4848f9029a
Originally by Dan Eicher, with my own fixes and adjustments (see patch page for details). For details there are unit tests and api example usage. doc/python_api/sphinx-in-tmp/menu_id.png
38 lines
882 B
Python
38 lines
882 B
Python
import mathutils
|
|
|
|
# create a kd-tree from a mesh
|
|
from bpy import context
|
|
obj = context.object
|
|
|
|
# 3d cursor relative to the object data
|
|
co_find = context.scene.cursor_location * obj.matrix_world.inverted()
|
|
|
|
mesh = obj.data
|
|
size = len(mesh.vertices)
|
|
kd = mathutils.kdtree.KDTree(size)
|
|
|
|
for i, v in enumerate(mesh.vertices):
|
|
kd.insert(v.co, i)
|
|
|
|
kd.balance()
|
|
|
|
|
|
# Find the closest point to the center
|
|
co_find = (0.0, 0.0, 0.0)
|
|
co, index, dist = kd.find(co_find)
|
|
print("Close to center:", co, index, dist)
|
|
|
|
|
|
# Find the closest 10 points to the 3d cursor
|
|
print("Close 10 points")
|
|
for (co, index, dist) in kd.find_n(co_find, 10):
|
|
print(" ", co, index, dist)
|
|
|
|
|
|
# Find points within a radius of the 3d cursor
|
|
print("Close points within 0.5 distance")
|
|
co_find = context.scene.cursor_location
|
|
for (co, index, dist) in kd.find_range(co_find, 0.5):
|
|
print(" ", co, index, dist)
|
|
|