blender/release/scripts/startup/bl_operators/uvcalc_lightmap.py
Dalai Felinto 5dbf9e09a8 UV_OT_lightmap_pack: Distinction between edit and object modes
I don't even know why this operator was ever made to work in object mode.
That said, since it does, we should have different options for it
(or rather, always do all faces for it).
2018-09-05 17:24:07 -03:00

697 lines
22 KiB
Python

# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
import bpy
from bpy.types import Operator
import mathutils
class prettyface:
__slots__ = (
"uv",
"width",
"height",
"children",
"xoff",
"yoff",
"has_parent",
"rot",
)
def __init__(self, data):
self.has_parent = False
self.rot = False # only used for triangles
self.xoff = 0
self.yoff = 0
if type(data) == list: # list of data
self.uv = None
# join the data
if len(data) == 2:
# 2 vertical blocks
data[1].xoff = data[0].width
self.width = data[0].width * 2
self.height = data[0].height
elif len(data) == 4:
# 4 blocks all the same size
d = data[0].width # dimension x/y are the same
data[1].xoff += d
data[2].yoff += d
data[3].xoff += d
data[3].yoff += d
self.width = self.height = d * 2
# else:
# print(len(data), data)
# raise "Error"
for pf in data:
pf.has_parent = True
self.children = data
elif type(data) == tuple:
# 2 blender faces
# f, (len_min, len_mid, len_max)
self.uv = data
f1, lens1, lens1ord = data[0]
if data[1]:
f2, lens2, lens2ord = data[1]
self.width = (lens1[lens1ord[0]] + lens2[lens2ord[0]]) / 2.0
self.height = (lens1[lens1ord[1]] + lens2[lens2ord[1]]) / 2.0
else: # 1 tri :/
self.width = lens1[0]
self.height = lens1[1]
self.children = []
else: # blender face
uv_layer = data.id_data.uv_layers.active.data
self.uv = [uv_layer[i].uv for i in data.loop_indices]
# cos = [v.co for v in data]
cos = [data.id_data.vertices[v].co for v in data.vertices] # XXX25
if len(self.uv) == 4:
self.width = ((cos[0] - cos[1]).length + (cos[2] - cos[3]).length) / 2.0
self.height = ((cos[1] - cos[2]).length + (cos[0] - cos[3]).length) / 2.0
else:
# ngon, note:
# for ngons to calculate the width/height we need to do the
# whole projection, unlike other faces
# we store normalized UV's in the faces coords to avoid
# calculating the projection and rotating it twice.
no = data.normal
r = no.rotation_difference(mathutils.Vector((0.0, 0.0, 1.0)))
cos_2d = [(r * co).xy for co in cos]
# print(cos_2d)
angle = mathutils.geometry.box_fit_2d(cos_2d)
mat = mathutils.Matrix.Rotation(angle, 2)
cos_2d = [(mat * co) for co in cos_2d]
xs = [co.x for co in cos_2d]
ys = [co.y for co in cos_2d]
xmin = min(xs)
ymin = min(ys)
xmax = max(xs)
ymax = max(ys)
xspan = xmax - xmin
yspan = ymax - ymin
self.width = xspan
self.height = yspan
# ngons work different, we store projected result
# in UV's to avoid having to re-project later.
for i, co in enumerate(cos_2d):
self.uv[i][:] = ((co.x - xmin) / xspan,
(co.y - ymin) / yspan)
self.children = []
def spin(self):
if self.uv and len(self.uv) == 4:
self.uv = self.uv[1], self.uv[2], self.uv[3], self.uv[0]
self.width, self.height = self.height, self.width
self.xoff, self.yoff = self.yoff, self.xoff # not needed?
self.rot = not self.rot # only for tri pairs and ngons.
# print("spinning")
for pf in self.children:
pf.spin()
def place(self, xoff, yoff, xfac, yfac, margin_w, margin_h):
from math import pi
xoff += self.xoff
yoff += self.yoff
for pf in self.children:
pf.place(xoff, yoff, xfac, yfac, margin_w, margin_h)
uv = self.uv
if not uv:
return
x1 = xoff
y1 = yoff
x2 = xoff + self.width
y2 = yoff + self.height
# Scale the values
x1 = x1 / xfac + margin_w
x2 = x2 / xfac - margin_w
y1 = y1 / yfac + margin_h
y2 = y2 / yfac - margin_h
# 2 Tri pairs
if len(uv) == 2:
# match the order of angle sizes of the 3d verts with the UV angles and rotate.
def get_tri_angles(v1, v2, v3):
a1 = (v2 - v1).angle(v3 - v1, pi)
a2 = (v1 - v2).angle(v3 - v2, pi)
a3 = pi - (a1 + a2) # a3= (v2 - v3).angle(v1 - v3)
return [(a1, 0), (a2, 1), (a3, 2)]
def set_uv(f, p1, p2, p3):
# cos =
#v1 = cos[0]-cos[1]
#v2 = cos[1]-cos[2]
#v3 = cos[2]-cos[0]
# angles_co = get_tri_angles(*[v.co for v in f])
angles_co = get_tri_angles(*[f.id_data.vertices[v].co for v in f.vertices]) # XXX25
angles_co.sort()
I = [i for a, i in angles_co]
uv_layer = f.id_data.uv_layers.active.data
fuv = [uv_layer[i].uv for i in f.loop_indices]
if self.rot:
fuv[I[2]][:] = p1
fuv[I[1]][:] = p2
fuv[I[0]][:] = p3
else:
fuv[I[2]][:] = p1
fuv[I[0]][:] = p2
fuv[I[1]][:] = p3
f, lens, lensord = uv[0]
set_uv(f, (x1, y1), (x1, y2 - margin_h), (x2 - margin_w, y1))
if uv[1]:
f, lens, lensord = uv[1]
set_uv(f, (x2, y2), (x2, y1 + margin_h), (x1 + margin_w, y2))
else: # 1 QUAD
if len(uv) == 4:
uv[1][:] = x1, y1
uv[2][:] = x1, y2
uv[3][:] = x2, y2
uv[0][:] = x2, y1
else:
# NGon
xspan = x2 - x1
yspan = y2 - y1
for uvco in uv:
x, y = uvco
uvco[:] = ((x1 + (x * xspan)),
(y1 + (y * yspan)))
def __hash__(self):
# None unique hash
return self.width, self.height
def lightmap_uvpack(meshes,
PREF_SEL_ONLY=True,
PREF_NEW_UVLAYER=False,
PREF_PACK_IN_ONE=False,
PREF_APPLY_IMAGE=False,
PREF_IMG_PX_SIZE=512,
PREF_BOX_DIV=8,
PREF_MARGIN_DIV=512
):
"""
BOX_DIV if the maximum division of the UV map that
a box may be consolidated into.
Basically, a lower value will be slower but waist less space
and a higher value will have more clumpy boxes but more wasted space
"""
import time
from math import sqrt
if not meshes:
return
t = time.time()
if PREF_PACK_IN_ONE:
if PREF_APPLY_IMAGE:
image = bpy.data.images.new(name="lightmap", width=PREF_IMG_PX_SIZE, height=PREF_IMG_PX_SIZE, alpha=False)
face_groups = [[]]
else:
face_groups = []
for me in meshes:
if PREF_SEL_ONLY:
faces = [f for f in me.polygons if f.select]
else:
faces = me.polygons[:]
if PREF_PACK_IN_ONE:
face_groups[0].extend(faces)
else:
face_groups.append(faces)
if PREF_NEW_UVLAYER:
me.uv_layers.new()
# Add face UV if it does not exist.
# All new faces are selected.
if not me.uv_layers:
me.uv_layers.new()
for face_sel in face_groups:
print("\nStarting unwrap")
if not face_sel:
continue
pretty_faces = [prettyface(f) for f in face_sel if f.loop_total >= 4]
# Do we have any triangles?
if len(pretty_faces) != len(face_sel):
# Now add triangles, not so simple because we need to pair them up.
def trylens(f):
# f must be a tri
# cos = [v.co for v in f]
cos = [f.id_data.vertices[v].co for v in f.vertices] # XXX25
lens = [(cos[0] - cos[1]).length, (cos[1] - cos[2]).length, (cos[2] - cos[0]).length]
lens_min = lens.index(min(lens))
lens_max = lens.index(max(lens))
for i in range(3):
if i != lens_min and i != lens_max:
lens_mid = i
break
lens_order = lens_min, lens_mid, lens_max
return f, lens, lens_order
tri_lengths = [trylens(f) for f in face_sel if f.loop_total == 3]
del trylens
def trilensdiff(t1, t2):
return (abs(t1[1][t1[2][0]] - t2[1][t2[2][0]]) +
abs(t1[1][t1[2][1]] - t2[1][t2[2][1]]) +
abs(t1[1][t1[2][2]] - t2[1][t2[2][2]]))
while tri_lengths:
tri1 = tri_lengths.pop()
if not tri_lengths:
pretty_faces.append(prettyface((tri1, None)))
break
best_tri_index = -1
best_tri_diff = 100000000.0
for i, tri2 in enumerate(tri_lengths):
diff = trilensdiff(tri1, tri2)
if diff < best_tri_diff:
best_tri_index = i
best_tri_diff = diff
pretty_faces.append(prettyface((tri1, tri_lengths.pop(best_tri_index))))
# Get the min, max and total areas
max_area = 0.0
min_area = 100000000.0
tot_area = 0
for f in face_sel:
area = f.area
if area > max_area:
max_area = area
if area < min_area:
min_area = area
tot_area += area
max_len = sqrt(max_area)
min_len = sqrt(min_area)
side_len = sqrt(tot_area)
# Build widths
curr_len = max_len
print("\tGenerating lengths...", end="")
lengths = []
while curr_len > min_len:
lengths.append(curr_len)
curr_len = curr_len / 2.0
# Don't allow boxes smaller then the margin
# since we contract on the margin, boxes that are smaller will create errors
# print(curr_len, side_len/MARGIN_DIV)
if curr_len / 4.0 < side_len / PREF_MARGIN_DIV:
break
if not lengths:
lengths.append(curr_len)
# convert into ints
lengths_to_ints = {}
l_int = 1
for l in reversed(lengths):
lengths_to_ints[l] = l_int
l_int *= 2
lengths_to_ints = list(lengths_to_ints.items())
lengths_to_ints.sort()
print("done")
# apply quantized values.
for pf in pretty_faces:
w = pf.width
h = pf.height
bestw_diff = 1000000000.0
besth_diff = 1000000000.0
new_w = 0.0
new_h = 0.0
for l, i in lengths_to_ints:
d = abs(l - w)
if d < bestw_diff:
bestw_diff = d
new_w = i # assign the int version
d = abs(l - h)
if d < besth_diff:
besth_diff = d
new_h = i # ditto
pf.width = new_w
pf.height = new_h
if new_w > new_h:
pf.spin()
print("...done")
# Since the boxes are sized in powers of 2, we can neatly group them into bigger squares
# this is done hierarchically, so that we may avoid running the pack function
# on many thousands of boxes, (under 1k is best) because it would get slow.
# Using an off and even dict us useful because they are packed differently
# where w/h are the same, their packed in groups of 4
# where they are different they are packed in pairs
#
# After this is done an external pack func is done that packs the whole group.
print("\tConsolidating Boxes...", end="")
even_dict = {} # w/h are the same, the key is an int (w)
odd_dict = {} # w/h are different, the key is the (w,h)
for pf in pretty_faces:
w, h = pf.width, pf.height
if w == h:
even_dict.setdefault(w, []).append(pf)
else:
odd_dict.setdefault((w, h), []).append(pf)
# Count the number of boxes consolidated, only used for stats.
c = 0
# This is tricky. the total area of all packed boxes, then sqrt() that to get an estimated size
# this is used then converted into out INT space so we can compare it with
# the ints assigned to the boxes size
# and divided by BOX_DIV, basically if BOX_DIV is 8
# ...then the maximum box consolidation (recursive grouping) will have a max width & height
# ...1/8th of the UV size.
# ...limiting this is needed or you end up with bug unused texture spaces
# ...however if its too high, box-packing is way too slow for high poly meshes.
float_to_int_factor = lengths_to_ints[0][0]
if float_to_int_factor > 0:
max_int_dimension = int(((side_len / float_to_int_factor)) / PREF_BOX_DIV)
ok = True
else:
max_int_dimension = 0.0 # won't be used
ok = False
# RECURSIVE pretty face grouping
while ok:
ok = False
# Tall boxes in groups of 2
for d, boxes in list(odd_dict.items()):
if d[1] < max_int_dimension:
# boxes.sort(key=lambda a: len(a.children))
while len(boxes) >= 2:
# print("foo", len(boxes))
ok = True
c += 1
pf_parent = prettyface([boxes.pop(), boxes.pop()])
pretty_faces.append(pf_parent)
w, h = pf_parent.width, pf_parent.height
assert(w <= h)
if w == h:
even_dict.setdefault(w, []).append(pf_parent)
else:
odd_dict.setdefault((w, h), []).append(pf_parent)
# Even boxes in groups of 4
for d, boxes in list(even_dict.items()):
if d < max_int_dimension:
boxes.sort(key=lambda a: len(a.children))
while len(boxes) >= 4:
# print("bar", len(boxes))
ok = True
c += 1
pf_parent = prettyface([boxes.pop(), boxes.pop(), boxes.pop(), boxes.pop()])
pretty_faces.append(pf_parent)
w = pf_parent.width # width and weight are the same
even_dict.setdefault(w, []).append(pf_parent)
del even_dict
del odd_dict
# orig = len(pretty_faces)
pretty_faces = [pf for pf in pretty_faces if not pf.has_parent]
# spin every second pretty-face
# if there all vertical you get less efficiently used texture space
i = len(pretty_faces)
d = 0
while i:
i -= 1
pf = pretty_faces[i]
if pf.width != pf.height:
d += 1
if d % 2: # only pack every second
pf.spin()
# pass
print("Consolidated", c, "boxes, done")
# print("done", orig, len(pretty_faces))
# boxes2Pack.append([islandIdx, w,h])
print("\tPacking Boxes", len(pretty_faces), end="...")
boxes2Pack = [[0.0, 0.0, pf.width, pf.height, i] for i, pf in enumerate(pretty_faces)]
packWidth, packHeight = mathutils.geometry.box_pack_2d(boxes2Pack)
# print(packWidth, packHeight)
packWidth = float(packWidth)
packHeight = float(packHeight)
margin_w = ((packWidth) / PREF_MARGIN_DIV) / packWidth
margin_h = ((packHeight) / PREF_MARGIN_DIV) / packHeight
# print(margin_w, margin_h)
print("done")
# Apply the boxes back to the UV coords.
print("\twriting back UVs", end="")
for i, box in enumerate(boxes2Pack):
pretty_faces[i].place(box[0], box[1], packWidth, packHeight, margin_w, margin_h)
# pf.place(box[1][1], box[1][2], packWidth, packHeight, margin_w, margin_h)
print("done")
if PREF_APPLY_IMAGE:
pass
# removed with texface
'''
if not PREF_PACK_IN_ONE:
image = bpy.data.images.new(name="lightmap",
width=PREF_IMG_PX_SIZE,
height=PREF_IMG_PX_SIZE,
)
for f in face_sel:
f.image = image
'''
for me in meshes:
me.update()
print("finished all %.2f " % (time.time() - t))
def unwrap(operator, context, **kwargs):
# switch to object mode
is_editmode = context.object and context.object.mode == 'EDIT'
if is_editmode:
bpy.ops.object.mode_set(mode='OBJECT', toggle=False)
# define list of meshes
meshes = list({me for obj in context.selected_objects if obj.type == 'MESH' for me in (obj.data,) if me.polygons and me.library is None})
if not meshes:
operator.report({'ERROR'}, "No mesh object")
return {'CANCELLED'}
lightmap_uvpack(meshes, **kwargs)
# switch back to edit mode
if is_editmode:
bpy.ops.object.mode_set(mode='EDIT', toggle=False)
return {'FINISHED'}
from bpy.props import BoolProperty, FloatProperty, IntProperty
class LightMapPack(Operator):
"""Pack each faces UV's into the UV bounds"""
bl_idname = "uv.lightmap_pack"
bl_label = "Lightmap Pack"
# Disable REGISTER flag for now because this operator might create new
# images. This leads to non-proper operator redo because current undo
# stack is local for edit mode and can not remove images created by this
# operator.
# Proper solution would be to make undo stack aware of such things,
# but for now just disable redo. Keep undo here so unwanted changes to uv
# coords might be undone.
# This fixes infinite image creation reported there [#30968] (sergey)
bl_options = {'UNDO'}
PREF_CONTEXT: bpy.props.EnumProperty(
name="Selection",
items=(
('SEL_FACES', "Selected Faces", "Space all UVs evenly"),
('ALL_FACES', "All Faces", "Average space UVs edge length of each loop"),
),
)
# Image & UVs...
PREF_PACK_IN_ONE: BoolProperty(
name="Share Tex Space",
description=(
"Objects Share texture space, map all objects "
"into 1 uvmap"
),
default=True,
)
PREF_NEW_UVLAYER: BoolProperty(
name="New UV Map",
description="Create a new UV map for every mesh packed",
default=False,
)
PREF_APPLY_IMAGE: BoolProperty(
name="New Image",
description=(
"Assign new images for every mesh (only one if "
"shared tex space enabled)"
),
default=False,
)
PREF_IMG_PX_SIZE: IntProperty(
name="Image Size",
description="Width and Height for the new image",
min=64, max=5000,
default=512,
)
# UV Packing...
PREF_BOX_DIV: IntProperty(
name="Pack Quality",
description="Pre Packing before the complex boxpack",
min=1, max=48,
default=12,
)
PREF_MARGIN_DIV: FloatProperty(
name="Margin",
description="Size of the margin as a division of the UV",
min=0.001, max=1.0,
default=0.1,
)
def draw(self, context):
layout = self.layout
layout.use_property_split = True
is_editmode = context.active_object.mode == 'EDIT'
if is_editmode:
layout.prop(self, "PREF_CONTEXT")
layout.prop(self, "PREF_PACK_IN_ONE")
layout.prop(self, "PREF_NEW_UVLAYER")
layout.prop(self, "PREF_APPLY_IMAGE")
layout.prop(self, "PREF_IMG_PX_SIZE")
layout.prop(self, "PREF_BOX_DIV")
layout.prop(self, "PREF_MARGIN_DIV")
@classmethod
def poll(cls, context):
ob = context.active_object
return ob and ob.type == 'MESH'
def execute(self, context):
kwargs = self.as_keywords()
PREF_CONTEXT = kwargs.pop("PREF_CONTEXT")
is_editmode = context.active_object.mode == 'EDIT'
if not is_editmode:
kwargs["PREF_SEL_ONLY"] = False
elif PREF_CONTEXT == 'SEL_FACES':
kwargs["PREF_SEL_ONLY"] = True
elif PREF_CONTEXT == 'ALL_FACES':
kwargs["PREF_SEL_ONLY"] = False
else:
raise Exception("invalid context")
kwargs["PREF_MARGIN_DIV"] = int(1.0 / (kwargs["PREF_MARGIN_DIV"] / 100.0))
return unwrap(self, context, **kwargs)
def invoke(self, context, event):
wm = context.window_manager
return wm.invoke_props_dialog(self)
classes = (
LightMapPack,
)