float(DIV)
NUM_OF_START_THREADS = 4.0
NUM_OF_END_THREADS = 3.0
Num = int((HEIGHT- ((NUM_OF_START_THREADS*PITCH) + (NUM_OF_END_THREADS*PITCH) ))/PITCH)
Row = 0
Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100)
Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100)
Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0
Height_Offset = Z_LOCATION
Lowest_Z_Vert = 0;
FaceStart = len(verts)
for j in range(Num):
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
z = Height_Offset - (Height_Step*i)
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Crest_Height
Row += 1
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
z = Height_Offset - (Height_Step*i)
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Crest_to_Root_Height
Row += 1
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
z = Height_Offset - (Height_Step*i)
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Root_Height
Row += 1
for i in range(DIV+1):
x = sin(radians(i*Deg_Step))*INNER_RADIUS
y = cos(radians(i*Deg_Step))*INNER_RADIUS
z = Height_Offset - (Height_Step*i)
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Root_to_Crest_Height
Row += 1
return verts,Row,Height_Offset
def Create_Thread_End_Verts(INNER_DIA,OUTTER_DIA,PITCH,CREST_PERCENT,ROOT_PERCENT,Z_LOCATION = 0):
verts = []
DIV = 36
INNER_RADIUS = INNER_DIA/2
OUTTER_RADIUS = OUTTER_DIA/2
Half_Pitch = float(PITCH)/2
Deg_Step = 360.0 /float(DIV)
Height_Step = float(PITCH)/float(DIV)
Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100)
Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100)
Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0
Col = 0
Row = 0
Height_Offset = Z_LOCATION
Tapper_Height_Start = Height_Offset - PITCH - PITCH
Max_Height = Tapper_Height_Start - PITCH
Lowest_Z_Vert = 0;
FaceStart = len(verts)
for j in range(4):
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
z = max(z,Max_Height)
Tapper_Radius = OUTTER_RADIUS
if z < Tapper_Height_Start:
Tapper_Radius = OUTTER_RADIUS - (Tapper_Height_Start - z)
x = sin(radians(i*Deg_Step))*(Tapper_Radius)
y = cos(radians(i*Deg_Step))*(Tapper_Radius)
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Crest_Height
Row += 1
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
z = max(z,Max_Height)
Tapper_Radius = OUTTER_RADIUS
if z < Tapper_Height_Start:
Tapper_Radius = OUTTER_RADIUS - (Tapper_Height_Start - z)
x = sin(radians(i*Deg_Step))*(Tapper_Radius)
y = cos(radians(i*Deg_Step))*(Tapper_Radius)
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Crest_to_Root_Height
Row += 1
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
z = max(z,Max_Height)
Tapper_Radius = OUTTER_RADIUS - (Tapper_Height_Start - z)
if Tapper_Radius > INNER_RADIUS:
Tapper_Radius = INNER_RADIUS
x = sin(radians(i*Deg_Step))*(Tapper_Radius)
y = cos(radians(i*Deg_Step))*(Tapper_Radius)
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Root_Height
Row += 1
for i in range(DIV+1):
z = Height_Offset - (Height_Step*i)
z = max(z,Max_Height)
Tapper_Radius = OUTTER_RADIUS - (Tapper_Height_Start - z)
if Tapper_Radius > INNER_RADIUS:
Tapper_Radius = INNER_RADIUS
x = sin(radians(i*Deg_Step))*(Tapper_Radius)
y = cos(radians(i*Deg_Step))*(Tapper_Radius)
verts.append([x,y,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Height_Offset -= Root_to_Crest_Height
Row += 1
return verts,Row,Height_Offset,Lowest_Z_Vert
def Create_External_Thread(SHANK_DIA,SHANK_LENGTH,INNER_DIA,OUTTER_DIA,PITCH,LENGTH,CREST_PERCENT,ROOT_PERCENT):
verts = []
faces = []
DIV = 36
Total_Row = 0
Thread_Len = 0;
Face_Start = len(verts)
Offset = 0.0;
Shank_Verts,Shank_Row,Offset = Create_Shank_Verts(SHANK_DIA,OUTTER_DIA,SHANK_LENGTH,Offset)
Total_Row += Shank_Row
Thread_Start_Verts,Thread_Start_Row,Offset = Create_Thread_Start_Verts(INNER_DIA,OUTTER_DIA,PITCH,CREST_PERCENT,ROOT_PERCENT,Offset)
Total_Row += Thread_Start_Row
Thread_Verts,Thread_Row,Offset = Create_Thread_Verts(INNER_DIA,OUTTER_DIA,PITCH,LENGTH,CREST_PERCENT,ROOT_PERCENT,Offset)
Total_Row += Thread_Row
Thread_End_Verts,Thread_End_Row,Offset,Lowest_Z_Vert = Create_Thread_End_Verts(INNER_DIA,OUTTER_DIA,PITCH,CREST_PERCENT,ROOT_PERCENT,Offset )
Total_Row += Thread_End_Row
verts.extend(Shank_Verts)
verts.extend(Thread_Start_Verts)
verts.extend(Thread_Verts)
verts.extend(Thread_End_Verts)
faces.extend(Build_Face_List_Quads(Face_Start,DIV,Total_Row -1,0))
faces.extend(Fill_Ring_Face(len(verts)-DIV,DIV,1))
return verts,faces,0.0 - Lowest_Z_Vert
##########################################################################################
##########################################################################################
## Create Nut
##########################################################################################
##########################################################################################
def add_Hex_Nut(FLAT,HOLE_DIA,HEIGHT):
global Global_Head_Height
global Global_NutRad
verts = []
faces = []
HOLE_RADIUS = HOLE_DIA * 0.5
Half_Flat = FLAT/2
Half_Height = HEIGHT/2
TopBevelRadius = Half_Flat - 0.05
Global_NutRad = TopBevelRadius
Row = 0;
Lowest_Z_Vert = 0.0;
verts.append([0.0,0.0,0.0])
FaceStart = len(verts)
#inner hole
x = sin(radians(0))*HOLE_RADIUS
y = cos(radians(0))*HOLE_RADIUS
verts.append([x,y,0.0])
x = sin(radians(60/6))*HOLE_RADIUS
y = cos(radians(60/6))*HOLE_RADIUS
verts.append([x,y,0.0])
x = sin(radians(60/3))*HOLE_RADIUS
y = cos(radians(60/3))*HOLE_RADIUS
verts.append([x,y,0.0])
x = sin(radians(60/2))*HOLE_RADIUS
y = cos(radians(60/2))*HOLE_RADIUS
verts.append([x,y,0.0])
Row += 1
#bevel
x = sin(radians(0))*TopBevelRadius
y = cos(radians(0))*TopBevelRadius
vec1 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,0.0])
x = sin(radians(60/6))*TopBevelRadius
y = cos(radians(60/6))*TopBevelRadius
vec2 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,0.0])
x = sin(radians(60/3))*TopBevelRadius
y = cos(radians(60/3))*TopBevelRadius
vec3 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,0.0])
x = sin(radians(60/2))*TopBevelRadius
y = cos(radians(60/2))*TopBevelRadius
vec4 = Mathutils.Vector([x,y,0.0])
verts.append([x,y,0.0])
Row += 1
#Flats
x = tan(radians(0))*Half_Flat
dvec = vec1 - Mathutils.Vector([x,Half_Flat,0.0])
verts.append([x,Half_Flat,-dvec.length])
Lowest_Z_Vert = min(Lowest_Z_Vert,-dvec.length)
x = tan(radians(60/6))*Half_Flat
dvec = vec2 - Mathutils.Vector([x,Half_Flat,0.0])
verts.append([x,Half_Flat,-dvec.length])
Lowest_Z_Vert = min(Lowest_Z_Vert,-dvec.length)
x = tan(radians(60/3))*Half_Flat
dvec = vec3 - Mathutils.Vector([x,Half_Flat,0.0])
Lowest_Point = -dvec.length
verts.append([x,Half_Flat,-dvec.length])
Lowest_Z_Vert = min(Lowest_Z_Vert,-dvec.length)
x = tan(radians(60/2))*Half_Flat
dvec = vec4 - Mathutils.Vector([x,Half_Flat,0.0])
Lowest_Point = -dvec.length
verts.append([x,Half_Flat,-dvec.length])
Lowest_Z_Vert = min(Lowest_Z_Vert,-dvec.length)
Row += 1
#down Bits Tri
x = tan(radians(0))*Half_Flat
verts.append([x,Half_Flat,Lowest_Point])
x = tan(radians(60/6))*Half_Flat
verts.append([x,Half_Flat,Lowest_Point])
x = tan(radians(60/3))*Half_Flat
verts.append([x,Half_Flat,Lowest_Point])
x = tan(radians(60/2))*Half_Flat
verts.append([x,Half_Flat,Lowest_Point])
Lowest_Z_Vert = min(Lowest_Z_Vert,Lowest_Point)
Row += 1
#down Bits
x = tan(radians(0))*Half_Flat
verts.append([x,Half_Flat,-Half_Height])
x = tan(radians(60/6))*Half_Flat
verts.append([x,Half_Flat,-Half_Height])
x = tan(radians(60/3))*Half_Flat
verts.append([x,Half_Flat,-Half_Height])
x = tan(radians(60/2))*Half_Flat
verts.append([x,Half_Flat,-Half_Height])
Lowest_Z_Vert = min(Lowest_Z_Vert,-Half_Height)
Row += 1
faces.extend(Build_Face_List_Quads(FaceStart,3,Row - 1))
Global_Head_Height = HEIGHT
Tvert,tface = Mirror_Verts_Faces(verts,faces,'z',Lowest_Z_Vert)
verts.extend(Tvert)
faces.extend(tface)
Tvert,tface = Mirror_Verts_Faces(verts,faces,'y')
verts.extend(Tvert)
faces.extend(tface)
S_verts,S_faces = SpinDup(verts,faces,360,6,'z')
return S_verts,S_faces,TopBevelRadius
def add_Nylon_Head(OUTSIDE_RADIUS,Z_LOCATION = 0):
DIV = 36
verts = []
faces = []
Row = 0
INNER_HOLE = OUTSIDE_RADIUS - (OUTSIDE_RADIUS * (1.25/4.75))
EDGE_THICKNESS = (OUTSIDE_RADIUS * (0.4/4.75))
RAD1 = (OUTSIDE_RADIUS * (0.5/4.75))
OVER_ALL_HEIGTH = (OUTSIDE_RADIUS * (2.0/4.75))
FaceStart = len(verts)
Start_Height = 0 - 3
Height_Offset = Z_LOCATION
Lowest_Z_Vert = 0
x = INNER_HOLE
z = (Height_Offset - OVER_ALL_HEIGTH) + EDGE_THICKNESS
verts.append([x,0.0,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Row += 1
x = INNER_HOLE
z = (Height_Offset - OVER_ALL_HEIGTH)
verts.append([x,0.0,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Row += 1
for i in range(180,80,-10):
x = sin(radians(i))*RAD1
z = cos(radians(i))*RAD1
verts.append([(OUTSIDE_RADIUS-RAD1)+x,0.0,((Height_Offset - OVER_ALL_HEIGTH)+RAD1)+z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Row += 1
x = OUTSIDE_RADIUS - 0
z = Height_Offset
verts.append([x,0.0,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Row += 1
sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z')
sVerts.extend(verts) #add the start verts to the Spin verts to complete the loop
faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV,1))
return Move_Verts_Up_Z(sVerts,0),faces,Lowest_Z_Vert
def add_Nylon_Part(OUTSIDE_RADIUS,Z_LOCATION = 0):
DIV = 36
verts = []
faces = []
Row = 0
INNER_HOLE = OUTSIDE_RADIUS - (OUTSIDE_RADIUS * (1.5/4.75))
EDGE_THICKNESS = (OUTSIDE_RADIUS * (0.4/4.75))
RAD1 = (OUTSIDE_RADIUS * (0.5/4.75))
OVER_ALL_HEIGTH = (OUTSIDE_RADIUS * (2.0/4.75))
PART_THICKNESS = OVER_ALL_HEIGTH - EDGE_THICKNESS
PART_INNER_HOLE = (OUTSIDE_RADIUS * (2.5/4.75))
FaceStart = len(verts)
Start_Height = 0 - 3
Height_Offset = Z_LOCATION
Lowest_Z_Vert = 0
x = INNER_HOLE + EDGE_THICKNESS
z = Height_Offset
verts.append([x,0.0,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Row += 1
x = PART_INNER_HOLE
z = Height_Offset
verts.append([x,0.0,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Row += 1
x = PART_INNER_HOLE
z = Height_Offset - PART_THICKNESS
verts.append([x,0.0,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Row += 1
x = INNER_HOLE + EDGE_THICKNESS
z = Height_Offset - PART_THICKNESS
verts.append([x,0.0,z])
Lowest_Z_Vert = min(Lowest_Z_Vert,z)
Row += 1
sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z')
sVerts.extend(verts) #add the start verts to the Spin verts to complete the loop
faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV,1))
return sVerts,faces,0 - Lowest_Z_Vert
def Nut_Mesh():
verts = []
faces = []
Head_Verts = []
Head_Faces= []
Face_Start = len(verts)
Thread_Verts,Thread_Faces,New_Nut_Height = Create_Internal_Thread(Minor_Dia.val,Major_Dia.val,Pitch.val,Hex_Nut_Height.val,Crest_Percent.val,Root_Percent.val,1)
verts.extend(Thread_Verts)
faces.extend(Copy_Faces(Thread_Faces,Face_Start))
Face_Start = len(verts)
Head_Verts,Head_Faces,Lock_Nut_Rad = add_Hex_Nut(Hex_Nut_Flat_Distance.val,Major_Dia.val,New_Nut_Height)
verts.extend((Head_Verts))
faces.extend(Copy_Faces(Head_Faces,Face_Start))
LowZ = 0 - New_Nut_Height
if Nut_Type['LOCK'][0].val:
Face_Start = len(verts)
Nylon_Head_Verts,Nylon_Head_faces,LowZ = add_Nylon_Head(Lock_Nut_Rad,0-New_Nut_Height)
verts.extend((Nylon_Head_Verts))
faces.extend(Copy_Faces(Nylon_Head_faces,Face_Start))
Face_Start = len(verts)
Nylon_Verts,Nylon_faces,Temp_LowZ = add_Nylon_Part(Lock_Nut_Rad,0-New_Nut_Height)
verts.extend((Nylon_Verts))
faces.extend(Copy_Faces(Nylon_faces,Face_Start))
return Move_Verts_Up_Z(verts,0 - LowZ),faces
##################################################################################################
def Create_Nut():
verts = []
faces = []
if Error_Check() :
return
verts, faces = Nut_Mesh()
Add_Mesh_To_Scene('Nut', verts, faces)
##################################################################################################
def Create_Bolt():
verts = []
faces = []
if Error_Check() :
return
verts, faces = MakeBolt()
Add_Mesh_To_Scene('Bolt', verts, faces)
def Remove_Doubles_From_Mesh(verts,faces):
Ret_verts = []
Ret_faces = []
is_editmode = Window.EditMode() # Store edit mode state
if is_editmode: Window.EditMode(0) # Python must get a mesh in object mode.
Temp_mesh = Mesh.New('MeshTemp') # create a new mesh
Temp_mesh.verts.extend(verts) # add vertices to mesh
Temp_mesh.faces.extend(faces) # add faces to the mesh (also adds edges)
scn = Scene.GetCurrent() # link object to current scene
Temp_Object = scn.objects.new(Temp_mesh, 'ObjectTemp')
Temp_mesh.remDoubles(0.010)
Temp_mesh.transform(Mathutils.Matrix([Global_Scale,0,0,0], [0,Global_Scale,0,0], [0,0,Global_Scale,0], [0,0,0, Global_Scale]))
Ret_verts[:] = [v.co for v in Temp_mesh.verts]
Ret_faces[:] = [ [v.index for v in f] for f in Temp_mesh.faces]
#delete temp mesh
scn.objects.unlink(Temp_Object)
scn.update(0)
if is_editmode: Window.EditMode(1)
return Ret_verts,Ret_faces
def Add_Mesh_To_Scene(name, verts, faces):
scn = Scene.GetCurrent()
if scn.lib: return
ob_act = scn.objects.active
is_editmode = Window.EditMode()
cursor = Window.GetCursorPos()
quat = None
if is_editmode or Blender.Get('add_view_align'): # Aligning seems odd for editmode, but blender does it, oh well
try: quat = Blender.Mathutils.Quaternion(Window.GetViewQuat())
except: pass
# Exist editmode for non mesh types
if ob_act and ob_act.type != 'Mesh' and is_editmode:
EditMode(0)
# We are in mesh editmode
if Window.EditMode():
me = ob_act.getData(mesh=1)
if me.multires:
error_txt = 'Error%t|Unable to complete action with multires enabled'
Blender.Draw.PupMenu(error_txt)
print error_txt
return
#Don't want to remove doubles and scale the existing
# mesh so we need to get the verts and the faces from
# a mesh that has been scaled.
verts,faces = Remove_Doubles_From_Mesh(verts, faces)
# Add to existing mesh
# must exit editmode to modify mesh
Window.EditMode(0)
me.sel = False
vert_offset = len(me.verts)
face_offset = len(me.faces)
# transform the verts
txmat = Blender.Mathutils.TranslationMatrix(Blender.Mathutils.Vector(cursor))
if quat:
mat = quat.toMatrix()
mat.invert()
mat.resize4x4()
txmat = mat * txmat
txmat = txmat * ob_act.matrixWorld.copy().invert()
me.verts.extend(verts)
# Transform the verts by the cursor and view rotation
me.transform(txmat, selected_only=True)
if vert_offset:
me.faces.extend([[i+vert_offset for i in f] for f in faces])
else:
# Mesh with no data, unlikely
me.faces.extend(faces)
else:
# Object mode add new
me = Mesh.New(name)
me.verts.extend(verts)
me.faces.extend(faces)
me.sel = True
# Object creation and location
scn.objects.selected = []
ob_act = scn.objects.new(me, name)
me.remDoubles(0.010)
me.transform(Mathutils.Matrix([Global_Scale,0,0,0], [0,Global_Scale,0,0], [0,0,Global_Scale,0], [0,0,0, Global_Scale]))
scn.objects.active = ob_act
if quat:
mat = quat.toMatrix()
mat.invert()
mat.resize4x4()
ob_act.setMatrix(mat)
ob_act.loc = cursor
me.calcNormals()
if is_editmode or Blender.Get('add_editmode'):
Window.EditMode(1)
Blender.Redraw(-1)#Redraw all
##################################################################################################
def Load_Preset():
global Preset_Menu
global Shank_Dia
global Shank_Length
global Thread_Length
global Major_Dia
global Minor_Dia
global Pitch
global Crest_Percent
global Root_Percent
global Allen_Bit_Flat_Distance
global Allen_Bit_Depth
global Head_Height
global Hex_Head_Flat_Distance
global Head_Dia
global Dome_Head_Dia
global Pan_Head_Dia
global Philips_Bit_Dia
global Phillips_Bit_Depth
global Cap_Head_Height
global Hex_Nut_Height
global Hex_Nut_Flat_Distance
if Preset_Menu.val == 1 : #M3
Shank_Dia.val = 3.0
#Pitch.val = 0.5 #Coarse
Pitch.val = 0.35 #Fine
Crest_Percent.val = 10
Root_Percent.val = 10
Major_Dia.val = 3.0
Minor_Dia.val = Major_Dia.val - (1.082532 * Pitch.val)
Hex_Head_Flat_Distance.val = 5.5
Hex_Head_Height.val = 2.0
Cap_Head_Dia.val = 5.5
Cap_Head_Height.val = 3.0
Allen_Bit_Flat_Distance.val = 2.5
Allen_Bit_Depth.val = 1.5
Pan_Head_Dia.val = 5.6
Dome_Head_Dia.val = 5.6
Philips_Bit_Dia.val = Pan_Head_Dia.val*(1.82/5.6)
Phillips_Bit_Depth.val = Get_Phillips_Bit_Height(Philips_Bit_Dia.val)
Hex_Nut_Height.val = 2.4
Hex_Nut_Flat_Distance.val = 5.5
Thread_Length.val = 6
Shank_Length.val = 0.0
if Preset_Menu.val == 2 : #M4
Shank_Dia.val = 4.0
#Pitch.val = 0.7 #Coarse
Pitch.val = 0.5 #Fine
Crest_Percent.val = 10
Root_Percent.val = 10
Major_Dia.val = 4.0
Minor_Dia.val = Major_Dia.val - (1.082532 * Pitch.val)
Hex_Head_Flat_Distance.val = 7.0
Hex_Head_Height.val = 2.8
Cap_Head_Dia.val = 7.0
Cap_Head_Height.val = 4.0
Allen_Bit_Flat_Distance.val = 3.0
Allen_Bit_Depth.val = 2.0
Pan_Head_Dia.val = 8.0
Dome_Head_Dia.val = 8.0
Philips_Bit_Dia.val = Pan_Head_Dia.val*(1.82/5.6)
Phillips_Bit_Depth.val = Get_Phillips_Bit_Height(Philips_Bit_Dia.val)
Hex_Nut_Height.val = 3.2
Hex_Nut_Flat_Distance.val = 7.0
Thread_Length.val = 8
Shank_Length.val = 0.0
if Preset_Menu.val == 3 : #M5
Shank_Dia.val = 5.0
#Pitch.val = 0.8 #Coarse
Pitch.val = 0.5 #Fine
Crest_Percent.val = 10
Root_Percent.val = 10
Major_Dia.val = 5.0
Minor_Dia.val = Major_Dia.val - (1.082532 * Pitch.val)
Hex_Head_Flat_Distance.val = 8.0
Hex_Head_Height.val = 3.5
Cap_Head_Dia.val = 8.5
Cap_Head_Height.val = 5.0
Allen_Bit_Flat_Distance.val = 4.0
Allen_Bit_Depth.val = 2.5
Pan_Head_Dia.val = 9.5
Dome_Head_Dia.val = 9.5
Philips_Bit_Dia.val = Pan_Head_Dia.val*(1.82/5.6)
Phillips_Bit_Depth.val = Get_Phillips_Bit_Height(Philips_Bit_Dia.val)
Hex_Nut_Height.val = 4.0
Hex_Nut_Flat_Distance.val = 8.0
Thread_Length.val = 10
Shank_Length.val = 0.0
if Preset_Menu.val == 4 : #M6
Shank_Dia.val = 6.0
#Pitch.val = 1.0 #Coarse
Pitch.val = 0.75 #Fine
Crest_Percent.val = 10
Root_Percent.val = 10
Major_Dia.val = 6.0
Minor_Dia.val = Major_Dia.val - (1.082532 * Pitch.val)
Hex_Head_Flat_Distance.val = 10.0
Hex_Head_Height.val = 4.0
Cap_Head_Dia.val = 10.0
Cap_Head_Height.val = 6.0
Allen_Bit_Flat_Distance.val = 5.0
Allen_Bit_Depth.val = 3.0
Pan_Head_Dia.val = 12.0
Dome_Head_Dia.val = 12.0
Philips_Bit_Dia.val = Pan_Head_Dia.val*(1.82/5.6)
Phillips_Bit_Depth.val = Get_Phillips_Bit_Height(Philips_Bit_Dia.val)
Hex_Nut_Height.val = 5.0
Hex_Nut_Flat_Distance.val = 10.0
Thread_Length.val = 12
Shank_Length.val = 0.0
if Preset_Menu.val == 5 : #M8
Shank_Dia.val = 8.0
#Pitch.val = 1.25 #Coarse
Pitch.val = 1.00 #Fine
Crest_Percent.val = 10
Root_Percent.val = 10
Major_Dia.val = 8.0
Minor_Dia.val = Major_Dia.val - (1.082532 * Pitch.val)
Hex_Head_Flat_Distance.val = 13.0
Hex_Head_Height.val = 5.3
Cap_Head_Dia.val = 13.5
Cap_Head_Height.val = 8.0
Allen_Bit_Flat_Distance.val = 6.0
Allen_Bit_Depth.val = 4.0
Pan_Head_Dia.val = 16.0
Dome_Head_Dia.val = 16.0
Philips_Bit_Dia.val = Pan_Head_Dia.val*(1.82/5.6)
Phillips_Bit_Depth.val = Get_Phillips_Bit_Height(Philips_Bit_Dia.val)
Hex_Nut_Height.val = 6.5
Hex_Nut_Flat_Distance.val = 13.0
Thread_Length.val = 16
Shank_Length.val = 0.0
if Preset_Menu.val == 6 : #M10
Shank_Dia.val = 10.0
#Pitch.val = 1.5 #Coarse
Pitch.val = 1.25 #Fine
Crest_Percent.val = 10
Root_Percent.val = 10
Major_Dia.val = 10.0
Minor_Dia.val = Major_Dia.val - (1.082532 * Pitch.val)
Hex_Head_Flat_Distance.val = 17.0
Hex_Head_Height.val = 6.4
Cap_Head_Dia.val = 16.0
Cap_Head_Height.val = 10.0
Allen_Bit_Flat_Distance.val = 8.0
Allen_Bit_Depth.val = 5.0
Pan_Head_Dia.val = 20.0
Dome_Head_Dia.val = 20.0
Philips_Bit_Dia.val = Pan_Head_Dia.val*(1.82/5.6)
Phillips_Bit_Depth.val = Get_Phillips_Bit_Height(Philips_Bit_Dia.val)
Hex_Nut_Height.val = 8.0
Hex_Nut_Flat_Distance.val = 17.0
Thread_Length.val = 20
Shank_Length.val = 0.0
if Preset_Menu.val == 7 : #M12
#Pitch.val = 1.75 #Coarse
Pitch.val = 1.50 #Fine
Crest_Percent.val = 10
Root_Percent.val = 10
Major_Dia.val = 12.0
Minor_Dia.val = Major_Dia.val - (1.082532 * Pitch.val)
Hex_Head_Flat_Distance.val = 19.0
Hex_Head_Height.val = 7.5
Cap_Head_Dia.val = 18.5
Cap_Head_Height.val = 12.0
Allen_Bit_Flat_Distance.val = 10.0
Allen_Bit_Depth.val = 6.0
Pan_Head_Dia.val = 24.0
Dome_Head_Dia.val = 24.0
Philips_Bit_Dia.val = Pan_Head_Dia.val*(1.82/5.6)
Phillips_Bit_Depth.val = Get_Phillips_Bit_Height(Philips_Bit_Dia.val)
Hex_Nut_Height.val = 10.0
Hex_Nut_Flat_Distance.val = 19.0
Shank_Dia.val = 12.0
Shank_Length.val = 33.0
Thread_Length.val = 32.0
##############################################################################################
def Test():
verts = []
faces = []
if Error_Check() :
return
verts, faces = MakeBolt()
Add_Mesh_To_Scene("TestBolt", verts,faces)
Window.Redraw(-1)
def event(evt, val): # the function to handle input events
if evt == Draw.ESCKEY:
Draw.Exit() # exit when user presses ESC
return
def button_event(evt): # the function to handle Draw Button events
if evt == On_Exit_Click:
Draw.Exit() # exit when user presses ESC
return
if evt == On_Test_Click:
Test()
Draw.Redraw(1)
if evt == On_Preset_Click:
Load_Preset()
Draw.Redraw(1)
if evt == On_Create_Click:
if Model_Type['BOLT'][0].val:
Create_Bolt()
if Model_Type['NUT'][0].val:
Create_Nut()
Draw.Redraw(1)
elif (evt in [On_Hex_Click, On_Cap_Click,On_Dome_Click,On_Pan_Click]):
for k in Head_Type.iterkeys():
if Head_Type[k][1]!=evt:
Head_Type[k][0].val=0
else:
Head_Type[k][0].val=1
Draw.Redraw(1)
elif (evt in [On_Bit_None_Click,On_Bit_Allen_Click,On_Bit_Philips_Click]):
for k in Bit_Type.iterkeys():
if Bit_Type[k][1]!=evt:
Bit_Type[k][0].val=0
else:
Bit_Type[k][0].val=1
Draw.Redraw(1)
elif (evt in [On_Model_Bolt_Click,On_Model_Nut_Click]):
for k in Model_Type.iterkeys():
if Model_Type[k][1]!=evt:
Model_Type[k][0].val=0
else:
Model_Type[k][0].val=1
Draw.Redraw(1)
elif (evt in [On_Hex_Nut_Click,On_Lock_Nut_Click]):
for k in Nut_Type.iterkeys():
if Nut_Type[k][1]!=evt:
Nut_Type[k][0].val=0
else:
Nut_Type[k][0].val=1
Draw.Redraw(1)
#####################################################################################
def Draw_Border(X1,Y1,X2,Y2): # X1,Y1 = Top Left X2,Y2 = Bottom Right
INDENT = 3
BGL.glColor3f(1.0,1.0,1.0)
BGL.glBegin(BGL.GL_LINES)
BGL.glVertex2i(X1+INDENT,Y1-INDENT) #top line
BGL.glVertex2i(X2-INDENT,Y1-INDENT)
BGL.glVertex2i(X1+INDENT,Y1-INDENT) #left line
BGL.glVertex2i(X1+INDENT,Y2+INDENT)
BGL.glEnd()
BGL.glColor3f(0.5,0.5,0.5)
BGL.glBegin(BGL.GL_LINES)
BGL.glVertex2i(X2-INDENT,Y1-INDENT) #Right line
BGL.glVertex2i(X2-INDENT,Y2+INDENT)
BGL.glVertex2i(X1+INDENT,Y2+INDENT) #bottom line
BGL.glVertex2i(X2-INDENT,Y2+INDENT)
BGL.glEnd()
def Create_Tab(X1,Y1,X2,Y2,Title,Buttons): # X1,Y1 = Top Left X2,Y2 = Bottom Right
BIT_BUTTON_WIDTH = 55
BIT_BUTTON_HEIGHT = 18
TITLE_HEIGHT = 15
INDENT = 6
BUTTON_GAP = 4
BGL.glColor3f(0.75, 0.75, 0.75)
BGL.glRecti(X1,Y1,X2,Y2)
Draw_Border(X1,Y1,X2,Y2);
BGL.glColor3f(0.0,0.0,0.0)
BGL.glRasterPos2d(X1+INDENT,Y1 - TITLE_HEIGHT)
Draw.Text(Title)
Button_X = X1 + INDENT
Button_Y = Y1 - TITLE_HEIGHT - BIT_BUTTON_HEIGHT - 8
#Nut_Number_X = Nut_Button_X
#Nut_Number_Y = Nut_Button_Y - 25
if (Buttons != 0):
key= Buttons.keys()
for k in key:
Buttons[k][0]= Draw.Toggle(k,Buttons[k][1],Button_X,Button_Y, BIT_BUTTON_WIDTH,BIT_BUTTON_HEIGHT,Buttons[k][0].val,Buttons[k][2])
Button_X += BIT_BUTTON_WIDTH + BUTTON_GAP
def Dispaly_Title_Bar(Y_POS,CONTROL_HEIGHT):
CONTROL_WIDTH = 250
Create_Tab(3,Y_POS,CONTROL_WIDTH,Y_POS -CONTROL_HEIGHT,"Bolt Factory V2.02",Model_Type)
def Dispaly_Preset_Tab(Y_POS,CONTROL_HEIGHT):
CONTROL_WIDTH = 250
BUTTON_Y_OFFSET = 40
Create_Tab(3,Y_POS,CONTROL_WIDTH,Y_POS-CONTROL_HEIGHT,"Preset",0)
name = "M3%x1|M4%x2|M5%x3|M6%x4|M8%x5|M10%x6|M12%x7"
global Preset_Menu
Preset_Menu = Draw.Menu(name,No_Event,9,Y_POS-BUTTON_Y_OFFSET,50,18, Preset_Menu.val, "Predefined metric screw sizes.")
Draw.Button("Apply",On_Preset_Click,150,Y_POS-BUTTON_Y_OFFSET,55,18,"Apply the preset screw sizes.")
def Dispaly_Bit_Tab(Y_POS,CONTROL_HEIGHT):
CONTROL_WIDTH = 250
NUMBER_HEIGHT = 18
NUMBER_WIDTH = CONTROL_WIDTH -3-3-3-3-3
Bit_Number_X = 3+3+3
Bit_Number_Y = Y_POS - 64
Create_Tab(3,Y_POS,CONTROL_WIDTH,Y_POS-CONTROL_HEIGHT,"Bit Type",Bit_Type)
if Bit_Type['NONE'][0].val:
DoNothing = 1;
elif Bit_Type['ALLEN'][0].val:
global Allen_Bit_Depth
Allen_Bit_Depth = Draw.Number('Bit Depth: ',No_Event,Bit_Number_X,Bit_Number_Y,NUMBER_WIDTH, NUMBER_HEIGHT,Allen_Bit_Depth.val, 0,100, '')
Bit_Number_Y -= NUMBER_HEIGHT
global Allen_Bit_Flat_Distance
Allen_Bit_Flat_Distance = Draw.Number('Flat Dist: ',No_Event,Bit_Number_X,Bit_Number_Y,NUMBER_WIDTH,NUMBER_HEIGHT,Allen_Bit_Flat_Distance.val, 0,100, '')
Bit_Number_Y -= NUMBER_HEIGHT
elif Bit_Type['PHILLIPS'][0].val:
global Phillips_Bit_Depth
Phillips_Bit_Depth = Draw.Number('Bit Depth: ',No_Event,Bit_Number_X,Bit_Number_Y,NUMBER_WIDTH, NUMBER_HEIGHT,Phillips_Bit_Depth.val, 0,100, '')
Bit_Number_Y -= NUMBER_HEIGHT
global Philips_Bit_Dia
Philips_Bit_Dia = Draw.Number('Bit Dia: ',No_Event,Bit_Number_X,Bit_Number_Y, NUMBER_WIDTH, NUMBER_HEIGHT,Philips_Bit_Dia.val, 0,100, '')
Bit_Number_Y -= NUMBER_HEIGHT
def Dispaly_Shank_Tab(Y_POS,CONTROL_HEIGHT):
CONTROL_WIDTH = 250
NUMBER_HEIGHT = 18
NUMBER_WIDTH = CONTROL_WIDTH -3-3-3-3-3
Number_X = 3+3+3
Number_Y_Pos = Y_POS - 40
Create_Tab(3,Y_POS,CONTROL_WIDTH,Y_POS-CONTROL_HEIGHT,"Shank",0)
global Shank_Length
Shank_Length = Draw.Number('Shank Length: ',No_Event,Number_X,Number_Y_Pos,NUMBER_WIDTH,NUMBER_HEIGHT, Shank_Length.val, 0,MAX_INPUT_NUMBER, 'some text tip')
Number_Y_Pos -= NUMBER_HEIGHT
global Shank_Dia
Shank_Dia = Draw.Number('Shank Dia: ',No_Event,Number_X,Number_Y_Pos,NUMBER_WIDTH,NUMBER_HEIGHT, Shank_Dia.val, 0,MAX_INPUT_NUMBER, 'some text tip')
Number_Y_Pos -= NUMBER_HEIGHT
def Dispaly_Thread_Tab(Y_POS,CONTROL_HEIGHT):
CONTROL_WIDTH = 250
NUMBER_HEIGHT = 18
NUMBER_WIDTH = CONTROL_WIDTH -3-3-3-3-3
Number_X = 3+3+3
Number_Y_Pos = Y_POS - 40
Create_Tab(3,Y_POS,CONTROL_WIDTH,Y_POS-CONTROL_HEIGHT,"Thread",0)
global Thread_Length
if Model_Type['BOLT'][0].val:
Thread_Length = Draw.Number('Thread Length: ',No_Event, Number_X,Number_Y_Pos,NUMBER_WIDTH,NUMBER_HEIGHT, Thread_Length.val, 0,MAX_INPUT_NUMBER, '')
Number_Y_Pos -= NUMBER_HEIGHT
global Major_Dia
Major_Dia = Draw.Number('Major Dia: ',No_Event,Number_X,Number_Y_Pos, NUMBER_WIDTH,NUMBER_HEIGHT, Major_Dia.val, 0,MAX_INPUT_NUMBER, '')
Number_Y_Pos -= NUMBER_HEIGHT
global Minor_Dia
Minor_Dia = Draw.Number('Minor Dia: ',No_Event,Number_X,Number_Y_Pos, NUMBER_WIDTH,NUMBER_HEIGHT, Minor_Dia.val, 0,MAX_INPUT_NUMBER, '')
Number_Y_Pos -= NUMBER_HEIGHT
global Pitch
Pitch = Draw.Number('Pitch: ',No_Event,Number_X,Number_Y_Pos,NUMBER_WIDTH,NUMBER_HEIGHT, Pitch.val, 0.1,7.0, '')
Number_Y_Pos -= NUMBER_HEIGHT
global Crest_Percent
Crest_Percent = Draw.Number('Crest %: ',No_Event,Number_X,Number_Y_Pos,NUMBER_WIDTH,NUMBER_HEIGHT,Crest_Percent.val, 1,90, '')
Number_Y_Pos -= NUMBER_HEIGHT
global Root_Percent
Root_Percent = Draw.Number('Root %: ',No_Event,Number_X,Number_Y_Pos,NUMBER_WIDTH,NUMBER_HEIGHT,Root_Percent.val, 1,90, '')
Number_Y_Pos -= NUMBER_HEIGHT
def Dispaly_Head_Tab(Y_POS,CONTROL_HEIGHT):
CONTROL_WIDTH = 250
NUMBER_HEIGHT = 18
NUMBER_WIDTH = CONTROL_WIDTH -3-3-3-3-3
Head_Number_X = 3+3+3
Head_Number_Y = Y_POS - 64
Create_Tab(3,Y_POS,CONTROL_WIDTH,Y_POS-CONTROL_HEIGHT,"Head Type",Head_Type)
if Head_Type['HEX'][0].val:
global Hex_Head_Height
Hex_Head_Height = Draw.Number('Head Height: ',No_Event,Head_Number_X ,Head_Number_Y, NUMBER_WIDTH, NUMBER_HEIGHT,Hex_Head_Height.val, 0,100, '')
Head_Number_Y -= NUMBER_HEIGHT
global Hex_Head_Flat_Distance
Hex_Head_Flat_Distance = Draw.Number('Head Hex Flat Distance ',No_Event,Head_Number_X,Head_Number_Y,NUMBER_WIDTH, NUMBER_HEIGHT,Hex_Head_Flat_Distance.val, 0,MAX_INPUT_NUMBER, '')
Head_Number_Y -= NUMBER_HEIGHT
elif Head_Type['CAP'][0].val:
global Cap_Head_Height
Cap_Head_Height = Draw.Number('Head Height: ',No_Event, Head_Number_X,Head_Number_Y, NUMBER_WIDTH, NUMBER_HEIGHT,Cap_Head_Height.val, 0,100, '')
Head_Number_Y -= NUMBER_HEIGHT
global Cap_Head_Dia
Cap_Head_Dia = Draw.Number('Head Dia ',No_Event,Head_Number_X,Head_Number_Y,NUMBER_WIDTH, NUMBER_HEIGHT,Cap_Head_Dia.val, 0,MAX_INPUT_NUMBER, '')
Head_Number_Y -= NUMBER_HEIGHT
elif Head_Type['DOME'][0].val:
global Dome_Head_Dia
Dome_Head_Dia = Draw.Number(' Dome Head Dia ',No_Event,Head_Number_X,Head_Number_Y, NUMBER_WIDTH, NUMBER_HEIGHT,Dome_Head_Dia.val, 0,MAX_INPUT_NUMBER, '')
Head_Number_Y -= NUMBER_HEIGHT
elif Head_Type['PAN'][0].val:
global Pan_Head_Dia
Pan_Head_Dia = Draw.Number('Pan Head Dia ',No_Event,Head_Number_X,Head_Number_Y, NUMBER_WIDTH, NUMBER_HEIGHT,Pan_Head_Dia.val, 0,MAX_INPUT_NUMBER, '')
Head_Number_Y -= NUMBER_HEIGHT
def Dispaly_Nut_Tab(Y_POS,CONTROL_HEIGHT):
CONTROL_WIDTH = 250
NUMBER_HEIGHT = 18
NUMBER_WIDTH = CONTROL_WIDTH -3-3-3-3-3
Nut_Number_X = 3+3+3
Nut_Number_Y = Y_POS - 64
Create_Tab(3,Y_POS,CONTROL_WIDTH,Y_POS-CONTROL_HEIGHT,"Nut Type",Nut_Type)
#if Nut_Type['HEX'][0].val:
global Hex_Nut_Height
Hex_Nut_Height = Draw.Number('Nut Height: ',No_Event,Nut_Number_X ,Nut_Number_Y, NUMBER_WIDTH, NUMBER_HEIGHT,Hex_Nut_Height.val, 0,MAX_INPUT_NUMBER, '')
Nut_Number_Y -= NUMBER_HEIGHT
global Hex_Nut_Flat_Distance
Hex_Nut_Flat_Distance = Draw.Number('Nut Flat Distance ',No_Event,Nut_Number_X,Nut_Number_Y, NUMBER_WIDTH, NUMBER_HEIGHT,Hex_Nut_Flat_Distance.val, 0,MAX_INPUT_NUMBER, '')
Nut_Number_Y -= NUMBER_HEIGHT
def Dispaly_Bolt_Tab():
Dispaly_Shank_Tab(284,66)
Dispaly_Head_Tab(374,90)
Dispaly_Bit_Tab(464,90)
##########################################################################################
def gui(): # the function to draw the screen
CONTROL_WIDTH = 250
BGL.glClearColor(0.6, 0.6, 0.6, 1.0)
BGL.glClear(BGL.GL_COLOR_BUFFER_BIT)
BGL.glColor3f(0.75, 0.75, 0.75)
BGL.glRecti(3,30,CONTROL_WIDTH,3)
Dispaly_Title_Bar(514,50);
if Model_Type['BOLT'][0].val:
Dispaly_Bolt_Tab();
if Model_Type['NUT'][0].val:
Dispaly_Nut_Tab(464,246);
Dispaly_Thread_Tab(218,138)
Dispaly_Preset_Tab(80,50)
Draw.PushButton("Create",On_Create_Click,6,8,55,18,"Create Bolt")
Draw.Button("Exit",On_Exit_Click,6+55+4,8,55,18)
# Draw.Button("Test",On_Test_Click,150,10,55,20)
Load_Preset()
Draw.Register(gui, event, button_event) # registering the 3 callbacks