blender/intern/opennl/superlu/scolumn_bmod.c
Brecht Van Lommel 4f1c674ee0 Added SuperLU 3.0:
http://crd.lbl.gov/~xiaoye/SuperLU/

This is a library to solve sparse matrix systems (type A*x=B). It is able
to solve large systems very FAST. Only the necessary parts of the library
are included to limit file size and compilation time. This means the example
files, fortran interface, test files, matlab interface, cblas library,
complex number part and build system have been left out. All (gcc) warnings
have been fixed too.

This library will be used for LSCM UV unwrapping. With this library, LSCM
unwrapping can be calculated in a split second, making the unwrapping proces
much more interactive.

Added OpenNL (Open Numerical Libary):
http://www.loria.fr/~levy/OpenNL/

OpenNL is a library to easily construct and solve sparse linear systems. We
use a stripped down version, as an interface to SuperLU.

This library was kindly given to use by Bruno Levy.
2004-07-13 11:42:13 +00:00

354 lines
9.9 KiB
C

/*
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
*/
/*
Copyright (c) 1994 by Xerox Corporation. All rights reserved.
THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
Permission is hereby granted to use or copy this program for any
purpose, provided the above notices are retained on all copies.
Permission to modify the code and to distribute modified code is
granted, provided the above notices are retained, and a notice that
the code was modified is included with the above copyright notice.
*/
#include <stdio.h>
#include <stdlib.h>
#include "ssp_defs.h"
/*
* Function prototypes
*/
void susolve(int, int, float*, float*);
void slsolve(int, int, float*, float*);
void smatvec(int, int, int, float*, float*, float*);
/* Return value: 0 - successful return
* > 0 - number of bytes allocated when run out of space
*/
int
scolumn_bmod (
const int jcol, /* in */
const int nseg, /* in */
float *dense, /* in */
float *tempv, /* working array */
int *segrep, /* in */
int *repfnz, /* in */
int fpanelc, /* in -- first column in the current panel */
GlobalLU_t *Glu, /* modified */
SuperLUStat_t *stat /* output */
)
{
/*
* Purpose:
* ========
* Performs numeric block updates (sup-col) in topological order.
* It features: col-col, 2cols-col, 3cols-col, and sup-col updates.
* Special processing on the supernodal portion of L\U[*,j]
*
*/
#ifdef _CRAY
_fcd ftcs1 = _cptofcd("L", strlen("L")),
ftcs2 = _cptofcd("N", strlen("N")),
ftcs3 = _cptofcd("U", strlen("U"));
#endif
#ifdef USE_VENDOR_BLAS
int incx = 1, incy = 1;
float alpha, beta;
#endif
/* krep = representative of current k-th supernode
* fsupc = first supernodal column
* nsupc = no of columns in supernode
* nsupr = no of rows in supernode (used as leading dimension)
* luptr = location of supernodal LU-block in storage
* kfnz = first nonz in the k-th supernodal segment
* no_zeros = no of leading zeros in a supernodal U-segment
*/
float ukj, ukj1, ukj2;
int luptr, luptr1, luptr2;
int fsupc, nsupc, nsupr, segsze;
int nrow; /* No of rows in the matrix of matrix-vector */
int jcolp1, jsupno, k, ksub, krep, krep_ind, ksupno;
register int lptr, kfnz, isub, irow, i;
register int no_zeros, new_next;
int ufirst, nextlu;
int fst_col; /* First column within small LU update */
int d_fsupc; /* Distance between the first column of the current
panel and the first column of the current snode. */
int *xsup, *supno;
int *lsub, *xlsub;
float *lusup;
int *xlusup;
int nzlumax;
float *tempv1;
float zero = 0.0;
#ifdef USE_VENDOR_BLAS
float one = 1.0;
float none = -1.0;
#endif
int mem_error;
flops_t *ops = stat->ops;
xsup = Glu->xsup;
supno = Glu->supno;
lsub = Glu->lsub;
xlsub = Glu->xlsub;
lusup = Glu->lusup;
xlusup = Glu->xlusup;
nzlumax = Glu->nzlumax;
jcolp1 = jcol + 1;
jsupno = supno[jcol];
/*
* For each nonz supernode segment of U[*,j] in topological order
*/
k = nseg - 1;
for (ksub = 0; ksub < nseg; ksub++) {
krep = segrep[k];
k--;
ksupno = supno[krep];
if ( jsupno != ksupno ) { /* Outside the rectangular supernode */
fsupc = xsup[ksupno];
fst_col = SUPERLU_MAX ( fsupc, fpanelc );
/* Distance from the current supernode to the current panel;
d_fsupc=0 if fsupc > fpanelc. */
d_fsupc = fst_col - fsupc;
luptr = xlusup[fst_col] + d_fsupc;
lptr = xlsub[fsupc] + d_fsupc;
kfnz = repfnz[krep];
kfnz = SUPERLU_MAX ( kfnz, fpanelc );
segsze = krep - kfnz + 1;
nsupc = krep - fst_col + 1;
nsupr = xlsub[fsupc+1] - xlsub[fsupc]; /* Leading dimension */
nrow = nsupr - d_fsupc - nsupc;
krep_ind = lptr + nsupc - 1;
ops[TRSV] += segsze * (segsze - 1);
ops[GEMV] += 2 * nrow * segsze;
/*
* Case 1: Update U-segment of size 1 -- col-col update
*/
if ( segsze == 1 ) {
ukj = dense[lsub[krep_ind]];
luptr += nsupr*(nsupc-1) + nsupc;
for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) {
irow = lsub[i];
dense[irow] -= ukj*lusup[luptr];
luptr++;
}
} else if ( segsze <= 3 ) {
ukj = dense[lsub[krep_ind]];
luptr += nsupr*(nsupc-1) + nsupc-1;
ukj1 = dense[lsub[krep_ind - 1]];
luptr1 = luptr - nsupr;
if ( segsze == 2 ) { /* Case 2: 2cols-col update */
ukj -= ukj1 * lusup[luptr1];
dense[lsub[krep_ind]] = ukj;
for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) {
irow = lsub[i];
luptr++;
luptr1++;
dense[irow] -= ( ukj*lusup[luptr]
+ ukj1*lusup[luptr1] );
}
} else { /* Case 3: 3cols-col update */
ukj2 = dense[lsub[krep_ind - 2]];
luptr2 = luptr1 - nsupr;
ukj1 -= ukj2 * lusup[luptr2-1];
ukj = ukj - ukj1*lusup[luptr1] - ukj2*lusup[luptr2];
dense[lsub[krep_ind]] = ukj;
dense[lsub[krep_ind-1]] = ukj1;
for (i = lptr + nsupc; i < xlsub[fsupc+1]; ++i) {
irow = lsub[i];
luptr++;
luptr1++;
luptr2++;
dense[irow] -= ( ukj*lusup[luptr]
+ ukj1*lusup[luptr1] + ukj2*lusup[luptr2] );
}
}
} else {
/*
* Case: sup-col update
* Perform a triangular solve and block update,
* then scatter the result of sup-col update to dense
*/
no_zeros = kfnz - fst_col;
/* Copy U[*,j] segment from dense[*] to tempv[*] */
isub = lptr + no_zeros;
for (i = 0; i < segsze; i++) {
irow = lsub[isub];
tempv[i] = dense[irow];
++isub;
}
/* Dense triangular solve -- start effective triangle */
luptr += nsupr * no_zeros + no_zeros;
#ifdef USE_VENDOR_BLAS
#ifdef _CRAY
STRSV( ftcs1, ftcs2, ftcs3, &segsze, &lusup[luptr],
&nsupr, tempv, &incx );
#else
strsv_( "L", "N", "U", &segsze, &lusup[luptr],
&nsupr, tempv, &incx );
#endif
luptr += segsze; /* Dense matrix-vector */
tempv1 = &tempv[segsze];
alpha = one;
beta = zero;
#ifdef _CRAY
SGEMV( ftcs2, &nrow, &segsze, &alpha, &lusup[luptr],
&nsupr, tempv, &incx, &beta, tempv1, &incy );
#else
sgemv_( "N", &nrow, &segsze, &alpha, &lusup[luptr],
&nsupr, tempv, &incx, &beta, tempv1, &incy );
#endif
#else
slsolve ( nsupr, segsze, &lusup[luptr], tempv );
luptr += segsze; /* Dense matrix-vector */
tempv1 = &tempv[segsze];
smatvec (nsupr, nrow , segsze, &lusup[luptr], tempv, tempv1);
#endif
/* Scatter tempv[] into SPA dense[] as a temporary storage */
isub = lptr + no_zeros;
for (i = 0; i < segsze; i++) {
irow = lsub[isub];
dense[irow] = tempv[i];
tempv[i] = zero;
++isub;
}
/* Scatter tempv1[] into SPA dense[] */
for (i = 0; i < nrow; i++) {
irow = lsub[isub];
dense[irow] -= tempv1[i];
tempv1[i] = zero;
++isub;
}
}
} /* if jsupno ... */
} /* for each segment... */
/*
* Process the supernodal portion of L\U[*,j]
*/
nextlu = xlusup[jcol];
fsupc = xsup[jsupno];
/* Copy the SPA dense into L\U[*,j] */
new_next = nextlu + xlsub[fsupc+1] - xlsub[fsupc];
while ( new_next > nzlumax ) {
if ((mem_error = sLUMemXpand(jcol, nextlu, LUSUP, &nzlumax, Glu)))
return (mem_error);
lusup = Glu->lusup;
lsub = Glu->lsub;
}
for (isub = xlsub[fsupc]; isub < xlsub[fsupc+1]; isub++) {
irow = lsub[isub];
lusup[nextlu] = dense[irow];
dense[irow] = zero;
++nextlu;
}
xlusup[jcolp1] = nextlu; /* Close L\U[*,jcol] */
/* For more updates within the panel (also within the current supernode),
* should start from the first column of the panel, or the first column
* of the supernode, whichever is bigger. There are 2 cases:
* 1) fsupc < fpanelc, then fst_col := fpanelc
* 2) fsupc >= fpanelc, then fst_col := fsupc
*/
fst_col = SUPERLU_MAX ( fsupc, fpanelc );
if ( fst_col < jcol ) {
/* Distance between the current supernode and the current panel.
d_fsupc=0 if fsupc >= fpanelc. */
d_fsupc = fst_col - fsupc;
lptr = xlsub[fsupc] + d_fsupc;
luptr = xlusup[fst_col] + d_fsupc;
nsupr = xlsub[fsupc+1] - xlsub[fsupc]; /* Leading dimension */
nsupc = jcol - fst_col; /* Excluding jcol */
nrow = nsupr - d_fsupc - nsupc;
/* Points to the beginning of jcol in snode L\U(jsupno) */
ufirst = xlusup[jcol] + d_fsupc;
ops[TRSV] += nsupc * (nsupc - 1);
ops[GEMV] += 2 * nrow * nsupc;
#ifdef USE_VENDOR_BLAS
#ifdef _CRAY
STRSV( ftcs1, ftcs2, ftcs3, &nsupc, &lusup[luptr],
&nsupr, &lusup[ufirst], &incx );
#else
strsv_( "L", "N", "U", &nsupc, &lusup[luptr],
&nsupr, &lusup[ufirst], &incx );
#endif
alpha = none; beta = one; /* y := beta*y + alpha*A*x */
#ifdef _CRAY
SGEMV( ftcs2, &nrow, &nsupc, &alpha, &lusup[luptr+nsupc], &nsupr,
&lusup[ufirst], &incx, &beta, &lusup[ufirst+nsupc], &incy );
#else
sgemv_( "N", &nrow, &nsupc, &alpha, &lusup[luptr+nsupc], &nsupr,
&lusup[ufirst], &incx, &beta, &lusup[ufirst+nsupc], &incy );
#endif
#else
slsolve ( nsupr, nsupc, &lusup[luptr], &lusup[ufirst] );
smatvec ( nsupr, nrow, nsupc, &lusup[luptr+nsupc],
&lusup[ufirst], tempv );
/* Copy updates from tempv[*] into lusup[*] */
isub = ufirst + nsupc;
for (i = 0; i < nrow; i++) {
lusup[isub] -= tempv[i];
tempv[i] = 0.0;
++isub;
}
#endif
} /* if fst_col < jcol ... */
return 0;
}