blender/intern/cycles/render/nodes.cpp
Stefan Werner ec25060a05 Unlimited number of textures for Cycles
This patch allows for an unlimited number of textures in Cycles where the hardware allows. It replaces a number static arrays with dynamic arrays and changes the way the flat_slot indices are calculated. Eventually, I'd like to get to a point where there are only flat slots left and textures off all kinds are stored in a single array.

Note that the arrays in DeviceScene are changed from containing device_vector<T> objects to device_vector<T>* pointers. Ideally, I'd like to store objects, but dynamic resizing of a std:vector in pre-C++11 calls the copy constructor, which for a good reason is not implemented for device_vector. Once we require C++11 for Cycles builds, we can implement a move constructor for device_vector and store objects again.

The limits for CUDA Fermi hardware still apply.

Reviewers: tod_baudais, InsigMathK, dingto, #cycles

Reviewed By: dingto, #cycles

Subscribers: dingto, smellslikedonkey

Differential Revision: https://developer.blender.org/D2650
2017-04-27 09:35:22 +02:00

5594 lines
154 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "render/image.h"
#include "render/integrator.h"
#include "render/nodes.h"
#include "render/scene.h"
#include "render/svm.h"
#include "kernel/svm/svm_color_util.h"
#include "kernel/svm/svm_ramp_util.h"
#include "kernel/svm/svm_math_util.h"
#include "render/osl.h"
#include "render/constant_fold.h"
#include "util/util_sky_model.h"
#include "util/util_foreach.h"
#include "util/util_logging.h"
#include "util/util_transform.h"
CCL_NAMESPACE_BEGIN
/* Texture Mapping */
#define TEXTURE_MAPPING_DEFINE(TextureNode) \
SOCKET_POINT(tex_mapping.translation, "Translation", make_float3(0.0f, 0.0f, 0.0f)); \
SOCKET_VECTOR(tex_mapping.rotation, "Rotation", make_float3(0.0f, 0.0f, 0.0f)); \
SOCKET_VECTOR(tex_mapping.scale, "Scale", make_float3(1.0f, 1.0f, 1.0f)); \
\
SOCKET_VECTOR(tex_mapping.min, "Min", make_float3(-FLT_MAX, -FLT_MAX, -FLT_MAX)); \
SOCKET_VECTOR(tex_mapping.max, "Max", make_float3(FLT_MAX, FLT_MAX, FLT_MAX)); \
SOCKET_BOOLEAN(tex_mapping.use_minmax, "Use Min Max", false); \
\
static NodeEnum mapping_axis_enum; \
mapping_axis_enum.insert("none", TextureMapping::NONE); \
mapping_axis_enum.insert("x", TextureMapping::X); \
mapping_axis_enum.insert("y", TextureMapping::Y); \
mapping_axis_enum.insert("z", TextureMapping::Z); \
SOCKET_ENUM(tex_mapping.x_mapping, "x_mapping", mapping_axis_enum, TextureMapping::X); \
SOCKET_ENUM(tex_mapping.y_mapping, "y_mapping", mapping_axis_enum, TextureMapping::Y); \
SOCKET_ENUM(tex_mapping.z_mapping, "z_mapping", mapping_axis_enum, TextureMapping::Z); \
\
static NodeEnum mapping_type_enum; \
mapping_type_enum.insert("point", TextureMapping::POINT); \
mapping_type_enum.insert("texture", TextureMapping::TEXTURE); \
mapping_type_enum.insert("vector", TextureMapping::VECTOR); \
mapping_type_enum.insert("normal", TextureMapping::NORMAL); \
SOCKET_ENUM(tex_mapping.type, "Type", mapping_type_enum, TextureMapping::TEXTURE); \
\
static NodeEnum mapping_projection_enum; \
mapping_projection_enum.insert("flat", TextureMapping::FLAT); \
mapping_projection_enum.insert("cube", TextureMapping::CUBE); \
mapping_projection_enum.insert("tube", TextureMapping::TUBE); \
mapping_projection_enum.insert("sphere", TextureMapping::SPHERE); \
SOCKET_ENUM(tex_mapping.projection, "Projection", mapping_projection_enum, TextureMapping::FLAT);
TextureMapping::TextureMapping()
{
}
Transform TextureMapping::compute_transform()
{
Transform mmat = transform_scale(make_float3(0.0f, 0.0f, 0.0f));
if(x_mapping != NONE)
mmat[0][x_mapping-1] = 1.0f;
if(y_mapping != NONE)
mmat[1][y_mapping-1] = 1.0f;
if(z_mapping != NONE)
mmat[2][z_mapping-1] = 1.0f;
float3 scale_clamped = scale;
if(type == TEXTURE || type == NORMAL) {
/* keep matrix invertible */
if(fabsf(scale.x) < 1e-5f)
scale_clamped.x = signf(scale.x)*1e-5f;
if(fabsf(scale.y) < 1e-5f)
scale_clamped.y = signf(scale.y)*1e-5f;
if(fabsf(scale.z) < 1e-5f)
scale_clamped.z = signf(scale.z)*1e-5f;
}
Transform smat = transform_scale(scale_clamped);
Transform rmat = transform_euler(rotation);
Transform tmat = transform_translate(translation);
Transform mat;
switch(type) {
case TEXTURE:
/* inverse transform on texture coordinate gives
* forward transform on texture */
mat = tmat*rmat*smat;
mat = transform_inverse(mat);
break;
case POINT:
/* full transform */
mat = tmat*rmat*smat;
break;
case VECTOR:
/* no translation for vectors */
mat = rmat*smat;
break;
case NORMAL:
/* no translation for normals, and inverse transpose */
mat = rmat*smat;
mat = transform_inverse(mat);
mat = transform_transpose(mat);
break;
}
/* projection last */
mat = mat*mmat;
return mat;
}
bool TextureMapping::skip()
{
if(translation != make_float3(0.0f, 0.0f, 0.0f))
return false;
if(rotation != make_float3(0.0f, 0.0f, 0.0f))
return false;
if(scale != make_float3(1.0f, 1.0f, 1.0f))
return false;
if(x_mapping != X || y_mapping != Y || z_mapping != Z)
return false;
if(use_minmax)
return false;
return true;
}
void TextureMapping::compile(SVMCompiler& compiler, int offset_in, int offset_out)
{
compiler.add_node(NODE_MAPPING, offset_in, offset_out);
Transform tfm = compute_transform();
compiler.add_node(tfm.x);
compiler.add_node(tfm.y);
compiler.add_node(tfm.z);
compiler.add_node(tfm.w);
if(use_minmax) {
compiler.add_node(NODE_MIN_MAX, offset_out, offset_out);
compiler.add_node(float3_to_float4(min));
compiler.add_node(float3_to_float4(max));
}
if(type == NORMAL) {
compiler.add_node(NODE_VECTOR_MATH, NODE_VECTOR_MATH_NORMALIZE, offset_out, offset_out);
compiler.add_node(NODE_VECTOR_MATH, SVM_STACK_INVALID, offset_out);
}
}
/* Convenience function for texture nodes, allocating stack space to output
* a modified vector and returning its offset */
int TextureMapping::compile_begin(SVMCompiler& compiler, ShaderInput *vector_in)
{
if(!skip()) {
int offset_in = compiler.stack_assign(vector_in);
int offset_out = compiler.stack_find_offset(SocketType::VECTOR);
compile(compiler, offset_in, offset_out);
return offset_out;
}
return compiler.stack_assign(vector_in);
}
void TextureMapping::compile_end(SVMCompiler& compiler, ShaderInput *vector_in, int vector_offset)
{
if(!skip()) {
compiler.stack_clear_offset(vector_in->type(), vector_offset);
}
}
void TextureMapping::compile(OSLCompiler &compiler)
{
if(!skip()) {
Transform tfm = transform_transpose(compute_transform());
compiler.parameter("mapping", tfm);
compiler.parameter("use_mapping", 1);
}
}
/* Image Texture */
NODE_DEFINE(ImageTextureNode)
{
NodeType* type = NodeType::add("image_texture", create, NodeType::SHADER);
TEXTURE_MAPPING_DEFINE(ImageTextureNode);
SOCKET_STRING(filename, "Filename", ustring(""));
static NodeEnum color_space_enum;
color_space_enum.insert("none", NODE_COLOR_SPACE_NONE);
color_space_enum.insert("color", NODE_COLOR_SPACE_COLOR);
SOCKET_ENUM(color_space, "Color Space", color_space_enum, NODE_COLOR_SPACE_COLOR);
SOCKET_BOOLEAN(use_alpha, "Use Alpha", true);
static NodeEnum interpolation_enum;
interpolation_enum.insert("closest", INTERPOLATION_CLOSEST);
interpolation_enum.insert("linear", INTERPOLATION_LINEAR);
interpolation_enum.insert("cubic", INTERPOLATION_CUBIC);
interpolation_enum.insert("smart", INTERPOLATION_SMART);
SOCKET_ENUM(interpolation, "Interpolation", interpolation_enum, INTERPOLATION_LINEAR);
static NodeEnum extension_enum;
extension_enum.insert("periodic", EXTENSION_REPEAT);
extension_enum.insert("clamp", EXTENSION_EXTEND);
extension_enum.insert("black", EXTENSION_CLIP);
SOCKET_ENUM(extension, "Extension", extension_enum, EXTENSION_REPEAT);
static NodeEnum projection_enum;
projection_enum.insert("flat", NODE_IMAGE_PROJ_FLAT);
projection_enum.insert("box", NODE_IMAGE_PROJ_BOX);
projection_enum.insert("sphere", NODE_IMAGE_PROJ_SPHERE);
projection_enum.insert("tube", NODE_IMAGE_PROJ_TUBE);
SOCKET_ENUM(projection, "Projection", projection_enum, NODE_IMAGE_PROJ_FLAT);
SOCKET_FLOAT(projection_blend, "Projection Blend", 0.0f);
SOCKET_IN_POINT(vector, "Vector", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TEXTURE_UV);
SOCKET_OUT_COLOR(color, "Color");
SOCKET_OUT_FLOAT(alpha, "Alpha");
return type;
}
ImageTextureNode::ImageTextureNode()
: ImageSlotTextureNode(node_type)
{
image_manager = NULL;
slot = -1;
is_float = -1;
is_linear = false;
builtin_data = NULL;
animated = false;
}
ImageTextureNode::~ImageTextureNode()
{
if(image_manager) {
image_manager->remove_image(filename.string(),
builtin_data,
interpolation,
extension,
use_alpha);
}
}
ShaderNode *ImageTextureNode::clone() const
{
ImageTextureNode *node = new ImageTextureNode(*this);
node->image_manager = NULL;
node->slot = -1;
node->is_float = -1;
node->is_linear = false;
return node;
}
void ImageTextureNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
#ifdef WITH_PTEX
/* todo: avoid loading other texture coordinates when using ptex,
* and hide texture coordinate socket in the UI */
if(shader->has_surface && string_endswith(filename, ".ptx")) {
/* ptex */
attributes->add(ATTR_STD_PTEX_FACE_ID);
attributes->add(ATTR_STD_PTEX_UV);
}
#endif
ShaderNode::attributes(shader, attributes);
}
void ImageTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderOutput *color_out = output("Color");
ShaderOutput *alpha_out = output("Alpha");
image_manager = compiler.image_manager;
if(is_float == -1) {
bool is_float_bool;
slot = image_manager->add_image(filename.string(),
builtin_data,
animated,
0,
is_float_bool,
is_linear,
interpolation,
extension,
use_alpha);
is_float = (int)is_float_bool;
}
if(slot != -1) {
int srgb = (is_linear || color_space != NODE_COLOR_SPACE_COLOR)? 0: 1;
int vector_offset = tex_mapping.compile_begin(compiler, vector_in);
if(projection != NODE_IMAGE_PROJ_BOX) {
compiler.add_node(NODE_TEX_IMAGE,
slot,
compiler.encode_uchar4(
vector_offset,
compiler.stack_assign_if_linked(color_out),
compiler.stack_assign_if_linked(alpha_out),
srgb),
projection);
}
else {
compiler.add_node(NODE_TEX_IMAGE_BOX,
slot,
compiler.encode_uchar4(
vector_offset,
compiler.stack_assign_if_linked(color_out),
compiler.stack_assign_if_linked(alpha_out),
srgb),
__float_as_int(projection_blend));
}
tex_mapping.compile_end(compiler, vector_in, vector_offset);
}
else {
/* image not found */
if(!color_out->links.empty()) {
compiler.add_node(NODE_VALUE_V, compiler.stack_assign(color_out));
compiler.add_node(NODE_VALUE_V, make_float3(TEX_IMAGE_MISSING_R,
TEX_IMAGE_MISSING_G,
TEX_IMAGE_MISSING_B));
}
if(!alpha_out->links.empty())
compiler.add_node(NODE_VALUE_F, __float_as_int(TEX_IMAGE_MISSING_A), compiler.stack_assign(alpha_out));
}
}
void ImageTextureNode::compile(OSLCompiler& compiler)
{
ShaderOutput *alpha_out = output("Alpha");
tex_mapping.compile(compiler);
image_manager = compiler.image_manager;
if(is_float == -1) {
if(builtin_data == NULL) {
ImageDataType type;
type = image_manager->get_image_metadata(filename.string(), NULL, is_linear);
if(type == IMAGE_DATA_TYPE_FLOAT || type == IMAGE_DATA_TYPE_FLOAT4)
is_float = 1;
}
else {
bool is_float_bool;
slot = image_manager->add_image(filename.string(),
builtin_data,
animated,
0,
is_float_bool,
is_linear,
interpolation,
extension,
use_alpha);
is_float = (int)is_float_bool;
}
}
if(slot == -1) {
compiler.parameter(this, "filename");
}
else {
/* TODO(sergey): It's not so simple to pass custom attribute
* to the texture() function in order to make builtin images
* support more clear. So we use special file name which is
* "@<slot_number>" and check whether file name matches this
* mask in the OSLRenderServices::texture().
*/
compiler.parameter("filename", string_printf("@%d", slot).c_str());
}
if(is_linear || color_space != NODE_COLOR_SPACE_COLOR)
compiler.parameter("color_space", "linear");
else
compiler.parameter("color_space", "sRGB");
compiler.parameter(this, "projection");
compiler.parameter(this, "projection_blend");
compiler.parameter("is_float", is_float);
compiler.parameter("use_alpha", !alpha_out->links.empty());
compiler.parameter(this, "interpolation");
compiler.parameter(this, "extension");
compiler.add(this, "node_image_texture");
}
/* Environment Texture */
NODE_DEFINE(EnvironmentTextureNode)
{
NodeType* type = NodeType::add("environment_texture", create, NodeType::SHADER);
TEXTURE_MAPPING_DEFINE(EnvironmentTextureNode);
SOCKET_STRING(filename, "Filename", ustring(""));
static NodeEnum color_space_enum;
color_space_enum.insert("none", NODE_COLOR_SPACE_NONE);
color_space_enum.insert("color", NODE_COLOR_SPACE_COLOR);
SOCKET_ENUM(color_space, "Color Space", color_space_enum, NODE_COLOR_SPACE_COLOR);
SOCKET_BOOLEAN(use_alpha, "Use Alpha", true);
static NodeEnum interpolation_enum;
interpolation_enum.insert("closest", INTERPOLATION_CLOSEST);
interpolation_enum.insert("linear", INTERPOLATION_LINEAR);
interpolation_enum.insert("cubic", INTERPOLATION_CUBIC);
interpolation_enum.insert("smart", INTERPOLATION_SMART);
SOCKET_ENUM(interpolation, "Interpolation", interpolation_enum, INTERPOLATION_LINEAR);
static NodeEnum projection_enum;
projection_enum.insert("equirectangular", NODE_ENVIRONMENT_EQUIRECTANGULAR);
projection_enum.insert("mirror_ball", NODE_ENVIRONMENT_MIRROR_BALL);
SOCKET_ENUM(projection, "Projection", projection_enum, NODE_ENVIRONMENT_EQUIRECTANGULAR);
SOCKET_IN_POINT(vector, "Vector", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_POSITION);
SOCKET_OUT_COLOR(color, "Color");
SOCKET_OUT_FLOAT(alpha, "Alpha");
return type;
}
EnvironmentTextureNode::EnvironmentTextureNode()
: ImageSlotTextureNode(node_type)
{
image_manager = NULL;
slot = -1;
is_float = -1;
is_linear = false;
builtin_data = NULL;
animated = false;
}
EnvironmentTextureNode::~EnvironmentTextureNode()
{
if(image_manager) {
image_manager->remove_image(filename.string(),
builtin_data,
interpolation,
EXTENSION_REPEAT,
use_alpha);
}
}
ShaderNode *EnvironmentTextureNode::clone() const
{
EnvironmentTextureNode *node = new EnvironmentTextureNode(*this);
node->image_manager = NULL;
node->slot = -1;
node->is_float = -1;
node->is_linear = false;
return node;
}
void EnvironmentTextureNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
#ifdef WITH_PTEX
if(shader->has_surface && string_endswith(filename, ".ptx")) {
/* ptex */
attributes->add(ATTR_STD_PTEX_FACE_ID);
attributes->add(ATTR_STD_PTEX_UV);
}
#endif
ShaderNode::attributes(shader, attributes);
}
void EnvironmentTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderOutput *color_out = output("Color");
ShaderOutput *alpha_out = output("Alpha");
image_manager = compiler.image_manager;
if(slot == -1) {
bool is_float_bool;
slot = image_manager->add_image(filename.string(),
builtin_data,
animated,
0,
is_float_bool,
is_linear,
interpolation,
EXTENSION_REPEAT,
use_alpha);
is_float = (int)is_float_bool;
}
if(slot != -1) {
int srgb = (is_linear || color_space != NODE_COLOR_SPACE_COLOR)? 0: 1;
int vector_offset = tex_mapping.compile_begin(compiler, vector_in);
compiler.add_node(NODE_TEX_ENVIRONMENT,
slot,
compiler.encode_uchar4(
vector_offset,
compiler.stack_assign_if_linked(color_out),
compiler.stack_assign_if_linked(alpha_out),
srgb),
projection);
tex_mapping.compile_end(compiler, vector_in, vector_offset);
}
else {
/* image not found */
if(!color_out->links.empty()) {
compiler.add_node(NODE_VALUE_V, compiler.stack_assign(color_out));
compiler.add_node(NODE_VALUE_V, make_float3(TEX_IMAGE_MISSING_R,
TEX_IMAGE_MISSING_G,
TEX_IMAGE_MISSING_B));
}
if(!alpha_out->links.empty())
compiler.add_node(NODE_VALUE_F, __float_as_int(TEX_IMAGE_MISSING_A), compiler.stack_assign(alpha_out));
}
}
void EnvironmentTextureNode::compile(OSLCompiler& compiler)
{
ShaderOutput *alpha_out = output("Alpha");
tex_mapping.compile(compiler);
/* See comments in ImageTextureNode::compile about support
* of builtin images.
*/
image_manager = compiler.image_manager;
if(is_float == -1) {
if(builtin_data == NULL) {
ImageDataType type;
type = image_manager->get_image_metadata(filename.string(), NULL, is_linear);
if(type == IMAGE_DATA_TYPE_FLOAT || type == IMAGE_DATA_TYPE_FLOAT4)
is_float = 1;
}
else {
bool is_float_bool;
slot = image_manager->add_image(filename.string(),
builtin_data,
animated,
0,
is_float_bool,
is_linear,
interpolation,
EXTENSION_REPEAT,
use_alpha);
is_float = (int)is_float_bool;
}
}
if(slot == -1) {
compiler.parameter(this, "filename");
}
else {
compiler.parameter("filename", string_printf("@%d", slot).c_str());
}
compiler.parameter(this, "projection");
if(is_linear || color_space != NODE_COLOR_SPACE_COLOR)
compiler.parameter("color_space", "linear");
else
compiler.parameter("color_space", "sRGB");
compiler.parameter(this, "interpolation");
compiler.parameter("is_float", is_float);
compiler.parameter("use_alpha", !alpha_out->links.empty());
compiler.add(this, "node_environment_texture");
}
/* Sky Texture */
static float2 sky_spherical_coordinates(float3 dir)
{
return make_float2(acosf(dir.z), atan2f(dir.x, dir.y));
}
typedef struct SunSky {
/* sun direction in spherical and cartesian */
float theta, phi;
/* Parameter */
float radiance_x, radiance_y, radiance_z;
float config_x[9], config_y[9], config_z[9];
} SunSky;
/* Preetham model */
static float sky_perez_function(float lam[6], float theta, float gamma)
{
return (1.0f + lam[0]*expf(lam[1]/cosf(theta))) * (1.0f + lam[2]*expf(lam[3]*gamma) + lam[4]*cosf(gamma)*cosf(gamma));
}
static void sky_texture_precompute_old(SunSky *sunsky, float3 dir, float turbidity)
{
/*
* We re-use the SunSky struct of the new model, to avoid extra variables
* zenith_Y/x/y is now radiance_x/y/z
* perez_Y/x/y is now config_x/y/z
*/
float2 spherical = sky_spherical_coordinates(dir);
float theta = spherical.x;
float phi = spherical.y;
sunsky->theta = theta;
sunsky->phi = phi;
float theta2 = theta*theta;
float theta3 = theta2*theta;
float T = turbidity;
float T2 = T * T;
float chi = (4.0f / 9.0f - T / 120.0f) * (M_PI_F - 2.0f * theta);
sunsky->radiance_x = (4.0453f * T - 4.9710f) * tanf(chi) - 0.2155f * T + 2.4192f;
sunsky->radiance_x *= 0.06f;
sunsky->radiance_y =
(0.00166f * theta3 - 0.00375f * theta2 + 0.00209f * theta) * T2 +
(-0.02903f * theta3 + 0.06377f * theta2 - 0.03202f * theta + 0.00394f) * T +
(0.11693f * theta3 - 0.21196f * theta2 + 0.06052f * theta + 0.25886f);
sunsky->radiance_z =
(0.00275f * theta3 - 0.00610f * theta2 + 0.00317f * theta) * T2 +
(-0.04214f * theta3 + 0.08970f * theta2 - 0.04153f * theta + 0.00516f) * T +
(0.15346f * theta3 - 0.26756f * theta2 + 0.06670f * theta + 0.26688f);
sunsky->config_x[0] = (0.1787f * T - 1.4630f);
sunsky->config_x[1] = (-0.3554f * T + 0.4275f);
sunsky->config_x[2] = (-0.0227f * T + 5.3251f);
sunsky->config_x[3] = (0.1206f * T - 2.5771f);
sunsky->config_x[4] = (-0.0670f * T + 0.3703f);
sunsky->config_y[0] = (-0.0193f * T - 0.2592f);
sunsky->config_y[1] = (-0.0665f * T + 0.0008f);
sunsky->config_y[2] = (-0.0004f * T + 0.2125f);
sunsky->config_y[3] = (-0.0641f * T - 0.8989f);
sunsky->config_y[4] = (-0.0033f * T + 0.0452f);
sunsky->config_z[0] = (-0.0167f * T - 0.2608f);
sunsky->config_z[1] = (-0.0950f * T + 0.0092f);
sunsky->config_z[2] = (-0.0079f * T + 0.2102f);
sunsky->config_z[3] = (-0.0441f * T - 1.6537f);
sunsky->config_z[4] = (-0.0109f * T + 0.0529f);
/* unused for old sky model */
for(int i = 5; i < 9; i++) {
sunsky->config_x[i] = 0.0f;
sunsky->config_y[i] = 0.0f;
sunsky->config_z[i] = 0.0f;
}
sunsky->radiance_x /= sky_perez_function(sunsky->config_x, 0, theta);
sunsky->radiance_y /= sky_perez_function(sunsky->config_y, 0, theta);
sunsky->radiance_z /= sky_perez_function(sunsky->config_z, 0, theta);
}
/* Hosek / Wilkie */
static void sky_texture_precompute_new(SunSky *sunsky, float3 dir, float turbidity, float ground_albedo)
{
/* Calculate Sun Direction and save coordinates */
float2 spherical = sky_spherical_coordinates(dir);
float theta = spherical.x;
float phi = spherical.y;
/* Clamp Turbidity */
turbidity = clamp(turbidity, 0.0f, 10.0f);
/* Clamp to Horizon */
theta = clamp(theta, 0.0f, M_PI_2_F);
sunsky->theta = theta;
sunsky->phi = phi;
float solarElevation = M_PI_2_F - theta;
/* Initialize Sky Model */
ArHosekSkyModelState *sky_state;
sky_state = arhosek_xyz_skymodelstate_alloc_init((double)turbidity, (double)ground_albedo, (double)solarElevation);
/* Copy values from sky_state to SunSky */
for(int i = 0; i < 9; ++i) {
sunsky->config_x[i] = (float)sky_state->configs[0][i];
sunsky->config_y[i] = (float)sky_state->configs[1][i];
sunsky->config_z[i] = (float)sky_state->configs[2][i];
}
sunsky->radiance_x = (float)sky_state->radiances[0];
sunsky->radiance_y = (float)sky_state->radiances[1];
sunsky->radiance_z = (float)sky_state->radiances[2];
/* Free sky_state */
arhosekskymodelstate_free(sky_state);
}
NODE_DEFINE(SkyTextureNode)
{
NodeType* type = NodeType::add("sky_texture", create, NodeType::SHADER);
TEXTURE_MAPPING_DEFINE(SkyTextureNode);
static NodeEnum type_enum;
type_enum.insert("preetham", NODE_SKY_OLD);
type_enum.insert("hosek_wilkie", NODE_SKY_NEW);
SOCKET_ENUM(type, "Type", type_enum, NODE_SKY_NEW);
SOCKET_VECTOR(sun_direction, "Sun Direction", make_float3(0.0f, 0.0f, 1.0f));
SOCKET_FLOAT(turbidity, "Turbidity", 2.2f);
SOCKET_FLOAT(ground_albedo, "Ground Albedo", 0.3f);
SOCKET_IN_POINT(vector, "Vector", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TEXTURE_GENERATED);
SOCKET_OUT_COLOR(color, "Color");
return type;
}
SkyTextureNode::SkyTextureNode()
: TextureNode(node_type)
{
}
void SkyTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderOutput *color_out = output("Color");
SunSky sunsky;
if(type == NODE_SKY_OLD)
sky_texture_precompute_old(&sunsky, sun_direction, turbidity);
else if(type == NODE_SKY_NEW)
sky_texture_precompute_new(&sunsky, sun_direction, turbidity, ground_albedo);
else
assert(false);
int vector_offset = tex_mapping.compile_begin(compiler, vector_in);
compiler.stack_assign(color_out);
compiler.add_node(NODE_TEX_SKY, vector_offset, compiler.stack_assign(color_out), type);
compiler.add_node(__float_as_uint(sunsky.phi), __float_as_uint(sunsky.theta), __float_as_uint(sunsky.radiance_x), __float_as_uint(sunsky.radiance_y));
compiler.add_node(__float_as_uint(sunsky.radiance_z), __float_as_uint(sunsky.config_x[0]), __float_as_uint(sunsky.config_x[1]), __float_as_uint(sunsky.config_x[2]));
compiler.add_node(__float_as_uint(sunsky.config_x[3]), __float_as_uint(sunsky.config_x[4]), __float_as_uint(sunsky.config_x[5]), __float_as_uint(sunsky.config_x[6]));
compiler.add_node(__float_as_uint(sunsky.config_x[7]), __float_as_uint(sunsky.config_x[8]), __float_as_uint(sunsky.config_y[0]), __float_as_uint(sunsky.config_y[1]));
compiler.add_node(__float_as_uint(sunsky.config_y[2]), __float_as_uint(sunsky.config_y[3]), __float_as_uint(sunsky.config_y[4]), __float_as_uint(sunsky.config_y[5]));
compiler.add_node(__float_as_uint(sunsky.config_y[6]), __float_as_uint(sunsky.config_y[7]), __float_as_uint(sunsky.config_y[8]), __float_as_uint(sunsky.config_z[0]));
compiler.add_node(__float_as_uint(sunsky.config_z[1]), __float_as_uint(sunsky.config_z[2]), __float_as_uint(sunsky.config_z[3]), __float_as_uint(sunsky.config_z[4]));
compiler.add_node(__float_as_uint(sunsky.config_z[5]), __float_as_uint(sunsky.config_z[6]), __float_as_uint(sunsky.config_z[7]), __float_as_uint(sunsky.config_z[8]));
tex_mapping.compile_end(compiler, vector_in, vector_offset);
}
void SkyTextureNode::compile(OSLCompiler& compiler)
{
tex_mapping.compile(compiler);
SunSky sunsky;
if(type == NODE_SKY_OLD)
sky_texture_precompute_old(&sunsky, sun_direction, turbidity);
else if(type == NODE_SKY_NEW)
sky_texture_precompute_new(&sunsky, sun_direction, turbidity, ground_albedo);
else
assert(false);
compiler.parameter(this, "type");
compiler.parameter("theta", sunsky.theta);
compiler.parameter("phi", sunsky.phi);
compiler.parameter_color("radiance", make_float3(sunsky.radiance_x, sunsky.radiance_y, sunsky.radiance_z));
compiler.parameter_array("config_x", sunsky.config_x, 9);
compiler.parameter_array("config_y", sunsky.config_y, 9);
compiler.parameter_array("config_z", sunsky.config_z, 9);
compiler.add(this, "node_sky_texture");
}
/* Gradient Texture */
NODE_DEFINE(GradientTextureNode)
{
NodeType* type = NodeType::add("gradient_texture", create, NodeType::SHADER);
TEXTURE_MAPPING_DEFINE(GradientTextureNode);
static NodeEnum type_enum;
type_enum.insert("linear", NODE_BLEND_LINEAR);
type_enum.insert("quadratic", NODE_BLEND_QUADRATIC);
type_enum.insert("easing", NODE_BLEND_EASING);
type_enum.insert("diagonal", NODE_BLEND_DIAGONAL);
type_enum.insert("radial", NODE_BLEND_RADIAL);
type_enum.insert("quadratic_sphere", NODE_BLEND_QUADRATIC_SPHERE);
type_enum.insert("spherical", NODE_BLEND_SPHERICAL);
SOCKET_ENUM(type, "Type", type_enum, NODE_BLEND_LINEAR);
SOCKET_IN_POINT(vector, "Vector", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TEXTURE_GENERATED);
SOCKET_OUT_COLOR(color, "Color");
SOCKET_OUT_FLOAT(fac, "Fac");
return type;
}
GradientTextureNode::GradientTextureNode()
: TextureNode(node_type)
{
}
void GradientTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderOutput *color_out = output("Color");
ShaderOutput *fac_out = output("Fac");
int vector_offset = tex_mapping.compile_begin(compiler, vector_in);
compiler.add_node(NODE_TEX_GRADIENT,
compiler.encode_uchar4(
type,
vector_offset,
compiler.stack_assign_if_linked(fac_out),
compiler.stack_assign_if_linked(color_out)));
tex_mapping.compile_end(compiler, vector_in, vector_offset);
}
void GradientTextureNode::compile(OSLCompiler& compiler)
{
tex_mapping.compile(compiler);
compiler.parameter(this, "type");
compiler.add(this, "node_gradient_texture");
}
/* Noise Texture */
NODE_DEFINE(NoiseTextureNode)
{
NodeType* type = NodeType::add("noise_texture", create, NodeType::SHADER);
TEXTURE_MAPPING_DEFINE(NoiseTextureNode);
SOCKET_IN_FLOAT(scale, "Scale", 1.0f);
SOCKET_IN_FLOAT(detail, "Detail", 2.0f);
SOCKET_IN_FLOAT(distortion, "Distortion", 0.0f);
SOCKET_IN_POINT(vector, "Vector", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TEXTURE_GENERATED);
SOCKET_OUT_COLOR(color, "Color");
SOCKET_OUT_FLOAT(fac, "Fac");
return type;
}
NoiseTextureNode::NoiseTextureNode()
: TextureNode(node_type)
{
}
void NoiseTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *distortion_in = input("Distortion");
ShaderInput *detail_in = input("Detail");
ShaderInput *scale_in = input("Scale");
ShaderInput *vector_in = input("Vector");
ShaderOutput *color_out = output("Color");
ShaderOutput *fac_out = output("Fac");
int vector_offset = tex_mapping.compile_begin(compiler, vector_in);
compiler.add_node(NODE_TEX_NOISE,
compiler.encode_uchar4(
vector_offset,
compiler.stack_assign_if_linked(scale_in),
compiler.stack_assign_if_linked(detail_in),
compiler.stack_assign_if_linked(distortion_in)),
compiler.encode_uchar4(
compiler.stack_assign_if_linked(color_out),
compiler.stack_assign_if_linked(fac_out)));
compiler.add_node(
__float_as_int(scale),
__float_as_int(detail),
__float_as_int(distortion));
tex_mapping.compile_end(compiler, vector_in, vector_offset);
}
void NoiseTextureNode::compile(OSLCompiler& compiler)
{
tex_mapping.compile(compiler);
compiler.add(this, "node_noise_texture");
}
/* Voronoi Texture */
NODE_DEFINE(VoronoiTextureNode)
{
NodeType* type = NodeType::add("voronoi_texture", create, NodeType::SHADER);
TEXTURE_MAPPING_DEFINE(VoronoiTextureNode);
static NodeEnum coloring_enum;
coloring_enum.insert("intensity", NODE_VORONOI_INTENSITY);
coloring_enum.insert("cells", NODE_VORONOI_CELLS);
SOCKET_ENUM(coloring, "Coloring", coloring_enum, NODE_VORONOI_INTENSITY);
SOCKET_IN_FLOAT(scale, "Scale", 1.0f);
SOCKET_IN_POINT(vector, "Vector", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TEXTURE_GENERATED);
SOCKET_OUT_COLOR(color, "Color");
SOCKET_OUT_FLOAT(fac, "Fac");
return type;
}
VoronoiTextureNode::VoronoiTextureNode()
: TextureNode(node_type)
{
}
void VoronoiTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *scale_in = input("Scale");
ShaderInput *vector_in = input("Vector");
ShaderOutput *color_out = output("Color");
ShaderOutput *fac_out = output("Fac");
int vector_offset = tex_mapping.compile_begin(compiler, vector_in);
compiler.add_node(NODE_TEX_VORONOI,
coloring,
compiler.encode_uchar4(
compiler.stack_assign_if_linked(scale_in),
vector_offset,
compiler.stack_assign(fac_out),
compiler.stack_assign(color_out)),
__float_as_int(scale));
tex_mapping.compile_end(compiler, vector_in, vector_offset);
}
void VoronoiTextureNode::compile(OSLCompiler& compiler)
{
tex_mapping.compile(compiler);
compiler.parameter(this, "coloring");
compiler.add(this, "node_voronoi_texture");
}
/* Musgrave Texture */
NODE_DEFINE(MusgraveTextureNode)
{
NodeType* type = NodeType::add("musgrave_texture", create, NodeType::SHADER);
TEXTURE_MAPPING_DEFINE(MusgraveTextureNode);
static NodeEnum type_enum;
type_enum.insert("multifractal", NODE_MUSGRAVE_MULTIFRACTAL);
type_enum.insert("fBM", NODE_MUSGRAVE_FBM);
type_enum.insert("hybrid_multifractal", NODE_MUSGRAVE_HYBRID_MULTIFRACTAL);
type_enum.insert("ridged_multifractal", NODE_MUSGRAVE_RIDGED_MULTIFRACTAL);
type_enum.insert("hetero_terrain", NODE_MUSGRAVE_HETERO_TERRAIN);
SOCKET_ENUM(type, "Type", type_enum, NODE_MUSGRAVE_FBM);
SOCKET_IN_FLOAT(scale, "Scale", 1.0f);
SOCKET_IN_FLOAT(detail, "Detail", 2.0f);
SOCKET_IN_FLOAT(dimension, "Dimension", 2.0f);
SOCKET_IN_FLOAT(lacunarity, "Lacunarity", 1.0f);
SOCKET_IN_FLOAT(offset, "Offset", 0.0f);
SOCKET_IN_FLOAT(gain, "Gain", 1.0f);
SOCKET_IN_POINT(vector, "Vector", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TEXTURE_GENERATED);
SOCKET_OUT_COLOR(color, "Color");
SOCKET_OUT_FLOAT(fac, "Fac");
return type;
}
MusgraveTextureNode::MusgraveTextureNode()
: TextureNode(node_type)
{
}
void MusgraveTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderInput *scale_in = input("Scale");
ShaderInput *dimension_in = input("Dimension");
ShaderInput *lacunarity_in = input("Lacunarity");
ShaderInput *detail_in = input("Detail");
ShaderInput *offset_in = input("Offset");
ShaderInput *gain_in = input("Gain");
ShaderOutput *fac_out = output("Fac");
ShaderOutput *color_out = output("Color");
int vector_offset = tex_mapping.compile_begin(compiler, vector_in);
compiler.add_node(NODE_TEX_MUSGRAVE,
compiler.encode_uchar4(
type,
vector_offset,
compiler.stack_assign_if_linked(color_out),
compiler.stack_assign_if_linked(fac_out)),
compiler.encode_uchar4(
compiler.stack_assign_if_linked(dimension_in),
compiler.stack_assign_if_linked(lacunarity_in),
compiler.stack_assign_if_linked(detail_in),
compiler.stack_assign_if_linked(offset_in)),
compiler.encode_uchar4(
compiler.stack_assign_if_linked(gain_in),
compiler.stack_assign_if_linked(scale_in)));
compiler.add_node(__float_as_int(dimension),
__float_as_int(lacunarity),
__float_as_int(detail),
__float_as_int(offset));
compiler.add_node(__float_as_int(gain),
__float_as_int(scale));
tex_mapping.compile_end(compiler, vector_in, vector_offset);
}
void MusgraveTextureNode::compile(OSLCompiler& compiler)
{
tex_mapping.compile(compiler);
compiler.parameter(this, "type");
compiler.add(this, "node_musgrave_texture");
}
/* Wave Texture */
NODE_DEFINE(WaveTextureNode)
{
NodeType* type = NodeType::add("wave_texture", create, NodeType::SHADER);
TEXTURE_MAPPING_DEFINE(WaveTextureNode);
static NodeEnum type_enum;
type_enum.insert("bands", NODE_WAVE_BANDS);
type_enum.insert("rings", NODE_WAVE_RINGS);
SOCKET_ENUM(type, "Type", type_enum, NODE_WAVE_BANDS);
static NodeEnum profile_enum;
profile_enum.insert("sine", NODE_WAVE_PROFILE_SIN);
profile_enum.insert("saw", NODE_WAVE_PROFILE_SAW);
SOCKET_ENUM(profile, "Profile", profile_enum, NODE_WAVE_PROFILE_SIN);
SOCKET_IN_FLOAT(scale, "Scale", 1.0f);
SOCKET_IN_FLOAT(distortion, "Distortion", 0.0f);
SOCKET_IN_FLOAT(detail, "Detail", 2.0f);
SOCKET_IN_FLOAT(detail_scale, "Detail Scale", 0.0f);
SOCKET_IN_POINT(vector, "Vector", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TEXTURE_GENERATED);
SOCKET_OUT_COLOR(color, "Color");
SOCKET_OUT_FLOAT(fac, "Fac");
return type;
}
WaveTextureNode::WaveTextureNode()
: TextureNode(node_type)
{
}
void WaveTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *scale_in = input("Scale");
ShaderInput *distortion_in = input("Distortion");
ShaderInput *dscale_in = input("Detail Scale");
ShaderInput *detail_in = input("Detail");
ShaderInput *vector_in = input("Vector");
ShaderOutput *fac_out = output("Fac");
ShaderOutput *color_out = output("Color");
int vector_offset = tex_mapping.compile_begin(compiler, vector_in);
compiler.add_node(NODE_TEX_WAVE,
compiler.encode_uchar4(
type,
compiler.stack_assign_if_linked(color_out),
compiler.stack_assign_if_linked(fac_out),
compiler.stack_assign_if_linked(dscale_in)),
compiler.encode_uchar4(
vector_offset,
compiler.stack_assign_if_linked(scale_in),
compiler.stack_assign_if_linked(detail_in),
compiler.stack_assign_if_linked(distortion_in)),
profile);
compiler.add_node(
__float_as_int(scale),
__float_as_int(detail),
__float_as_int(distortion),
__float_as_int(detail_scale));
tex_mapping.compile_end(compiler, vector_in, vector_offset);
}
void WaveTextureNode::compile(OSLCompiler& compiler)
{
tex_mapping.compile(compiler);
compiler.parameter(this, "type");
compiler.parameter(this, "profile");
compiler.add(this, "node_wave_texture");
}
/* Magic Texture */
NODE_DEFINE(MagicTextureNode)
{
NodeType* type = NodeType::add("magic_texture", create, NodeType::SHADER);
TEXTURE_MAPPING_DEFINE(MagicTextureNode);
SOCKET_INT(depth, "Depth", 2);
SOCKET_IN_POINT(vector, "Vector", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TEXTURE_GENERATED);
SOCKET_IN_FLOAT(scale, "Scale", 5.0f);
SOCKET_IN_FLOAT(distortion, "Distortion", 1.0f);
SOCKET_OUT_COLOR(color, "Color");
SOCKET_OUT_FLOAT(fac, "Fac");
return type;
}
MagicTextureNode::MagicTextureNode()
: TextureNode(node_type)
{
}
void MagicTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderInput *scale_in = input("Scale");
ShaderInput *distortion_in = input("Distortion");
ShaderOutput *color_out = output("Color");
ShaderOutput *fac_out = output("Fac");
int vector_offset = tex_mapping.compile_begin(compiler, vector_in);
compiler.add_node(NODE_TEX_MAGIC,
compiler.encode_uchar4(
depth,
compiler.stack_assign_if_linked(color_out),
compiler.stack_assign_if_linked(fac_out)),
compiler.encode_uchar4(
vector_offset,
compiler.stack_assign_if_linked(scale_in),
compiler.stack_assign_if_linked(distortion_in)));
compiler.add_node(
__float_as_int(scale),
__float_as_int(distortion));
tex_mapping.compile_end(compiler, vector_in, vector_offset);
}
void MagicTextureNode::compile(OSLCompiler& compiler)
{
tex_mapping.compile(compiler);
compiler.parameter(this, "depth");
compiler.add(this, "node_magic_texture");
}
/* Checker Texture */
NODE_DEFINE(CheckerTextureNode)
{
NodeType* type = NodeType::add("checker_texture", create, NodeType::SHADER);
TEXTURE_MAPPING_DEFINE(CheckerTextureNode);
SOCKET_IN_POINT(vector, "Vector", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TEXTURE_GENERATED);
SOCKET_IN_COLOR(color1, "Color1", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_IN_COLOR(color2, "Color2", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_IN_FLOAT(scale, "Scale", 1.0f);
SOCKET_OUT_COLOR(color, "Color");
SOCKET_OUT_FLOAT(fac, "Fac");
return type;
}
CheckerTextureNode::CheckerTextureNode()
: TextureNode(node_type)
{
}
void CheckerTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderInput *color1_in = input("Color1");
ShaderInput *color2_in = input("Color2");
ShaderInput *scale_in = input("Scale");
ShaderOutput *color_out = output("Color");
ShaderOutput *fac_out = output("Fac");
int vector_offset = tex_mapping.compile_begin(compiler, vector_in);
compiler.add_node(NODE_TEX_CHECKER,
compiler.encode_uchar4(
vector_offset,
compiler.stack_assign(color1_in),
compiler.stack_assign(color2_in),
compiler.stack_assign_if_linked(scale_in)),
compiler.encode_uchar4(
compiler.stack_assign_if_linked(color_out),
compiler.stack_assign_if_linked(fac_out)),
__float_as_int(scale));
tex_mapping.compile_end(compiler, vector_in, vector_offset);
}
void CheckerTextureNode::compile(OSLCompiler& compiler)
{
tex_mapping.compile(compiler);
compiler.add(this, "node_checker_texture");
}
/* Brick Texture */
NODE_DEFINE(BrickTextureNode)
{
NodeType* type = NodeType::add("brick_texture", create, NodeType::SHADER);
TEXTURE_MAPPING_DEFINE(BrickTextureNode);
SOCKET_FLOAT(offset, "Offset", 0.5f);
SOCKET_INT(offset_frequency, "Offset Frequency", 2);
SOCKET_FLOAT(squash, "Squash", 1.0f);
SOCKET_INT(squash_frequency, "Squash Frequency", 2);
SOCKET_IN_POINT(vector, "Vector", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TEXTURE_GENERATED);
SOCKET_IN_COLOR(color1, "Color1", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_IN_COLOR(color2, "Color2", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_IN_COLOR(mortar, "Mortar", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_IN_FLOAT(scale, "Scale", 5.0f);
SOCKET_IN_FLOAT(mortar_size, "Mortar Size", 0.02f);
SOCKET_IN_FLOAT(mortar_smooth, "Mortar Smooth", 0.0f);
SOCKET_IN_FLOAT(bias, "Bias", 0.0f);
SOCKET_IN_FLOAT(brick_width, "Brick Width", 0.5f);
SOCKET_IN_FLOAT(row_height, "Row Height", 0.25f);
SOCKET_OUT_COLOR(color, "Color");
SOCKET_OUT_FLOAT(fac, "Fac");
return type;
}
BrickTextureNode::BrickTextureNode()
: TextureNode(node_type)
{
}
void BrickTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderInput *color1_in = input("Color1");
ShaderInput *color2_in = input("Color2");
ShaderInput *mortar_in = input("Mortar");
ShaderInput *scale_in = input("Scale");
ShaderInput *mortar_size_in = input("Mortar Size");
ShaderInput *mortar_smooth_in = input("Mortar Smooth");
ShaderInput *bias_in = input("Bias");
ShaderInput *brick_width_in = input("Brick Width");
ShaderInput *row_height_in = input("Row Height");
ShaderOutput *color_out = output("Color");
ShaderOutput *fac_out = output("Fac");
int vector_offset = tex_mapping.compile_begin(compiler, vector_in);
compiler.add_node(NODE_TEX_BRICK,
compiler.encode_uchar4(
vector_offset,
compiler.stack_assign(color1_in),
compiler.stack_assign(color2_in),
compiler.stack_assign(mortar_in)),
compiler.encode_uchar4(
compiler.stack_assign_if_linked(scale_in),
compiler.stack_assign_if_linked(mortar_size_in),
compiler.stack_assign_if_linked(bias_in),
compiler.stack_assign_if_linked(brick_width_in)),
compiler.encode_uchar4(
compiler.stack_assign_if_linked(row_height_in),
compiler.stack_assign_if_linked(color_out),
compiler.stack_assign_if_linked(fac_out),
compiler.stack_assign_if_linked(mortar_smooth_in)));
compiler.add_node(compiler.encode_uchar4(offset_frequency, squash_frequency),
__float_as_int(scale),
__float_as_int(mortar_size),
__float_as_int(bias));
compiler.add_node(__float_as_int(brick_width),
__float_as_int(row_height),
__float_as_int(offset),
__float_as_int(squash));
compiler.add_node(__float_as_int(mortar_smooth),
SVM_STACK_INVALID,
SVM_STACK_INVALID,
SVM_STACK_INVALID);
tex_mapping.compile_end(compiler, vector_in, vector_offset);
}
void BrickTextureNode::compile(OSLCompiler& compiler)
{
tex_mapping.compile(compiler);
compiler.parameter(this, "offset");
compiler.parameter(this, "offset_frequency");
compiler.parameter(this, "squash");
compiler.parameter(this, "squash_frequency");
compiler.add(this, "node_brick_texture");
}
/* Point Density Texture */
NODE_DEFINE(PointDensityTextureNode)
{
NodeType* type = NodeType::add("point_density_texture", create, NodeType::SHADER);
SOCKET_STRING(filename, "Filename", ustring(""));
static NodeEnum space_enum;
space_enum.insert("object", NODE_TEX_VOXEL_SPACE_OBJECT);
space_enum.insert("world", NODE_TEX_VOXEL_SPACE_WORLD);
SOCKET_ENUM(space, "Space", space_enum, NODE_TEX_VOXEL_SPACE_OBJECT);
static NodeEnum interpolation_enum;
interpolation_enum.insert("closest", INTERPOLATION_CLOSEST);
interpolation_enum.insert("linear", INTERPOLATION_LINEAR);
interpolation_enum.insert("cubic", INTERPOLATION_CUBIC);
interpolation_enum.insert("smart", INTERPOLATION_SMART);
SOCKET_ENUM(interpolation, "Interpolation", interpolation_enum, INTERPOLATION_LINEAR);
SOCKET_TRANSFORM(tfm, "Transform", transform_identity());
SOCKET_IN_POINT(vector, "Vector", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_POSITION);
SOCKET_OUT_FLOAT(density, "Density");
SOCKET_OUT_COLOR(color, "Color");
return type;
}
PointDensityTextureNode::PointDensityTextureNode()
: ShaderNode(node_type)
{
image_manager = NULL;
slot = -1;
builtin_data = NULL;
}
PointDensityTextureNode::~PointDensityTextureNode()
{
if(image_manager) {
image_manager->remove_image(filename.string(),
builtin_data,
interpolation,
EXTENSION_CLIP,
true);
}
}
ShaderNode *PointDensityTextureNode::clone() const
{
PointDensityTextureNode *node = new PointDensityTextureNode(*this);
node->image_manager = NULL;
node->slot = -1;
return node;
}
void PointDensityTextureNode::attributes(Shader *shader,
AttributeRequestSet *attributes)
{
if(shader->has_volume)
attributes->add(ATTR_STD_GENERATED_TRANSFORM);
ShaderNode::attributes(shader, attributes);
}
void PointDensityTextureNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderOutput *density_out = output("Density");
ShaderOutput *color_out = output("Color");
const bool use_density = !density_out->links.empty();
const bool use_color = !color_out->links.empty();
image_manager = compiler.image_manager;
if(use_density || use_color) {
if(slot == -1) {
bool is_float, is_linear;
slot = image_manager->add_image(filename.string(), builtin_data,
false, 0,
is_float, is_linear,
interpolation,
EXTENSION_CLIP,
true);
}
if(slot != -1) {
compiler.stack_assign(vector_in);
compiler.add_node(NODE_TEX_VOXEL,
slot,
compiler.encode_uchar4(compiler.stack_assign(vector_in),
compiler.stack_assign_if_linked(density_out),
compiler.stack_assign_if_linked(color_out),
space));
if(space == NODE_TEX_VOXEL_SPACE_WORLD) {
compiler.add_node(tfm.x);
compiler.add_node(tfm.y);
compiler.add_node(tfm.z);
compiler.add_node(tfm.w);
}
}
else {
if(use_density) {
compiler.add_node(NODE_VALUE_F,
__float_as_int(0.0f),
compiler.stack_assign(density_out));
}
if(use_color) {
compiler.add_node(NODE_VALUE_V, compiler.stack_assign(color_out));
compiler.add_node(NODE_VALUE_V, make_float3(TEX_IMAGE_MISSING_R,
TEX_IMAGE_MISSING_G,
TEX_IMAGE_MISSING_B));
}
}
}
}
void PointDensityTextureNode::compile(OSLCompiler& compiler)
{
ShaderOutput *density_out = output("Density");
ShaderOutput *color_out = output("Color");
const bool use_density = !density_out->links.empty();
const bool use_color = !color_out->links.empty();
image_manager = compiler.image_manager;
if(use_density || use_color) {
if(slot == -1) {
bool is_float, is_linear;
slot = image_manager->add_image(filename.string(), builtin_data,
false, 0,
is_float, is_linear,
interpolation,
EXTENSION_CLIP,
true);
}
if(slot != -1) {
compiler.parameter("filename", string_printf("@%d", slot).c_str());
}
if(space == NODE_TEX_VOXEL_SPACE_WORLD) {
compiler.parameter("mapping", transform_transpose(tfm));
compiler.parameter("use_mapping", 1);
}
compiler.parameter(this, "interpolation");
compiler.add(this, "node_voxel_texture");
}
}
/* Normal */
NODE_DEFINE(NormalNode)
{
NodeType* type = NodeType::add("normal", create, NodeType::SHADER);
SOCKET_VECTOR(direction, "direction", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_IN_NORMAL(normal, "Normal", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_OUT_NORMAL(normal, "Normal");
SOCKET_OUT_FLOAT(dot, "Dot");
return type;
}
NormalNode::NormalNode()
: ShaderNode(node_type)
{
}
void NormalNode::compile(SVMCompiler& compiler)
{
ShaderInput *normal_in = input("Normal");
ShaderOutput *normal_out = output("Normal");
ShaderOutput *dot_out = output("Dot");
compiler.add_node(NODE_NORMAL,
compiler.stack_assign(normal_in),
compiler.stack_assign(normal_out),
compiler.stack_assign(dot_out));
compiler.add_node(
__float_as_int(direction.x),
__float_as_int(direction.y),
__float_as_int(direction.z));
}
void NormalNode::compile(OSLCompiler& compiler)
{
compiler.parameter(this, "direction");
compiler.add(this, "node_normal");
}
/* Mapping */
NODE_DEFINE(MappingNode)
{
NodeType* type = NodeType::add("mapping", create, NodeType::SHADER);
TEXTURE_MAPPING_DEFINE(MappingNode);
SOCKET_IN_POINT(vector, "Vector", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_OUT_POINT(vector, "Vector");
return type;
}
MappingNode::MappingNode()
: ShaderNode(node_type)
{
}
void MappingNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderOutput *vector_out = output("Vector");
tex_mapping.compile(compiler, compiler.stack_assign(vector_in), compiler.stack_assign(vector_out));
}
void MappingNode::compile(OSLCompiler& compiler)
{
Transform tfm = transform_transpose(tex_mapping.compute_transform());
compiler.parameter("Matrix", tfm);
compiler.parameter_point("mapping_min", tex_mapping.min);
compiler.parameter_point("mapping_max", tex_mapping.max);
compiler.parameter("use_minmax", tex_mapping.use_minmax);
compiler.add(this, "node_mapping");
}
/* RGBToBW */
NODE_DEFINE(RGBToBWNode)
{
NodeType* type = NodeType::add("rgb_to_bw", create, NodeType::SHADER);
SOCKET_IN_COLOR(color, "Color", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_OUT_FLOAT(val, "Val");
return type;
}
RGBToBWNode::RGBToBWNode()
: ShaderNode(node_type)
{
}
void RGBToBWNode::constant_fold(const ConstantFolder& folder)
{
if(folder.all_inputs_constant()) {
folder.make_constant(linear_rgb_to_gray(color));
}
}
void RGBToBWNode::compile(SVMCompiler& compiler)
{
compiler.add_node(NODE_CONVERT,
NODE_CONVERT_CF,
compiler.stack_assign(inputs[0]),
compiler.stack_assign(outputs[0]));
}
void RGBToBWNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_rgb_to_bw");
}
/* Convert */
const NodeType* ConvertNode::node_types[ConvertNode::MAX_TYPE][ConvertNode::MAX_TYPE];
bool ConvertNode::initialized = ConvertNode::register_types();
Node* ConvertNode::create(const NodeType *type)
{
return new ConvertNode(type->inputs[0].type, type->outputs[0].type);
}
bool ConvertNode::register_types()
{
const int num_types = 8;
SocketType::Type types[num_types] = {SocketType::FLOAT,
SocketType::INT,
SocketType::COLOR,
SocketType::VECTOR,
SocketType::POINT,
SocketType::NORMAL,
SocketType::STRING,
SocketType::CLOSURE};
for(size_t i = 0; i < num_types; i++) {
SocketType::Type from = types[i];
ustring from_name(SocketType::type_name(from));
ustring from_value_name("value_" + from_name.string());
for(size_t j = 0; j < num_types; j++) {
SocketType::Type to = types[j];
ustring to_name(SocketType::type_name(to));
ustring to_value_name("value_" + to_name.string());
string node_name = "convert_" + from_name.string() + "_to_" + to_name.string();
NodeType* type = NodeType::add(node_name.c_str(), create, NodeType::SHADER);
type->register_input(from_value_name, from_value_name, from,
SOCKET_OFFSETOF(ConvertNode, value_float), SocketType::zero_default_value(),
NULL, NULL, SocketType::LINKABLE);
type->register_output(to_value_name, to_value_name, to);
assert(from < MAX_TYPE);
assert(to < MAX_TYPE);
node_types[from][to] = type;
}
}
return true;
}
ConvertNode::ConvertNode(SocketType::Type from_, SocketType::Type to_, bool autoconvert)
: ShaderNode(node_types[from_][to_])
{
from = from_;
to = to_;
if(from == to)
special_type = SHADER_SPECIAL_TYPE_PROXY;
else if(autoconvert)
special_type = SHADER_SPECIAL_TYPE_AUTOCONVERT;
}
void ConvertNode::constant_fold(const ConstantFolder& folder)
{
/* proxy nodes should have been removed at this point */
assert(special_type != SHADER_SPECIAL_TYPE_PROXY);
/* TODO(DingTo): conversion from/to int is not supported yet, don't fold in that case */
if(folder.all_inputs_constant()) {
if(from == SocketType::FLOAT) {
if(SocketType::is_float3(to)) {
folder.make_constant(make_float3(value_float, value_float, value_float));
}
}
else if(SocketType::is_float3(from)) {
if(to == SocketType::FLOAT) {
if(from == SocketType::COLOR) {
/* color to float */
folder.make_constant(linear_rgb_to_gray(value_color));
}
else {
/* vector/point/normal to float */
folder.make_constant(average(value_vector));
}
}
else if(SocketType::is_float3(to)) {
folder.make_constant(value_color);
}
}
}
else {
ShaderInput *in = inputs[0];
ShaderNode *prev = in->link->parent;
/* no-op conversion of A to B to A */
if(prev->type == node_types[to][from]) {
ShaderInput *prev_in = prev->inputs[0];
if(SocketType::is_float3(from) && (to == SocketType::FLOAT || SocketType::is_float3(to)) && prev_in->link) {
folder.bypass(prev_in->link);
}
}
}
}
void ConvertNode::compile(SVMCompiler& compiler)
{
/* proxy nodes should have been removed at this point */
assert(special_type != SHADER_SPECIAL_TYPE_PROXY);
ShaderInput *in = inputs[0];
ShaderOutput *out = outputs[0];
if(from == SocketType::FLOAT) {
if(to == SocketType::INT)
/* float to int */
compiler.add_node(NODE_CONVERT, NODE_CONVERT_FI, compiler.stack_assign(in), compiler.stack_assign(out));
else
/* float to float3 */
compiler.add_node(NODE_CONVERT, NODE_CONVERT_FV, compiler.stack_assign(in), compiler.stack_assign(out));
}
else if(from == SocketType::INT) {
if(to == SocketType::FLOAT)
/* int to float */
compiler.add_node(NODE_CONVERT, NODE_CONVERT_IF, compiler.stack_assign(in), compiler.stack_assign(out));
else
/* int to vector/point/normal */
compiler.add_node(NODE_CONVERT, NODE_CONVERT_IV, compiler.stack_assign(in), compiler.stack_assign(out));
}
else if(to == SocketType::FLOAT) {
if(from == SocketType::COLOR)
/* color to float */
compiler.add_node(NODE_CONVERT, NODE_CONVERT_CF, compiler.stack_assign(in), compiler.stack_assign(out));
else
/* vector/point/normal to float */
compiler.add_node(NODE_CONVERT, NODE_CONVERT_VF, compiler.stack_assign(in), compiler.stack_assign(out));
}
else if(to == SocketType::INT) {
if(from == SocketType::COLOR)
/* color to int */
compiler.add_node(NODE_CONVERT, NODE_CONVERT_CI, compiler.stack_assign(in), compiler.stack_assign(out));
else
/* vector/point/normal to int */
compiler.add_node(NODE_CONVERT, NODE_CONVERT_VI, compiler.stack_assign(in), compiler.stack_assign(out));
}
else {
/* float3 to float3 */
if(in->link) {
/* no op in SVM */
compiler.stack_link(in, out);
}
else {
/* set 0,0,0 value */
compiler.add_node(NODE_VALUE_V, compiler.stack_assign(out));
compiler.add_node(NODE_VALUE_V, value_color);
}
}
}
void ConvertNode::compile(OSLCompiler& compiler)
{
/* proxy nodes should have been removed at this point */
assert(special_type != SHADER_SPECIAL_TYPE_PROXY);
if(from == SocketType::FLOAT)
compiler.add(this, "node_convert_from_float");
else if(from == SocketType::INT)
compiler.add(this, "node_convert_from_int");
else if(from == SocketType::COLOR)
compiler.add(this, "node_convert_from_color");
else if(from == SocketType::VECTOR)
compiler.add(this, "node_convert_from_vector");
else if(from == SocketType::POINT)
compiler.add(this, "node_convert_from_point");
else if(from == SocketType::NORMAL)
compiler.add(this, "node_convert_from_normal");
else
assert(0);
}
/* Base type for all closure-type nodes */
BsdfBaseNode::BsdfBaseNode(const NodeType *node_type)
: ShaderNode(node_type)
{
special_type = SHADER_SPECIAL_TYPE_CLOSURE;
}
/* BSDF Closure */
BsdfNode::BsdfNode(const NodeType *node_type)
: BsdfBaseNode(node_type)
{
}
void BsdfNode::compile(SVMCompiler& compiler, ShaderInput *param1, ShaderInput *param2, ShaderInput *param3, ShaderInput *param4)
{
ShaderInput *color_in = input("Color");
ShaderInput *normal_in = input("Normal");
ShaderInput *tangent_in = input("Tangent");
if(color_in->link)
compiler.add_node(NODE_CLOSURE_WEIGHT, compiler.stack_assign(color_in));
else
compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color);
int normal_offset = (normal_in) ? compiler.stack_assign_if_linked(normal_in) : SVM_STACK_INVALID;
int tangent_offset = (tangent_in) ? compiler.stack_assign_if_linked(tangent_in) : SVM_STACK_INVALID;
int param3_offset = (param3) ? compiler.stack_assign(param3) : SVM_STACK_INVALID;
int param4_offset = (param4) ? compiler.stack_assign(param4) : SVM_STACK_INVALID;
compiler.add_node(NODE_CLOSURE_BSDF,
compiler.encode_uchar4(closure,
(param1)? compiler.stack_assign(param1): SVM_STACK_INVALID,
(param2)? compiler.stack_assign(param2): SVM_STACK_INVALID,
compiler.closure_mix_weight_offset()),
__float_as_int((param1)? get_float(param1->socket_type): 0.0f),
__float_as_int((param2)? get_float(param2->socket_type): 0.0f));
compiler.add_node(normal_offset, tangent_offset, param3_offset, param4_offset);
}
void BsdfNode::compile(SVMCompiler& compiler)
{
compile(compiler, NULL, NULL);
}
void BsdfNode::compile(OSLCompiler& /*compiler*/)
{
assert(0);
}
/* Anisotropic BSDF Closure */
NODE_DEFINE(AnisotropicBsdfNode)
{
NodeType* type = NodeType::add("anisotropic_bsdf", create, NodeType::SHADER);
SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
SOCKET_IN_NORMAL(normal, "Normal", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL);
SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
static NodeEnum distribution_enum;
distribution_enum.insert("beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID);
distribution_enum.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID);
distribution_enum.insert("Multiscatter GGX", CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID);
distribution_enum.insert("ashikhmin_shirley", CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID);
SOCKET_ENUM(distribution, "Distribution", distribution_enum, CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID);
SOCKET_IN_VECTOR(tangent, "Tangent", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TANGENT);
SOCKET_IN_FLOAT(roughness, "Roughness", 0.2f);
SOCKET_IN_FLOAT(anisotropy, "Anisotropy", 0.5f);
SOCKET_IN_FLOAT(rotation, "Rotation", 0.0f);
SOCKET_OUT_CLOSURE(BSDF, "BSDF");
return type;
}
AnisotropicBsdfNode::AnisotropicBsdfNode()
: BsdfNode(node_type)
{
closure = CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID;
}
void AnisotropicBsdfNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
if(shader->has_surface) {
ShaderInput *tangent_in = input("Tangent");
if(!tangent_in->link)
attributes->add(ATTR_STD_GENERATED);
}
ShaderNode::attributes(shader, attributes);
}
void AnisotropicBsdfNode::compile(SVMCompiler& compiler)
{
closure = distribution;
if(closure == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID)
BsdfNode::compile(compiler, input("Roughness"), input("Anisotropy"), input("Rotation"), input("Color"));
else
BsdfNode::compile(compiler, input("Roughness"), input("Anisotropy"), input("Rotation"));
}
void AnisotropicBsdfNode::compile(OSLCompiler& compiler)
{
compiler.parameter(this, "distribution");
compiler.add(this, "node_anisotropic_bsdf");
}
/* Glossy BSDF Closure */
NODE_DEFINE(GlossyBsdfNode)
{
NodeType* type = NodeType::add("glossy_bsdf", create, NodeType::SHADER);
SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
SOCKET_IN_NORMAL(normal, "Normal", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL);
SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
static NodeEnum distribution_enum;
distribution_enum.insert("sharp", CLOSURE_BSDF_REFLECTION_ID);
distribution_enum.insert("beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_ID);
distribution_enum.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_ID);
distribution_enum.insert("ashikhmin_shirley", CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID);
distribution_enum.insert("Multiscatter GGX", CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID);
SOCKET_ENUM(distribution, "Distribution", distribution_enum, CLOSURE_BSDF_MICROFACET_GGX_ID);
SOCKET_IN_FLOAT(roughness, "Roughness", 0.2f);
SOCKET_OUT_CLOSURE(BSDF, "BSDF");
return type;
}
GlossyBsdfNode::GlossyBsdfNode()
: BsdfNode(node_type)
{
closure = CLOSURE_BSDF_MICROFACET_GGX_ID;
distribution_orig = NBUILTIN_CLOSURES;
}
void GlossyBsdfNode::simplify_settings(Scene *scene)
{
if(distribution_orig == NBUILTIN_CLOSURES) {
roughness_orig = roughness;
distribution_orig = distribution;
}
else {
/* By default we use original values, so we don't worry about restoring
* defaults later one and can only do override when needed.
*/
roughness = roughness_orig;
distribution = distribution_orig;
}
Integrator *integrator = scene->integrator;
ShaderInput *roughness_input = input("Roughness");
if(integrator->filter_glossy == 0.0f) {
/* Fallback to Sharp closure for Roughness close to 0.
* Note: Keep the epsilon in sync with kernel!
*/
if(!roughness_input->link && roughness <= 1e-4f) {
VLOG(1) << "Using sharp glossy BSDF.";
distribution = CLOSURE_BSDF_REFLECTION_ID;
}
}
else {
/* If filter glossy is used we replace Sharp glossy with GGX so we can
* benefit from closure blur to remove unwanted noise.
*/
if(roughness_input->link == NULL &&
distribution == CLOSURE_BSDF_REFLECTION_ID)
{
VLOG(1) << "Using GGX glossy with filter glossy.";
distribution = CLOSURE_BSDF_MICROFACET_GGX_ID;
roughness = 0.0f;
}
}
closure = distribution;
}
bool GlossyBsdfNode::has_integrator_dependency()
{
ShaderInput *roughness_input = input("Roughness");
return !roughness_input->link &&
(distribution == CLOSURE_BSDF_REFLECTION_ID || roughness <= 1e-4f);
}
void GlossyBsdfNode::compile(SVMCompiler& compiler)
{
closure = distribution;
if(closure == CLOSURE_BSDF_REFLECTION_ID)
BsdfNode::compile(compiler, NULL, NULL);
else if(closure == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID)
BsdfNode::compile(compiler, input("Roughness"), NULL, input("Color"));
else
BsdfNode::compile(compiler, input("Roughness"), NULL);
}
void GlossyBsdfNode::compile(OSLCompiler& compiler)
{
compiler.parameter(this, "distribution");
compiler.add(this, "node_glossy_bsdf");
}
/* Glass BSDF Closure */
NODE_DEFINE(GlassBsdfNode)
{
NodeType* type = NodeType::add("glass_bsdf", create, NodeType::SHADER);
SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
SOCKET_IN_NORMAL(normal, "Normal", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL);
SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
static NodeEnum distribution_enum;
distribution_enum.insert("sharp", CLOSURE_BSDF_SHARP_GLASS_ID);
distribution_enum.insert("beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID);
distribution_enum.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID);
distribution_enum.insert("Multiscatter GGX", CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID);
SOCKET_ENUM(distribution, "Distribution", distribution_enum, CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID);
SOCKET_IN_FLOAT(roughness, "Roughness", 0.0f);
SOCKET_IN_FLOAT(IOR, "IOR", 0.3f);
SOCKET_OUT_CLOSURE(BSDF, "BSDF");
return type;
}
GlassBsdfNode::GlassBsdfNode()
: BsdfNode(node_type)
{
closure = CLOSURE_BSDF_SHARP_GLASS_ID;
distribution_orig = NBUILTIN_CLOSURES;
}
void GlassBsdfNode::simplify_settings(Scene *scene)
{
if(distribution_orig == NBUILTIN_CLOSURES) {
roughness_orig = roughness;
distribution_orig = distribution;
}
else {
/* By default we use original values, so we don't worry about restoring
* defaults later one and can only do override when needed.
*/
roughness = roughness_orig;
distribution = distribution_orig;
}
Integrator *integrator = scene->integrator;
ShaderInput *roughness_input = input("Roughness");
if(integrator->filter_glossy == 0.0f) {
/* Fallback to Sharp closure for Roughness close to 0.
* Note: Keep the epsilon in sync with kernel!
*/
if(!roughness_input->link && roughness <= 1e-4f) {
VLOG(1) << "Using sharp glass BSDF.";
distribution = CLOSURE_BSDF_SHARP_GLASS_ID;
}
}
else {
/* If filter glossy is used we replace Sharp glossy with GGX so we can
* benefit from closure blur to remove unwanted noise.
*/
if(roughness_input->link == NULL &&
distribution == CLOSURE_BSDF_SHARP_GLASS_ID)
{
VLOG(1) << "Using GGX glass with filter glossy.";
distribution = CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID;
roughness = 0.0f;
}
}
closure = distribution;
}
bool GlassBsdfNode::has_integrator_dependency()
{
ShaderInput *roughness_input = input("Roughness");
return !roughness_input->link &&
(distribution == CLOSURE_BSDF_SHARP_GLASS_ID || roughness <= 1e-4f);
}
void GlassBsdfNode::compile(SVMCompiler& compiler)
{
closure = distribution;
if(closure == CLOSURE_BSDF_SHARP_GLASS_ID)
BsdfNode::compile(compiler, NULL, input("IOR"));
else if(closure == CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID)
BsdfNode::compile(compiler, input("Roughness"), input("IOR"), input("Color"));
else
BsdfNode::compile(compiler, input("Roughness"), input("IOR"));
}
void GlassBsdfNode::compile(OSLCompiler& compiler)
{
compiler.parameter(this, "distribution");
compiler.add(this, "node_glass_bsdf");
}
/* Refraction BSDF Closure */
NODE_DEFINE(RefractionBsdfNode)
{
NodeType* type = NodeType::add("refraction_bsdf", create, NodeType::SHADER);
SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
SOCKET_IN_NORMAL(normal, "Normal", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL);
SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
static NodeEnum distribution_enum;
distribution_enum.insert("sharp", CLOSURE_BSDF_REFRACTION_ID);
distribution_enum.insert("beckmann", CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID);
distribution_enum.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID);
SOCKET_ENUM(distribution, "Distribution", distribution_enum, CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID);
SOCKET_IN_FLOAT(roughness, "Roughness", 0.0f);
SOCKET_IN_FLOAT(IOR, "IOR", 0.3f);
SOCKET_OUT_CLOSURE(BSDF, "BSDF");
return type;
}
RefractionBsdfNode::RefractionBsdfNode()
: BsdfNode(node_type)
{
closure = CLOSURE_BSDF_REFRACTION_ID;
distribution_orig = NBUILTIN_CLOSURES;
}
void RefractionBsdfNode::simplify_settings(Scene *scene)
{
if(distribution_orig == NBUILTIN_CLOSURES) {
roughness_orig = roughness;
distribution_orig = distribution;
}
else {
/* By default we use original values, so we don't worry about restoring
* defaults later one and can only do override when needed.
*/
roughness = roughness_orig;
distribution = distribution_orig;
}
Integrator *integrator = scene->integrator;
ShaderInput *roughness_input = input("Roughness");
if(integrator->filter_glossy == 0.0f) {
/* Fallback to Sharp closure for Roughness close to 0.
* Note: Keep the epsilon in sync with kernel!
*/
if(!roughness_input->link && roughness <= 1e-4f) {
VLOG(1) << "Using sharp refraction BSDF.";
distribution = CLOSURE_BSDF_REFRACTION_ID;
}
}
else {
/* If filter glossy is used we replace Sharp glossy with GGX so we can
* benefit from closure blur to remove unwanted noise.
*/
if(roughness_input->link == NULL &&
distribution == CLOSURE_BSDF_REFRACTION_ID)
{
VLOG(1) << "Using GGX refraction with filter glossy.";
distribution = CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
roughness = 0.0f;
}
}
closure = distribution;
}
bool RefractionBsdfNode::has_integrator_dependency()
{
ShaderInput *roughness_input = input("Roughness");
return !roughness_input->link &&
(distribution == CLOSURE_BSDF_REFRACTION_ID || roughness <= 1e-4f);
}
void RefractionBsdfNode::compile(SVMCompiler& compiler)
{
closure = distribution;
if(closure == CLOSURE_BSDF_REFRACTION_ID)
BsdfNode::compile(compiler, NULL, input("IOR"));
else
BsdfNode::compile(compiler, input("Roughness"), input("IOR"));
}
void RefractionBsdfNode::compile(OSLCompiler& compiler)
{
compiler.parameter(this, "distribution");
compiler.add(this, "node_refraction_bsdf");
}
/* Toon BSDF Closure */
NODE_DEFINE(ToonBsdfNode)
{
NodeType* type = NodeType::add("toon_bsdf", create, NodeType::SHADER);
SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
SOCKET_IN_NORMAL(normal, "Normal", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL);
SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
static NodeEnum component_enum;
component_enum.insert("diffuse", CLOSURE_BSDF_DIFFUSE_TOON_ID);
component_enum.insert("glossy", CLOSURE_BSDF_GLOSSY_TOON_ID);
SOCKET_ENUM(component, "Component", component_enum, CLOSURE_BSDF_DIFFUSE_TOON_ID);
SOCKET_IN_FLOAT(size, "Size", 0.5f);
SOCKET_IN_FLOAT(smooth, "Smooth", 0.0f);
SOCKET_OUT_CLOSURE(BSDF, "BSDF");
return type;
}
ToonBsdfNode::ToonBsdfNode()
: BsdfNode(node_type)
{
closure = CLOSURE_BSDF_DIFFUSE_TOON_ID;
}
void ToonBsdfNode::compile(SVMCompiler& compiler)
{
closure = component;
BsdfNode::compile(compiler, input("Size"), input("Smooth"));
}
void ToonBsdfNode::compile(OSLCompiler& compiler)
{
compiler.parameter(this, "component");
compiler.add(this, "node_toon_bsdf");
}
/* Velvet BSDF Closure */
NODE_DEFINE(VelvetBsdfNode)
{
NodeType* type = NodeType::add("velvet_bsdf", create, NodeType::SHADER);
SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
SOCKET_IN_NORMAL(normal, "Normal", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL);
SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
SOCKET_IN_FLOAT(sigma, "Sigma", 1.0f);
SOCKET_OUT_CLOSURE(BSDF, "BSDF");
return type;
}
VelvetBsdfNode::VelvetBsdfNode()
: BsdfNode(node_type)
{
closure = CLOSURE_BSDF_ASHIKHMIN_VELVET_ID;
}
void VelvetBsdfNode::compile(SVMCompiler& compiler)
{
BsdfNode::compile(compiler, input("Sigma"), NULL);
}
void VelvetBsdfNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_velvet_bsdf");
}
/* Diffuse BSDF Closure */
NODE_DEFINE(DiffuseBsdfNode)
{
NodeType* type = NodeType::add("diffuse_bsdf", create, NodeType::SHADER);
SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
SOCKET_IN_NORMAL(normal, "Normal", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL);
SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
SOCKET_IN_FLOAT(roughness, "Roughness", 0.0f);
SOCKET_OUT_CLOSURE(BSDF, "BSDF");
return type;
}
DiffuseBsdfNode::DiffuseBsdfNode()
: BsdfNode(node_type)
{
closure = CLOSURE_BSDF_DIFFUSE_ID;
}
void DiffuseBsdfNode::compile(SVMCompiler& compiler)
{
BsdfNode::compile(compiler, input("Roughness"), NULL);
}
void DiffuseBsdfNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_diffuse_bsdf");
}
/* Disney principled BSDF Closure */
NODE_DEFINE(PrincipledBsdfNode)
{
NodeType* type = NodeType::add("principled_bsdf", create, NodeType::SHADER);
static NodeEnum distribution_enum;
distribution_enum.insert("GGX", CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID);
distribution_enum.insert("Multiscatter GGX", CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID);
SOCKET_ENUM(distribution, "Distribution", distribution_enum, CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID);
SOCKET_IN_COLOR(base_color, "Base Color", make_float3(0.8f, 0.8f, 0.8f));
SOCKET_IN_COLOR(subsurface_color, "Subsurface Color", make_float3(0.8f, 0.8f, 0.8f));
SOCKET_IN_FLOAT(metallic, "Metallic", 0.0f);
SOCKET_IN_FLOAT(subsurface, "Subsurface", 0.0f);
SOCKET_IN_VECTOR(subsurface_radius, "Subsurface Radius", make_float3(0.1f, 0.1f, 0.1f));
SOCKET_IN_FLOAT(specular, "Specular", 0.0f);
SOCKET_IN_FLOAT(roughness, "Roughness", 0.0f);
SOCKET_IN_FLOAT(specular_tint, "Specular Tint", 0.0f);
SOCKET_IN_FLOAT(anisotropic, "Anisotropic", 0.0f);
SOCKET_IN_FLOAT(sheen, "Sheen", 0.0f);
SOCKET_IN_FLOAT(sheen_tint, "Sheen Tint", 0.0f);
SOCKET_IN_FLOAT(clearcoat, "Clearcoat", 0.0f);
SOCKET_IN_FLOAT(clearcoat_gloss, "Clearcoat Gloss", 0.0f);
SOCKET_IN_FLOAT(ior, "IOR", 0.0f);
SOCKET_IN_FLOAT(transparency, "Transparency", 0.0f);
SOCKET_IN_FLOAT(refraction_roughness, "Refraction Roughness", 0.0f);
SOCKET_IN_FLOAT(anisotropic_rotation, "Anisotropic Rotation", 0.0f);
SOCKET_IN_NORMAL(normal, "Normal", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL);
SOCKET_IN_NORMAL(clearcoat_normal, "Clearcoat Normal", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL);
SOCKET_IN_NORMAL(tangent, "Tangent", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_TANGENT);
SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
SOCKET_OUT_CLOSURE(BSDF, "BSDF");
return type;
}
PrincipledBsdfNode::PrincipledBsdfNode()
: BsdfBaseNode(node_type)
{
closure = CLOSURE_BSDF_PRINCIPLED_ID;
distribution = CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID;
distribution_orig = NBUILTIN_CLOSURES;
}
void PrincipledBsdfNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
if(shader->has_surface) {
ShaderInput *tangent_in = input("Tangent");
if(!tangent_in->link)
attributes->add(ATTR_STD_GENERATED);
}
ShaderNode::attributes(shader, attributes);
}
void PrincipledBsdfNode::compile(SVMCompiler& compiler, ShaderInput *p_metallic, ShaderInput *p_subsurface, ShaderInput *p_subsurface_radius,
ShaderInput *p_specular, ShaderInput *p_roughness, ShaderInput *p_specular_tint, ShaderInput *p_anisotropic,
ShaderInput *p_sheen, ShaderInput *p_sheen_tint, ShaderInput *p_clearcoat, ShaderInput *p_clearcoat_gloss,
ShaderInput *p_ior, ShaderInput *p_transparency, ShaderInput *p_anisotropic_rotation, ShaderInput *p_refraction_roughness)
{
ShaderInput *base_color_in = input("Base Color");
ShaderInput *subsurface_color_in = input("Subsurface Color");
ShaderInput *normal_in = input("Normal");
ShaderInput *clearcoat_normal_in = input("Clearcoat Normal");
ShaderInput *tangent_in = input("Tangent");
float3 weight = make_float3(1.0f, 1.0f, 1.0f);
compiler.add_node(NODE_CLOSURE_SET_WEIGHT, weight);
int normal_offset = compiler.stack_assign_if_linked(normal_in);
int clearcoat_normal_offset = compiler.stack_assign_if_linked(clearcoat_normal_in);
int tangent_offset = compiler.stack_assign_if_linked(tangent_in);
int specular_offset = compiler.stack_assign(p_specular);
int roughness_offset = compiler.stack_assign(p_roughness);
int specular_tint_offset = compiler.stack_assign(p_specular_tint);
int anisotropic_offset = compiler.stack_assign(p_anisotropic);
int sheen_offset = compiler.stack_assign(p_sheen);
int sheen_tint_offset = compiler.stack_assign(p_sheen_tint);
int clearcoat_offset = compiler.stack_assign(p_clearcoat);
int clearcoat_gloss_offset = compiler.stack_assign(p_clearcoat_gloss);
int ior_offset = compiler.stack_assign(p_ior);
int transparency_offset = compiler.stack_assign(p_transparency);
int refraction_roughness_offset = compiler.stack_assign(p_refraction_roughness);
int anisotropic_rotation_offset = compiler.stack_assign(p_anisotropic_rotation);
int subsurface_radius_offset = compiler.stack_assign(p_subsurface_radius);
compiler.add_node(NODE_CLOSURE_BSDF,
compiler.encode_uchar4(closure,
compiler.stack_assign(p_metallic),
compiler.stack_assign(p_subsurface),
compiler.closure_mix_weight_offset()),
__float_as_int((p_metallic) ? get_float(p_metallic->socket_type) : 0.0f),
__float_as_int((p_subsurface) ? get_float(p_subsurface->socket_type) : 0.0f));
compiler.add_node(normal_offset, tangent_offset,
compiler.encode_uchar4(specular_offset, roughness_offset, specular_tint_offset, anisotropic_offset),
compiler.encode_uchar4(sheen_offset, sheen_tint_offset, clearcoat_offset, clearcoat_gloss_offset));
compiler.add_node(compiler.encode_uchar4(ior_offset, transparency_offset, anisotropic_rotation_offset, refraction_roughness_offset),
distribution, SVM_STACK_INVALID, SVM_STACK_INVALID);
float3 bc_default = get_float3(base_color_in->socket_type);
compiler.add_node(((base_color_in->link) ? compiler.stack_assign(base_color_in) : SVM_STACK_INVALID),
__float_as_int(bc_default.x), __float_as_int(bc_default.y), __float_as_int(bc_default.z));
compiler.add_node(clearcoat_normal_offset, subsurface_radius_offset, SVM_STACK_INVALID, SVM_STACK_INVALID);
float3 ss_default = get_float3(subsurface_color_in->socket_type);
compiler.add_node(((subsurface_color_in->link) ? compiler.stack_assign(subsurface_color_in) : SVM_STACK_INVALID),
__float_as_int(ss_default.x), __float_as_int(ss_default.y), __float_as_int(ss_default.z));
}
bool PrincipledBsdfNode::has_integrator_dependency()
{
ShaderInput *roughness_input = input("Roughness");
return !roughness_input->link && roughness <= 1e-4f;
}
void PrincipledBsdfNode::compile(SVMCompiler& compiler)
{
compile(compiler, input("Metallic"), input("Subsurface"), input("Subsurface Radius"), input("Specular"),
input("Roughness"), input("Specular Tint"), input("Anisotropic"), input("Sheen"), input("Sheen Tint"),
input("Clearcoat"), input("Clearcoat Gloss"), input("IOR"), input("Transparency"),
input("Anisotropic Rotation"), input("Refraction Roughness"));
}
void PrincipledBsdfNode::compile(OSLCompiler& compiler)
{
compiler.parameter(this, "distribution");
compiler.add(this, "node_principled_bsdf");
}
bool PrincipledBsdfNode::has_bssrdf_bump()
{
/* detect if anything is plugged into the normal input besides the default */
ShaderInput *normal_in = input("Normal");
return (normal_in->link && normal_in->link->parent->special_type != SHADER_SPECIAL_TYPE_GEOMETRY);
}
/* Translucent BSDF Closure */
NODE_DEFINE(TranslucentBsdfNode)
{
NodeType* type = NodeType::add("translucent_bsdf", create, NodeType::SHADER);
SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
SOCKET_IN_NORMAL(normal, "Normal", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL);
SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
SOCKET_OUT_CLOSURE(BSDF, "BSDF");
return type;
}
TranslucentBsdfNode::TranslucentBsdfNode()
: BsdfNode(node_type)
{
closure = CLOSURE_BSDF_TRANSLUCENT_ID;
}
void TranslucentBsdfNode::compile(SVMCompiler& compiler)
{
BsdfNode::compile(compiler, NULL, NULL);
}
void TranslucentBsdfNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_translucent_bsdf");
}
/* Transparent BSDF Closure */
NODE_DEFINE(TransparentBsdfNode)
{
NodeType* type = NodeType::add("transparent_bsdf", create, NodeType::SHADER);
SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
SOCKET_OUT_CLOSURE(BSDF, "BSDF");
return type;
}
TransparentBsdfNode::TransparentBsdfNode()
: BsdfNode(node_type)
{
closure = CLOSURE_BSDF_TRANSPARENT_ID;
}
void TransparentBsdfNode::compile(SVMCompiler& compiler)
{
BsdfNode::compile(compiler, NULL, NULL);
}
void TransparentBsdfNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_transparent_bsdf");
}
/* Subsurface Scattering Closure */
NODE_DEFINE(SubsurfaceScatteringNode)
{
NodeType* type = NodeType::add("subsurface_scattering", create, NodeType::SHADER);
SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
SOCKET_IN_NORMAL(normal, "Normal", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL);
SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
static NodeEnum falloff_enum;
falloff_enum.insert("cubic", CLOSURE_BSSRDF_CUBIC_ID);
falloff_enum.insert("gaussian", CLOSURE_BSSRDF_GAUSSIAN_ID);
falloff_enum.insert("burley", CLOSURE_BSSRDF_BURLEY_ID);
SOCKET_ENUM(falloff, "Falloff", falloff_enum, CLOSURE_BSSRDF_BURLEY_ID);
SOCKET_IN_FLOAT(scale, "Scale", 0.01f);
SOCKET_IN_VECTOR(radius, "Radius", make_float3(0.1f, 0.1f, 0.1f));
SOCKET_IN_FLOAT(sharpness, "Sharpness", 0.0f);
SOCKET_IN_FLOAT(texture_blur, "Texture Blur", 1.0f);
SOCKET_OUT_CLOSURE(BSSRDF, "BSSRDF");
return type;
}
SubsurfaceScatteringNode::SubsurfaceScatteringNode()
: BsdfNode(node_type)
{
closure = falloff;
}
void SubsurfaceScatteringNode::compile(SVMCompiler& compiler)
{
closure = falloff;
BsdfNode::compile(compiler, input("Scale"), input("Texture Blur"), input("Radius"), input("Sharpness"));
}
void SubsurfaceScatteringNode::compile(OSLCompiler& compiler)
{
closure = falloff;
compiler.parameter(this, "falloff");
compiler.add(this, "node_subsurface_scattering");
}
bool SubsurfaceScatteringNode::has_bssrdf_bump()
{
/* detect if anything is plugged into the normal input besides the default */
ShaderInput *normal_in = input("Normal");
return (normal_in->link && normal_in->link->parent->special_type != SHADER_SPECIAL_TYPE_GEOMETRY);
}
/* Emissive Closure */
NODE_DEFINE(EmissionNode)
{
NodeType* type = NodeType::add("emission", create, NodeType::SHADER);
SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
SOCKET_IN_FLOAT(strength, "Strength", 10.0f);
SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
SOCKET_OUT_CLOSURE(emission, "Emission");
return type;
}
EmissionNode::EmissionNode()
: ShaderNode(node_type)
{
}
void EmissionNode::compile(SVMCompiler& compiler)
{
ShaderInput *color_in = input("Color");
ShaderInput *strength_in = input("Strength");
if(color_in->link || strength_in->link) {
compiler.add_node(NODE_EMISSION_WEIGHT,
compiler.stack_assign(color_in),
compiler.stack_assign(strength_in));
}
else
compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color * strength);
compiler.add_node(NODE_CLOSURE_EMISSION, compiler.closure_mix_weight_offset());
}
void EmissionNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_emission");
}
void EmissionNode::constant_fold(const ConstantFolder& folder)
{
ShaderInput *color_in = input("Color");
ShaderInput *strength_in = input("Strength");
if((!color_in->link && color == make_float3(0.0f, 0.0f, 0.0f)) ||
(!strength_in->link && strength == 0.0f))
{
folder.discard();
}
}
/* Background Closure */
NODE_DEFINE(BackgroundNode)
{
NodeType* type = NodeType::add("background_shader", create, NodeType::SHADER);
SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
SOCKET_IN_FLOAT(strength, "Strength", 1.0f);
SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
SOCKET_OUT_CLOSURE(background, "Background");
return type;
}
BackgroundNode::BackgroundNode()
: ShaderNode(node_type)
{
}
void BackgroundNode::compile(SVMCompiler& compiler)
{
ShaderInput *color_in = input("Color");
ShaderInput *strength_in = input("Strength");
if(color_in->link || strength_in->link) {
compiler.add_node(NODE_EMISSION_WEIGHT,
compiler.stack_assign(color_in),
compiler.stack_assign(strength_in));
}
else
compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color*strength);
compiler.add_node(NODE_CLOSURE_BACKGROUND, compiler.closure_mix_weight_offset());
}
void BackgroundNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_background");
}
void BackgroundNode::constant_fold(const ConstantFolder& folder)
{
ShaderInput *color_in = input("Color");
ShaderInput *strength_in = input("Strength");
if((!color_in->link && color == make_float3(0.0f, 0.0f, 0.0f)) ||
(!strength_in->link && strength == 0.0f))
{
folder.discard();
}
}
/* Holdout Closure */
NODE_DEFINE(HoldoutNode)
{
NodeType* type = NodeType::add("holdout", create, NodeType::SHADER);
SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
SOCKET_IN_FLOAT(volume_mix_weight, "VolumeMixWeight", 0.0f, SocketType::SVM_INTERNAL);
SOCKET_OUT_CLOSURE(holdout, "Holdout");
return type;
}
HoldoutNode::HoldoutNode()
: ShaderNode(node_type)
{
}
void HoldoutNode::compile(SVMCompiler& compiler)
{
float3 value = make_float3(1.0f, 1.0f, 1.0f);
compiler.add_node(NODE_CLOSURE_SET_WEIGHT, value);
compiler.add_node(NODE_CLOSURE_HOLDOUT, compiler.closure_mix_weight_offset());
}
void HoldoutNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_holdout");
}
/* Ambient Occlusion */
NODE_DEFINE(AmbientOcclusionNode)
{
NodeType* type = NodeType::add("ambient_occlusion", create, NodeType::SHADER);
SOCKET_IN_NORMAL(normal_osl, "NormalIn", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL);
SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
SOCKET_OUT_CLOSURE(AO, "AO");
return type;
}
AmbientOcclusionNode::AmbientOcclusionNode()
: ShaderNode(node_type)
{
}
void AmbientOcclusionNode::compile(SVMCompiler& compiler)
{
ShaderInput *color_in = input("Color");
if(color_in->link)
compiler.add_node(NODE_CLOSURE_WEIGHT, compiler.stack_assign(color_in));
else
compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color);
compiler.add_node(NODE_CLOSURE_AMBIENT_OCCLUSION, compiler.closure_mix_weight_offset());
}
void AmbientOcclusionNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_ambient_occlusion");
}
/* Volume Closure */
VolumeNode::VolumeNode(const NodeType *node_type)
: ShaderNode(node_type)
{
closure = CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID;
}
void VolumeNode::compile(SVMCompiler& compiler, ShaderInput *param1, ShaderInput *param2)
{
ShaderInput *color_in = input("Color");
if(color_in->link)
compiler.add_node(NODE_CLOSURE_WEIGHT, compiler.stack_assign(color_in));
else
compiler.add_node(NODE_CLOSURE_SET_WEIGHT, color);
compiler.add_node(NODE_CLOSURE_VOLUME,
compiler.encode_uchar4(closure,
(param1)? compiler.stack_assign(param1): SVM_STACK_INVALID,
(param2)? compiler.stack_assign(param2): SVM_STACK_INVALID,
compiler.closure_mix_weight_offset()),
__float_as_int((param1)? get_float(param1->socket_type): 0.0f),
__float_as_int((param2)? get_float(param2->socket_type): 0.0f));
}
void VolumeNode::compile(SVMCompiler& compiler)
{
compile(compiler, NULL, NULL);
}
void VolumeNode::compile(OSLCompiler& /*compiler*/)
{
assert(0);
}
/* Absorption Volume Closure */
NODE_DEFINE(AbsorptionVolumeNode)
{
NodeType* type = NodeType::add("absorption_volume", create, NodeType::SHADER);
SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
SOCKET_IN_FLOAT(density, "Density", 1.0f);
SOCKET_IN_FLOAT(volume_mix_weight, "VolumeMixWeight", 0.0f, SocketType::SVM_INTERNAL);
SOCKET_OUT_CLOSURE(volume, "Volume");
return type;
}
AbsorptionVolumeNode::AbsorptionVolumeNode()
: VolumeNode(node_type)
{
closure = CLOSURE_VOLUME_ABSORPTION_ID;
}
void AbsorptionVolumeNode::compile(SVMCompiler& compiler)
{
VolumeNode::compile(compiler, input("Density"), NULL);
}
void AbsorptionVolumeNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_absorption_volume");
}
/* Scatter Volume Closure */
NODE_DEFINE(ScatterVolumeNode)
{
NodeType* type = NodeType::add("scatter_volume", create, NodeType::SHADER);
SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
SOCKET_IN_FLOAT(density, "Density", 1.0f);
SOCKET_IN_FLOAT(anisotropy, "Anisotropy", 0.0f);
SOCKET_IN_FLOAT(volume_mix_weight, "VolumeMixWeight", 0.0f, SocketType::SVM_INTERNAL);
SOCKET_OUT_CLOSURE(volume, "Volume");
return type;
}
ScatterVolumeNode::ScatterVolumeNode()
: VolumeNode(node_type)
{
closure = CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID;
}
void ScatterVolumeNode::compile(SVMCompiler& compiler)
{
VolumeNode::compile(compiler, input("Density"), input("Anisotropy"));
}
void ScatterVolumeNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_scatter_volume");
}
/* Hair BSDF Closure */
NODE_DEFINE(HairBsdfNode)
{
NodeType* type = NodeType::add("hair_bsdf", create, NodeType::SHADER);
SOCKET_IN_COLOR(color, "Color", make_float3(0.8f, 0.8f, 0.8f));
SOCKET_IN_NORMAL(normal, "Normal", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL);
SOCKET_IN_FLOAT(surface_mix_weight, "SurfaceMixWeight", 0.0f, SocketType::SVM_INTERNAL);
static NodeEnum component_enum;
component_enum.insert("reflection", CLOSURE_BSDF_HAIR_REFLECTION_ID);
component_enum.insert("transmission", CLOSURE_BSDF_HAIR_TRANSMISSION_ID);
SOCKET_ENUM(component, "Component", component_enum, CLOSURE_BSDF_HAIR_REFLECTION_ID);
SOCKET_IN_FLOAT(offset, "Offset", 0.0f);
SOCKET_IN_FLOAT(roughness_u, "RoughnessU", 0.2f);
SOCKET_IN_FLOAT(roughness_v, "RoughnessV", 0.2f);
SOCKET_IN_VECTOR(tangent, "Tangent", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_OUT_CLOSURE(BSDF, "BSDF");
return type;
}
HairBsdfNode::HairBsdfNode()
: BsdfNode(node_type)
{
closure = CLOSURE_BSDF_HAIR_REFLECTION_ID;
}
void HairBsdfNode::compile(SVMCompiler& compiler)
{
closure = component;
BsdfNode::compile(compiler, input("RoughnessU"), input("RoughnessV"), input("Offset"));
}
void HairBsdfNode::compile(OSLCompiler& compiler)
{
compiler.parameter(this, "component");
compiler.add(this, "node_hair_bsdf");
}
/* Geometry */
NODE_DEFINE(GeometryNode)
{
NodeType* type = NodeType::add("geometry", create, NodeType::SHADER);
SOCKET_IN_NORMAL(normal_osl, "NormalIn", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL);
SOCKET_OUT_POINT(position, "Position");
SOCKET_OUT_NORMAL(normal, "Normal");
SOCKET_OUT_NORMAL(tangent, "Tangent");
SOCKET_OUT_NORMAL(true_normal, "True Normal");
SOCKET_OUT_VECTOR(incoming, "Incoming");
SOCKET_OUT_POINT(parametric, "Parametric");
SOCKET_OUT_FLOAT(backfacing, "Backfacing");
SOCKET_OUT_FLOAT(pointiness, "Pointiness");
return type;
}
GeometryNode::GeometryNode()
: ShaderNode(node_type)
{
special_type = SHADER_SPECIAL_TYPE_GEOMETRY;
}
void GeometryNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
if(shader->has_surface) {
if(!output("Tangent")->links.empty()) {
attributes->add(ATTR_STD_GENERATED);
}
if(!output("Pointiness")->links.empty()) {
attributes->add(ATTR_STD_POINTINESS);
}
}
ShaderNode::attributes(shader, attributes);
}
void GeometryNode::compile(SVMCompiler& compiler)
{
ShaderOutput *out;
ShaderNodeType geom_node = NODE_GEOMETRY;
ShaderNodeType attr_node = NODE_ATTR;
if(bump == SHADER_BUMP_DX) {
geom_node = NODE_GEOMETRY_BUMP_DX;
attr_node = NODE_ATTR_BUMP_DX;
}
else if(bump == SHADER_BUMP_DY) {
geom_node = NODE_GEOMETRY_BUMP_DY;
attr_node = NODE_ATTR_BUMP_DY;
}
out = output("Position");
if(!out->links.empty()) {
compiler.add_node(geom_node, NODE_GEOM_P, compiler.stack_assign(out));
}
out = output("Normal");
if(!out->links.empty()) {
compiler.add_node(geom_node, NODE_GEOM_N, compiler.stack_assign(out));
}
out = output("Tangent");
if(!out->links.empty()) {
compiler.add_node(geom_node, NODE_GEOM_T, compiler.stack_assign(out));
}
out = output("True Normal");
if(!out->links.empty()) {
compiler.add_node(geom_node, NODE_GEOM_Ng, compiler.stack_assign(out));
}
out = output("Incoming");
if(!out->links.empty()) {
compiler.add_node(geom_node, NODE_GEOM_I, compiler.stack_assign(out));
}
out = output("Parametric");
if(!out->links.empty()) {
compiler.add_node(geom_node, NODE_GEOM_uv, compiler.stack_assign(out));
}
out = output("Backfacing");
if(!out->links.empty()) {
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_backfacing, compiler.stack_assign(out));
}
out = output("Pointiness");
if(!out->links.empty()) {
if(compiler.output_type() != SHADER_TYPE_VOLUME) {
compiler.add_node(attr_node,
ATTR_STD_POINTINESS,
compiler.stack_assign(out),
NODE_ATTR_FLOAT);
}
else {
compiler.add_node(NODE_VALUE_F, __float_as_int(0.0f), compiler.stack_assign(out));
}
}
}
void GeometryNode::compile(OSLCompiler& compiler)
{
if(bump == SHADER_BUMP_DX)
compiler.parameter("bump_offset", "dx");
else if(bump == SHADER_BUMP_DY)
compiler.parameter("bump_offset", "dy");
else
compiler.parameter("bump_offset", "center");
compiler.add(this, "node_geometry");
}
/* TextureCoordinate */
NODE_DEFINE(TextureCoordinateNode)
{
NodeType* type = NodeType::add("texture_coordinate", create, NodeType::SHADER);
SOCKET_BOOLEAN(from_dupli, "From Dupli", false);
SOCKET_BOOLEAN(use_transform, "Use Transform", false);
SOCKET_TRANSFORM(ob_tfm, "Object Transform", transform_identity());
SOCKET_IN_NORMAL(normal_osl, "NormalIn", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL);
SOCKET_OUT_POINT(generated, "Generated");
SOCKET_OUT_NORMAL(normal, "Normal");
SOCKET_OUT_POINT(UV, "UV");
SOCKET_OUT_POINT(object, "Object");
SOCKET_OUT_POINT(camera, "Camera");
SOCKET_OUT_POINT(window, "Window");
SOCKET_OUT_NORMAL(reflection, "Reflection");
return type;
}
TextureCoordinateNode::TextureCoordinateNode()
: ShaderNode(node_type)
{
}
void TextureCoordinateNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
if(shader->has_surface) {
if(!from_dupli) {
if(!output("Generated")->links.empty())
attributes->add(ATTR_STD_GENERATED);
if(!output("UV")->links.empty())
attributes->add(ATTR_STD_UV);
}
}
if(shader->has_volume) {
if(!from_dupli) {
if(!output("Generated")->links.empty()) {
attributes->add(ATTR_STD_GENERATED_TRANSFORM);
}
}
}
ShaderNode::attributes(shader, attributes);
}
void TextureCoordinateNode::compile(SVMCompiler& compiler)
{
ShaderOutput *out;
ShaderNodeType texco_node = NODE_TEX_COORD;
ShaderNodeType attr_node = NODE_ATTR;
ShaderNodeType geom_node = NODE_GEOMETRY;
if(bump == SHADER_BUMP_DX) {
texco_node = NODE_TEX_COORD_BUMP_DX;
attr_node = NODE_ATTR_BUMP_DX;
geom_node = NODE_GEOMETRY_BUMP_DX;
}
else if(bump == SHADER_BUMP_DY) {
texco_node = NODE_TEX_COORD_BUMP_DY;
attr_node = NODE_ATTR_BUMP_DY;
geom_node = NODE_GEOMETRY_BUMP_DY;
}
out = output("Generated");
if(!out->links.empty()) {
if(compiler.background) {
compiler.add_node(geom_node, NODE_GEOM_P, compiler.stack_assign(out));
}
else {
if(from_dupli) {
compiler.add_node(texco_node, NODE_TEXCO_DUPLI_GENERATED, compiler.stack_assign(out));
}
else if(compiler.output_type() == SHADER_TYPE_VOLUME) {
compiler.add_node(texco_node, NODE_TEXCO_VOLUME_GENERATED, compiler.stack_assign(out));
}
else {
int attr = compiler.attribute(ATTR_STD_GENERATED);
compiler.add_node(attr_node, attr, compiler.stack_assign(out), NODE_ATTR_FLOAT3);
}
}
}
out = output("Normal");
if(!out->links.empty()) {
compiler.add_node(texco_node, NODE_TEXCO_NORMAL, compiler.stack_assign(out));
}
out = output("UV");
if(!out->links.empty()) {
if(from_dupli) {
compiler.add_node(texco_node, NODE_TEXCO_DUPLI_UV, compiler.stack_assign(out));
}
else {
int attr = compiler.attribute(ATTR_STD_UV);
compiler.add_node(attr_node, attr, compiler.stack_assign(out), NODE_ATTR_FLOAT3);
}
}
out = output("Object");
if(!out->links.empty()) {
compiler.add_node(texco_node, NODE_TEXCO_OBJECT, compiler.stack_assign(out), use_transform);
if(use_transform) {
Transform ob_itfm = transform_inverse(ob_tfm);
compiler.add_node(ob_itfm.x);
compiler.add_node(ob_itfm.y);
compiler.add_node(ob_itfm.z);
compiler.add_node(ob_itfm.w);
}
}
out = output("Camera");
if(!out->links.empty()) {
compiler.add_node(texco_node, NODE_TEXCO_CAMERA, compiler.stack_assign(out));
}
out = output("Window");
if(!out->links.empty()) {
compiler.add_node(texco_node, NODE_TEXCO_WINDOW, compiler.stack_assign(out));
}
out = output("Reflection");
if(!out->links.empty()) {
if(compiler.background) {
compiler.add_node(geom_node, NODE_GEOM_I, compiler.stack_assign(out));
}
else {
compiler.add_node(texco_node, NODE_TEXCO_REFLECTION, compiler.stack_assign(out));
}
}
}
void TextureCoordinateNode::compile(OSLCompiler& compiler)
{
if(bump == SHADER_BUMP_DX)
compiler.parameter("bump_offset", "dx");
else if(bump == SHADER_BUMP_DY)
compiler.parameter("bump_offset", "dy");
else
compiler.parameter("bump_offset", "center");
if(compiler.background)
compiler.parameter("is_background", true);
if(compiler.output_type() == SHADER_TYPE_VOLUME)
compiler.parameter("is_volume", true);
compiler.parameter(this, "use_transform");
Transform ob_itfm = transform_transpose(transform_inverse(ob_tfm));
compiler.parameter("object_itfm", ob_itfm);
compiler.parameter(this, "from_dupli");
compiler.add(this, "node_texture_coordinate");
}
/* UV Map */
NODE_DEFINE(UVMapNode)
{
NodeType* type = NodeType::add("uvmap", create, NodeType::SHADER);
SOCKET_IN_STRING(attribute, "attribute", ustring(""));
SOCKET_IN_BOOLEAN(from_dupli, "from dupli", false);
SOCKET_OUT_POINT(UV, "UV");
return type;
}
UVMapNode::UVMapNode()
: ShaderNode(node_type)
{
}
void UVMapNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
if(shader->has_surface) {
if(!from_dupli) {
if(!output("UV")->links.empty()) {
if(attribute != "")
attributes->add(attribute);
else
attributes->add(ATTR_STD_UV);
}
}
}
ShaderNode::attributes(shader, attributes);
}
void UVMapNode::compile(SVMCompiler& compiler)
{
ShaderOutput *out = output("UV");
ShaderNodeType texco_node = NODE_TEX_COORD;
ShaderNodeType attr_node = NODE_ATTR;
int attr;
if(bump == SHADER_BUMP_DX) {
texco_node = NODE_TEX_COORD_BUMP_DX;
attr_node = NODE_ATTR_BUMP_DX;
}
else if(bump == SHADER_BUMP_DY) {
texco_node = NODE_TEX_COORD_BUMP_DY;
attr_node = NODE_ATTR_BUMP_DY;
}
if(!out->links.empty()) {
if(from_dupli) {
compiler.add_node(texco_node, NODE_TEXCO_DUPLI_UV, compiler.stack_assign(out));
}
else {
if(attribute != "")
attr = compiler.attribute(attribute);
else
attr = compiler.attribute(ATTR_STD_UV);
compiler.add_node(attr_node, attr, compiler.stack_assign(out), NODE_ATTR_FLOAT3);
}
}
}
void UVMapNode::compile(OSLCompiler& compiler)
{
if(bump == SHADER_BUMP_DX)
compiler.parameter("bump_offset", "dx");
else if(bump == SHADER_BUMP_DY)
compiler.parameter("bump_offset", "dy");
else
compiler.parameter("bump_offset", "center");
compiler.parameter(this, "from_dupli");
compiler.parameter(this, "attribute");
compiler.add(this, "node_uv_map");
}
/* Light Path */
NODE_DEFINE(LightPathNode)
{
NodeType* type = NodeType::add("light_path", create, NodeType::SHADER);
SOCKET_OUT_FLOAT(is_camera_ray, "Is Camera Ray");
SOCKET_OUT_FLOAT(is_shadow_ray, "Is Shadow Ray");
SOCKET_OUT_FLOAT(is_diffuse_ray, "Is Diffuse Ray");
SOCKET_OUT_FLOAT(is_glossy_ray, "Is Glossy Ray");
SOCKET_OUT_FLOAT(is_singular_ray, "Is Singular Ray");
SOCKET_OUT_FLOAT(is_reflection_ray, "Is Reflection Ray");
SOCKET_OUT_FLOAT(is_transmission_ray, "Is Transmission Ray");
SOCKET_OUT_FLOAT(is_volume_scatter_ray, "Is Volume Scatter Ray");
SOCKET_OUT_FLOAT(ray_length, "Ray Length");
SOCKET_OUT_FLOAT(ray_depth, "Ray Depth");
SOCKET_OUT_FLOAT(diffuse_depth, "Diffuse Depth");
SOCKET_OUT_FLOAT(glossy_depth, "Glossy Depth");
SOCKET_OUT_FLOAT(transparent_depth, "Transparent Depth");
SOCKET_OUT_FLOAT(transmission_depth, "Transmission Depth");
return type;
}
LightPathNode::LightPathNode()
: ShaderNode(node_type)
{
}
void LightPathNode::compile(SVMCompiler& compiler)
{
ShaderOutput *out;
out = output("Is Camera Ray");
if(!out->links.empty()) {
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_camera, compiler.stack_assign(out));
}
out = output("Is Shadow Ray");
if(!out->links.empty()) {
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_shadow, compiler.stack_assign(out));
}
out = output("Is Diffuse Ray");
if(!out->links.empty()) {
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_diffuse, compiler.stack_assign(out));
}
out = output("Is Glossy Ray");
if(!out->links.empty()) {
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_glossy, compiler.stack_assign(out));
}
out = output("Is Singular Ray");
if(!out->links.empty()) {
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_singular, compiler.stack_assign(out));
}
out = output("Is Reflection Ray");
if(!out->links.empty()) {
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_reflection, compiler.stack_assign(out));
}
out = output("Is Transmission Ray");
if(!out->links.empty()) {
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_transmission, compiler.stack_assign(out));
}
out = output("Is Volume Scatter Ray");
if(!out->links.empty()) {
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_volume_scatter, compiler.stack_assign(out));
}
out = output("Ray Length");
if(!out->links.empty()) {
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_length, compiler.stack_assign(out));
}
out = output("Ray Depth");
if(!out->links.empty()) {
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_depth, compiler.stack_assign(out));
}
out = output("Diffuse Depth");
if(!out->links.empty()) {
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_diffuse, compiler.stack_assign(out));
}
out = output("Glossy Depth");
if(!out->links.empty()) {
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_glossy, compiler.stack_assign(out));
}
out = output("Transparent Depth");
if(!out->links.empty()) {
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_transparent, compiler.stack_assign(out));
}
out = output("Transmission Depth");
if(!out->links.empty()) {
compiler.add_node(NODE_LIGHT_PATH, NODE_LP_ray_transmission, compiler.stack_assign(out));
}
}
void LightPathNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_light_path");
}
/* Light Falloff */
NODE_DEFINE(LightFalloffNode)
{
NodeType* type = NodeType::add("light_fallof", create, NodeType::SHADER);
SOCKET_IN_FLOAT(strength, "Strength", 100.0f);
SOCKET_IN_FLOAT(smooth, "Smooth", 0.0f);
SOCKET_OUT_FLOAT(quadratic, "Quadratic");
SOCKET_OUT_FLOAT(linear, "Linear");
SOCKET_OUT_FLOAT(constant, "Constant");
return type;
}
LightFalloffNode::LightFalloffNode()
: ShaderNode(node_type)
{
}
void LightFalloffNode::compile(SVMCompiler& compiler)
{
ShaderInput *strength_in = input("Strength");
ShaderInput *smooth_in = input("Smooth");
ShaderOutput *out = output("Quadratic");
if(!out->links.empty()) {
compiler.add_node(NODE_LIGHT_FALLOFF, NODE_LIGHT_FALLOFF_QUADRATIC,
compiler.encode_uchar4(
compiler.stack_assign(strength_in),
compiler.stack_assign(smooth_in),
compiler.stack_assign(out)));
}
out = output("Linear");
if(!out->links.empty()) {
compiler.add_node(NODE_LIGHT_FALLOFF, NODE_LIGHT_FALLOFF_LINEAR,
compiler.encode_uchar4(
compiler.stack_assign(strength_in),
compiler.stack_assign(smooth_in),
compiler.stack_assign(out)));
}
out = output("Constant");
if(!out->links.empty()) {
compiler.add_node(NODE_LIGHT_FALLOFF, NODE_LIGHT_FALLOFF_CONSTANT,
compiler.encode_uchar4(
compiler.stack_assign(strength_in),
compiler.stack_assign(smooth_in),
compiler.stack_assign(out)));
}
}
void LightFalloffNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_light_falloff");
}
/* Object Info */
NODE_DEFINE(ObjectInfoNode)
{
NodeType* type = NodeType::add("object_info", create, NodeType::SHADER);
SOCKET_OUT_VECTOR(location, "Location");
SOCKET_OUT_FLOAT(object_index, "Object Index");
SOCKET_OUT_FLOAT(material_index, "Material Index");
SOCKET_OUT_FLOAT(random, "Random");
return type;
}
ObjectInfoNode::ObjectInfoNode()
: ShaderNode(node_type)
{
}
void ObjectInfoNode::compile(SVMCompiler& compiler)
{
ShaderOutput *out = output("Location");
if(!out->links.empty()) {
compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_OB_LOCATION, compiler.stack_assign(out));
}
out = output("Object Index");
if(!out->links.empty()) {
compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_OB_INDEX, compiler.stack_assign(out));
}
out = output("Material Index");
if(!out->links.empty()) {
compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_MAT_INDEX, compiler.stack_assign(out));
}
out = output("Random");
if(!out->links.empty()) {
compiler.add_node(NODE_OBJECT_INFO, NODE_INFO_OB_RANDOM, compiler.stack_assign(out));
}
}
void ObjectInfoNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_object_info");
}
/* Particle Info */
NODE_DEFINE(ParticleInfoNode)
{
NodeType* type = NodeType::add("particle_info", create, NodeType::SHADER);
SOCKET_OUT_FLOAT(index, "Index");
SOCKET_OUT_FLOAT(age, "Age");
SOCKET_OUT_FLOAT(lifetime, "Lifetime");
SOCKET_OUT_POINT(location, "Location");
#if 0 /* not yet supported */
SOCKET_OUT_QUATERNION(rotation, "Rotation");
#endif
SOCKET_OUT_FLOAT(size, "Size");
SOCKET_OUT_VECTOR(velocity, "Velocity");
SOCKET_OUT_VECTOR(angular_velocity, "Angular Velocity");
return type;
}
ParticleInfoNode::ParticleInfoNode()
: ShaderNode(node_type)
{
}
void ParticleInfoNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
if(!output("Index")->links.empty())
attributes->add(ATTR_STD_PARTICLE);
if(!output("Age")->links.empty())
attributes->add(ATTR_STD_PARTICLE);
if(!output("Lifetime")->links.empty())
attributes->add(ATTR_STD_PARTICLE);
if(!output("Location")->links.empty())
attributes->add(ATTR_STD_PARTICLE);
#if 0 /* not yet supported */
if(!output("Rotation")->links.empty())
attributes->add(ATTR_STD_PARTICLE);
#endif
if(!output("Size")->links.empty())
attributes->add(ATTR_STD_PARTICLE);
if(!output("Velocity")->links.empty())
attributes->add(ATTR_STD_PARTICLE);
if(!output("Angular Velocity")->links.empty())
attributes->add(ATTR_STD_PARTICLE);
ShaderNode::attributes(shader, attributes);
}
void ParticleInfoNode::compile(SVMCompiler& compiler)
{
ShaderOutput *out;
out = output("Index");
if(!out->links.empty()) {
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_INDEX, compiler.stack_assign(out));
}
out = output("Age");
if(!out->links.empty()) {
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_AGE, compiler.stack_assign(out));
}
out = output("Lifetime");
if(!out->links.empty()) {
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_LIFETIME, compiler.stack_assign(out));
}
out = output("Location");
if(!out->links.empty()) {
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_LOCATION, compiler.stack_assign(out));
}
/* quaternion data is not yet supported by Cycles */
#if 0
out = output("Rotation");
if(!out->links.empty()) {
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_ROTATION, compiler.stack_assign(out));
}
#endif
out = output("Size");
if(!out->links.empty()) {
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_SIZE, compiler.stack_assign(out));
}
out = output("Velocity");
if(!out->links.empty()) {
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_VELOCITY, compiler.stack_assign(out));
}
out = output("Angular Velocity");
if(!out->links.empty()) {
compiler.add_node(NODE_PARTICLE_INFO, NODE_INFO_PAR_ANGULAR_VELOCITY, compiler.stack_assign(out));
}
}
void ParticleInfoNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_particle_info");
}
/* Hair Info */
NODE_DEFINE(HairInfoNode)
{
NodeType* type = NodeType::add("hair_info", create, NodeType::SHADER);
SOCKET_OUT_FLOAT(is_strand, "Is Strand");
SOCKET_OUT_FLOAT(intercept, "Intercept");
SOCKET_OUT_FLOAT(thickness, "Thickness");
SOCKET_OUT_NORMAL(tangent Normal, "Tangent Normal");
#if 0 /*output for minimum hair width transparency - deactivated */
SOCKET_OUT_FLOAT(fade, "Fade");
#endif
return type;
}
HairInfoNode::HairInfoNode()
: ShaderNode(node_type)
{
}
void HairInfoNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
if(shader->has_surface) {
ShaderOutput *intercept_out = output("Intercept");
if(!intercept_out->links.empty())
attributes->add(ATTR_STD_CURVE_INTERCEPT);
}
ShaderNode::attributes(shader, attributes);
}
void HairInfoNode::compile(SVMCompiler& compiler)
{
ShaderOutput *out;
out = output("Is Strand");
if(!out->links.empty()) {
compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_IS_STRAND, compiler.stack_assign(out));
}
out = output("Intercept");
if(!out->links.empty()) {
int attr = compiler.attribute(ATTR_STD_CURVE_INTERCEPT);
compiler.add_node(NODE_ATTR, attr, compiler.stack_assign(out), NODE_ATTR_FLOAT);
}
out = output("Thickness");
if(!out->links.empty()) {
compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_THICKNESS, compiler.stack_assign(out));
}
out = output("Tangent Normal");
if(!out->links.empty()) {
compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_TANGENT_NORMAL, compiler.stack_assign(out));
}
/*out = output("Fade");
if(!out->links.empty()) {
compiler.add_node(NODE_HAIR_INFO, NODE_INFO_CURVE_FADE, compiler.stack_assign(out));
}*/
}
void HairInfoNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_hair_info");
}
/* Value */
NODE_DEFINE(ValueNode)
{
NodeType* type = NodeType::add("value", create, NodeType::SHADER);
SOCKET_FLOAT(value, "Value", 0.0f);
SOCKET_OUT_FLOAT(value, "Value");
return type;
}
ValueNode::ValueNode()
: ShaderNode(node_type)
{
}
void ValueNode::constant_fold(const ConstantFolder& folder)
{
folder.make_constant(value);
}
void ValueNode::compile(SVMCompiler& compiler)
{
ShaderOutput *val_out = output("Value");
compiler.add_node(NODE_VALUE_F, __float_as_int(value), compiler.stack_assign(val_out));
}
void ValueNode::compile(OSLCompiler& compiler)
{
compiler.parameter("value_value", value);
compiler.add(this, "node_value");
}
/* Color */
NODE_DEFINE(ColorNode)
{
NodeType* type = NodeType::add("color", create, NodeType::SHADER);
SOCKET_COLOR(value, "Value", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_OUT_COLOR(color, "Color");
return type;
}
ColorNode::ColorNode()
: ShaderNode(node_type)
{
}
void ColorNode::constant_fold(const ConstantFolder& folder)
{
folder.make_constant(value);
}
void ColorNode::compile(SVMCompiler& compiler)
{
ShaderOutput *color_out = output("Color");
if(!color_out->links.empty()) {
compiler.add_node(NODE_VALUE_V, compiler.stack_assign(color_out));
compiler.add_node(NODE_VALUE_V, value);
}
}
void ColorNode::compile(OSLCompiler& compiler)
{
compiler.parameter_color("color_value", value);
compiler.add(this, "node_value");
}
/* Add Closure */
NODE_DEFINE(AddClosureNode)
{
NodeType* type = NodeType::add("add_closure", create, NodeType::SHADER);
SOCKET_IN_CLOSURE(closure1, "Closure1");
SOCKET_IN_CLOSURE(closure2, "Closure2");
SOCKET_OUT_CLOSURE(closure, "Closure");
return type;
}
AddClosureNode::AddClosureNode()
: ShaderNode(node_type)
{
special_type = SHADER_SPECIAL_TYPE_COMBINE_CLOSURE;
}
void AddClosureNode::compile(SVMCompiler& /*compiler*/)
{
/* handled in the SVM compiler */
}
void AddClosureNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_add_closure");
}
void AddClosureNode::constant_fold(const ConstantFolder& folder)
{
ShaderInput *closure1_in = input("Closure1");
ShaderInput *closure2_in = input("Closure2");
/* remove useless add closures nodes */
if(!closure1_in->link) {
folder.bypass_or_discard(closure2_in);
}
else if(!closure2_in->link) {
folder.bypass_or_discard(closure1_in);
}
}
/* Mix Closure */
NODE_DEFINE(MixClosureNode)
{
NodeType* type = NodeType::add("mix_closure", create, NodeType::SHADER);
SOCKET_IN_FLOAT(fac, "Fac", 0.5f);
SOCKET_IN_CLOSURE(closure1, "Closure1");
SOCKET_IN_CLOSURE(closure2, "Closure2");
SOCKET_OUT_CLOSURE(closure, "Closure");
return type;
}
MixClosureNode::MixClosureNode()
: ShaderNode(node_type)
{
special_type = SHADER_SPECIAL_TYPE_COMBINE_CLOSURE;
}
void MixClosureNode::compile(SVMCompiler& /*compiler*/)
{
/* handled in the SVM compiler */
}
void MixClosureNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_mix_closure");
}
void MixClosureNode::constant_fold(const ConstantFolder& folder)
{
ShaderInput *fac_in = input("Fac");
ShaderInput *closure1_in = input("Closure1");
ShaderInput *closure2_in = input("Closure2");
/* remove useless mix closures nodes */
if(closure1_in->link == closure2_in->link) {
folder.bypass_or_discard(closure1_in);
}
/* remove unused mix closure input when factor is 0.0 or 1.0
* check for closure links and make sure factor link is disconnected */
else if(!fac_in->link) {
/* factor 0.0 */
if(fac <= 0.0f) {
folder.bypass_or_discard(closure1_in);
}
/* factor 1.0 */
else if(fac >= 1.0f) {
folder.bypass_or_discard(closure2_in);
}
}
}
/* Mix Closure */
NODE_DEFINE(MixClosureWeightNode)
{
NodeType* type = NodeType::add("mix_closure_weight", create, NodeType::SHADER);
SOCKET_IN_FLOAT(weight, "Weight", 1.0f);
SOCKET_IN_FLOAT(fac, "Fac", 1.0f);
SOCKET_OUT_FLOAT(weight1, "Weight1");
SOCKET_OUT_FLOAT(weight2, "Weight2");
return type;
}
MixClosureWeightNode::MixClosureWeightNode()
: ShaderNode(node_type)
{
}
void MixClosureWeightNode::compile(SVMCompiler& compiler)
{
ShaderInput *weight_in = input("Weight");
ShaderInput *fac_in = input("Fac");
ShaderOutput *weight1_out = output("Weight1");
ShaderOutput *weight2_out = output("Weight2");
compiler.add_node(NODE_MIX_CLOSURE,
compiler.encode_uchar4(
compiler.stack_assign(fac_in),
compiler.stack_assign(weight_in),
compiler.stack_assign(weight1_out),
compiler.stack_assign(weight2_out)));
}
void MixClosureWeightNode::compile(OSLCompiler& /*compiler*/)
{
assert(0);
}
/* Invert */
NODE_DEFINE(InvertNode)
{
NodeType* type = NodeType::add("invert", create, NodeType::SHADER);
SOCKET_IN_FLOAT(fac, "Fac", 1.0f);
SOCKET_IN_COLOR(color, "Color", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_OUT_COLOR(color, "Color");
return type;
}
InvertNode::InvertNode()
: ShaderNode(node_type)
{
}
void InvertNode::constant_fold(const ConstantFolder& folder)
{
ShaderInput *fac_in = input("Fac");
ShaderInput *color_in = input("Color");
if(!fac_in->link) {
/* evaluate fully constant node */
if(!color_in->link) {
folder.make_constant(interp(color, make_float3(1.0f, 1.0f, 1.0f) - color, fac));
}
/* remove no-op node */
else if(fac == 0.0f) {
folder.bypass(color_in->link);
}
}
}
void InvertNode::compile(SVMCompiler& compiler)
{
ShaderInput *fac_in = input("Fac");
ShaderInput *color_in = input("Color");
ShaderOutput *color_out = output("Color");
compiler.add_node(NODE_INVERT,
compiler.stack_assign(fac_in),
compiler.stack_assign(color_in),
compiler.stack_assign(color_out));
}
void InvertNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_invert");
}
/* Mix */
NODE_DEFINE(MixNode)
{
NodeType* type = NodeType::add("mix", create, NodeType::SHADER);
static NodeEnum type_enum;
type_enum.insert("mix", NODE_MIX_BLEND);
type_enum.insert("add", NODE_MIX_ADD);
type_enum.insert("multiply", NODE_MIX_MUL);
type_enum.insert("screen", NODE_MIX_SCREEN);
type_enum.insert("overlay", NODE_MIX_OVERLAY);
type_enum.insert("subtract", NODE_MIX_SUB);
type_enum.insert("divide", NODE_MIX_DIV);
type_enum.insert("difference", NODE_MIX_DIFF);
type_enum.insert("darken", NODE_MIX_DARK);
type_enum.insert("lighten", NODE_MIX_LIGHT);
type_enum.insert("dodge", NODE_MIX_DODGE);
type_enum.insert("burn", NODE_MIX_BURN);
type_enum.insert("hue", NODE_MIX_HUE);
type_enum.insert("saturation", NODE_MIX_SAT);
type_enum.insert("value", NODE_MIX_VAL);
type_enum.insert("color", NODE_MIX_COLOR);
type_enum.insert("soft_light", NODE_MIX_SOFT);
type_enum.insert("linear_light", NODE_MIX_LINEAR);
SOCKET_ENUM(type, "Type", type_enum, NODE_MIX_BLEND);
SOCKET_BOOLEAN(use_clamp, "Use Clamp", false);
SOCKET_IN_FLOAT(fac, "Fac", 0.5f);
SOCKET_IN_COLOR(color1, "Color1", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_IN_COLOR(color2, "Color2", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_OUT_COLOR(color, "Color");
return type;
}
MixNode::MixNode()
: ShaderNode(node_type)
{
}
void MixNode::compile(SVMCompiler& compiler)
{
ShaderInput *fac_in = input("Fac");
ShaderInput *color1_in = input("Color1");
ShaderInput *color2_in = input("Color2");
ShaderOutput *color_out = output("Color");
compiler.add_node(NODE_MIX,
compiler.stack_assign(fac_in),
compiler.stack_assign(color1_in),
compiler.stack_assign(color2_in));
compiler.add_node(NODE_MIX, type, compiler.stack_assign(color_out));
if(use_clamp) {
compiler.add_node(NODE_MIX, 0, compiler.stack_assign(color_out));
compiler.add_node(NODE_MIX, NODE_MIX_CLAMP, compiler.stack_assign(color_out));
}
}
void MixNode::compile(OSLCompiler& compiler)
{
compiler.parameter(this, "type");
compiler.parameter(this, "use_clamp");
compiler.add(this, "node_mix");
}
void MixNode::constant_fold(const ConstantFolder& folder)
{
if(folder.all_inputs_constant()) {
folder.make_constant_clamp(svm_mix(type, fac, color1, color2), use_clamp);
}
else {
folder.fold_mix(type, use_clamp);
}
}
/* Combine RGB */
NODE_DEFINE(CombineRGBNode)
{
NodeType* type = NodeType::add("combine_rgb", create, NodeType::SHADER);
SOCKET_IN_FLOAT(r, "R", 0.0f);
SOCKET_IN_FLOAT(g, "G", 0.0f);
SOCKET_IN_FLOAT(b, "B", 0.0f);
SOCKET_OUT_COLOR(image, "Image");
return type;
}
CombineRGBNode::CombineRGBNode()
: ShaderNode(node_type)
{
}
void CombineRGBNode::constant_fold(const ConstantFolder& folder)
{
if(folder.all_inputs_constant()) {
folder.make_constant(make_float3(r, g, b));
}
}
void CombineRGBNode::compile(SVMCompiler& compiler)
{
ShaderInput *red_in = input("R");
ShaderInput *green_in = input("G");
ShaderInput *blue_in = input("B");
ShaderOutput *color_out = output("Image");
compiler.add_node(NODE_COMBINE_VECTOR,
compiler.stack_assign(red_in), 0,
compiler.stack_assign(color_out));
compiler.add_node(NODE_COMBINE_VECTOR,
compiler.stack_assign(green_in), 1,
compiler.stack_assign(color_out));
compiler.add_node(NODE_COMBINE_VECTOR,
compiler.stack_assign(blue_in), 2,
compiler.stack_assign(color_out));
}
void CombineRGBNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_combine_rgb");
}
/* Combine XYZ */
NODE_DEFINE(CombineXYZNode)
{
NodeType* type = NodeType::add("combine_xyz", create, NodeType::SHADER);
SOCKET_IN_FLOAT(x, "X", 0.0f);
SOCKET_IN_FLOAT(y, "Y", 0.0f);
SOCKET_IN_FLOAT(z, "Z", 0.0f);
SOCKET_OUT_VECTOR(vector, "Vector");
return type;
}
CombineXYZNode::CombineXYZNode()
: ShaderNode(node_type)
{
}
void CombineXYZNode::constant_fold(const ConstantFolder& folder)
{
if(folder.all_inputs_constant()) {
folder.make_constant(make_float3(x, y, z));
}
}
void CombineXYZNode::compile(SVMCompiler& compiler)
{
ShaderInput *x_in = input("X");
ShaderInput *y_in = input("Y");
ShaderInput *z_in = input("Z");
ShaderOutput *vector_out = output("Vector");
compiler.add_node(NODE_COMBINE_VECTOR,
compiler.stack_assign(x_in), 0,
compiler.stack_assign(vector_out));
compiler.add_node(NODE_COMBINE_VECTOR,
compiler.stack_assign(y_in), 1,
compiler.stack_assign(vector_out));
compiler.add_node(NODE_COMBINE_VECTOR,
compiler.stack_assign(z_in), 2,
compiler.stack_assign(vector_out));
}
void CombineXYZNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_combine_xyz");
}
/* Combine HSV */
NODE_DEFINE(CombineHSVNode)
{
NodeType* type = NodeType::add("combine_hsv", create, NodeType::SHADER);
SOCKET_IN_FLOAT(h, "H", 0.0f);
SOCKET_IN_FLOAT(s, "S", 0.0f);
SOCKET_IN_FLOAT(v, "V", 0.0f);
SOCKET_OUT_COLOR(color, "Color");
return type;
}
CombineHSVNode::CombineHSVNode()
: ShaderNode(node_type)
{
}
void CombineHSVNode::constant_fold(const ConstantFolder& folder)
{
if(folder.all_inputs_constant()) {
folder.make_constant(hsv_to_rgb(make_float3(h, s, v)));
}
}
void CombineHSVNode::compile(SVMCompiler& compiler)
{
ShaderInput *hue_in = input("H");
ShaderInput *saturation_in = input("S");
ShaderInput *value_in = input("V");
ShaderOutput *color_out = output("Color");
compiler.add_node(NODE_COMBINE_HSV,
compiler.stack_assign(hue_in),
compiler.stack_assign(saturation_in),
compiler.stack_assign(value_in));
compiler.add_node(NODE_COMBINE_HSV,
compiler.stack_assign(color_out));
}
void CombineHSVNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_combine_hsv");
}
/* Gamma */
NODE_DEFINE(GammaNode)
{
NodeType* type = NodeType::add("gamma", create, NodeType::SHADER);
SOCKET_IN_COLOR(color, "Color", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_IN_FLOAT(gamma, "Gamma", 1.0f);
SOCKET_OUT_COLOR(color, "Color");
return type;
}
GammaNode::GammaNode()
: ShaderNode(node_type)
{
}
void GammaNode::constant_fold(const ConstantFolder& folder)
{
if(folder.all_inputs_constant()) {
folder.make_constant(svm_math_gamma_color(color, gamma));
}
else {
ShaderInput *color_in = input("Color");
ShaderInput *gamma_in = input("Gamma");
/* 1 ^ X == X ^ 0 == 1 */
if(folder.is_one(color_in) || folder.is_zero(gamma_in)) {
folder.make_one();
}
/* X ^ 1 == X */
else if(folder.is_one(gamma_in)) {
folder.try_bypass_or_make_constant(color_in, false);
}
}
}
void GammaNode::compile(SVMCompiler& compiler)
{
ShaderInput *color_in = input("Color");
ShaderInput *gamma_in = input("Gamma");
ShaderOutput *color_out = output("Color");
compiler.add_node(NODE_GAMMA,
compiler.stack_assign(gamma_in),
compiler.stack_assign(color_in),
compiler.stack_assign(color_out));
}
void GammaNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_gamma");
}
/* Bright Contrast */
NODE_DEFINE(BrightContrastNode)
{
NodeType* type = NodeType::add("brightness_contrast", create, NodeType::SHADER);
SOCKET_IN_COLOR(color, "Color", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_IN_FLOAT(bright, "Bright", 0.0f);
SOCKET_IN_FLOAT(contrast, "Contrast", 0.0f);
SOCKET_OUT_COLOR(color, "Color");
return type;
}
BrightContrastNode::BrightContrastNode()
: ShaderNode(node_type)
{
}
void BrightContrastNode::constant_fold(const ConstantFolder& folder)
{
if(folder.all_inputs_constant()) {
folder.make_constant(svm_brightness_contrast(color, bright, contrast));
}
}
void BrightContrastNode::compile(SVMCompiler& compiler)
{
ShaderInput *color_in = input("Color");
ShaderInput *bright_in = input("Bright");
ShaderInput *contrast_in = input("Contrast");
ShaderOutput *color_out = output("Color");
compiler.add_node(NODE_BRIGHTCONTRAST,
compiler.stack_assign(color_in),
compiler.stack_assign(color_out),
compiler.encode_uchar4(
compiler.stack_assign(bright_in),
compiler.stack_assign(contrast_in)));
}
void BrightContrastNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_brightness");
}
/* Separate RGB */
NODE_DEFINE(SeparateRGBNode)
{
NodeType* type = NodeType::add("separate_rgb", create, NodeType::SHADER);
SOCKET_IN_COLOR(color, "Image", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_OUT_FLOAT(r, "R");
SOCKET_OUT_FLOAT(g, "G");
SOCKET_OUT_FLOAT(b, "B");
return type;
}
SeparateRGBNode::SeparateRGBNode()
: ShaderNode(node_type)
{
}
void SeparateRGBNode::constant_fold(const ConstantFolder& folder)
{
if(folder.all_inputs_constant()) {
for(int channel = 0; channel < 3; channel++) {
if(outputs[channel] == folder.output) {
folder.make_constant(color[channel]);
return;
}
}
}
}
void SeparateRGBNode::compile(SVMCompiler& compiler)
{
ShaderInput *color_in = input("Image");
ShaderOutput *red_out = output("R");
ShaderOutput *green_out = output("G");
ShaderOutput *blue_out = output("B");
compiler.add_node(NODE_SEPARATE_VECTOR,
compiler.stack_assign(color_in), 0,
compiler.stack_assign(red_out));
compiler.add_node(NODE_SEPARATE_VECTOR,
compiler.stack_assign(color_in), 1,
compiler.stack_assign(green_out));
compiler.add_node(NODE_SEPARATE_VECTOR,
compiler.stack_assign(color_in), 2,
compiler.stack_assign(blue_out));
}
void SeparateRGBNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_separate_rgb");
}
/* Separate XYZ */
NODE_DEFINE(SeparateXYZNode)
{
NodeType* type = NodeType::add("separate_xyz", create, NodeType::SHADER);
SOCKET_IN_COLOR(vector, "Vector", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_OUT_FLOAT(x, "X");
SOCKET_OUT_FLOAT(y, "Y");
SOCKET_OUT_FLOAT(z, "Z");
return type;
}
SeparateXYZNode::SeparateXYZNode()
: ShaderNode(node_type)
{
}
void SeparateXYZNode::constant_fold(const ConstantFolder& folder)
{
if(folder.all_inputs_constant()) {
for(int channel = 0; channel < 3; channel++) {
if(outputs[channel] == folder.output) {
folder.make_constant(vector[channel]);
return;
}
}
}
}
void SeparateXYZNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderOutput *x_out = output("X");
ShaderOutput *y_out = output("Y");
ShaderOutput *z_out = output("Z");
compiler.add_node(NODE_SEPARATE_VECTOR,
compiler.stack_assign(vector_in), 0,
compiler.stack_assign(x_out));
compiler.add_node(NODE_SEPARATE_VECTOR,
compiler.stack_assign(vector_in), 1,
compiler.stack_assign(y_out));
compiler.add_node(NODE_SEPARATE_VECTOR,
compiler.stack_assign(vector_in), 2,
compiler.stack_assign(z_out));
}
void SeparateXYZNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_separate_xyz");
}
/* Separate HSV */
NODE_DEFINE(SeparateHSVNode)
{
NodeType* type = NodeType::add("separate_hsv", create, NodeType::SHADER);
SOCKET_IN_COLOR(color, "Color", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_OUT_FLOAT(h, "H");
SOCKET_OUT_FLOAT(s, "S");
SOCKET_OUT_FLOAT(v, "V");
return type;
}
SeparateHSVNode::SeparateHSVNode()
: ShaderNode(node_type)
{
}
void SeparateHSVNode::constant_fold(const ConstantFolder& folder)
{
if(folder.all_inputs_constant()) {
float3 hsv = rgb_to_hsv(color);
for(int channel = 0; channel < 3; channel++) {
if(outputs[channel] == folder.output) {
folder.make_constant(hsv[channel]);
return;
}
}
}
}
void SeparateHSVNode::compile(SVMCompiler& compiler)
{
ShaderInput *color_in = input("Color");
ShaderOutput *hue_out = output("H");
ShaderOutput *saturation_out = output("S");
ShaderOutput *value_out = output("V");
compiler.add_node(NODE_SEPARATE_HSV,
compiler.stack_assign(color_in),
compiler.stack_assign(hue_out),
compiler.stack_assign(saturation_out));
compiler.add_node(NODE_SEPARATE_HSV,
compiler.stack_assign(value_out));
}
void SeparateHSVNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_separate_hsv");
}
/* Hue Saturation Value */
NODE_DEFINE(HSVNode)
{
NodeType* type = NodeType::add("hsv", create, NodeType::SHADER);
SOCKET_IN_FLOAT(hue, "Hue", 0.5f);
SOCKET_IN_FLOAT(saturation, "Saturation", 1.0f);
SOCKET_IN_FLOAT(value, "Value", 1.0f);
SOCKET_IN_FLOAT(fac, "Fac", 1.0f);
SOCKET_IN_COLOR(color, "Color", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_OUT_COLOR(color, "Color");
return type;
}
HSVNode::HSVNode()
: ShaderNode(node_type)
{
}
void HSVNode::compile(SVMCompiler& compiler)
{
ShaderInput *hue_in = input("Hue");
ShaderInput *saturation_in = input("Saturation");
ShaderInput *value_in = input("Value");
ShaderInput *fac_in = input("Fac");
ShaderInput *color_in = input("Color");
ShaderOutput *color_out = output("Color");
compiler.add_node(NODE_HSV,
compiler.encode_uchar4(
compiler.stack_assign(color_in),
compiler.stack_assign(fac_in),
compiler.stack_assign(color_out)),
compiler.encode_uchar4(
compiler.stack_assign(hue_in),
compiler.stack_assign(saturation_in),
compiler.stack_assign(value_in)));
}
void HSVNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_hsv");
}
/* Attribute */
NODE_DEFINE(AttributeNode)
{
NodeType* type = NodeType::add("attribute", create, NodeType::SHADER);
SOCKET_STRING(attribute, "Attribute", ustring(""));
SOCKET_OUT_COLOR(color, "Color");
SOCKET_OUT_VECTOR(vector, "Vector");
SOCKET_OUT_FLOAT(fac, "Fac");
return type;
}
AttributeNode::AttributeNode()
: ShaderNode(node_type)
{
}
void AttributeNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
ShaderOutput *color_out = output("Color");
ShaderOutput *vector_out = output("Vector");
ShaderOutput *fac_out = output("Fac");
if(!color_out->links.empty() || !vector_out->links.empty() || !fac_out->links.empty()) {
AttributeStandard std = Attribute::name_standard(attribute.c_str());
if(std != ATTR_STD_NONE)
attributes->add(std);
else
attributes->add(attribute);
}
if(shader->has_volume)
attributes->add(ATTR_STD_GENERATED_TRANSFORM);
ShaderNode::attributes(shader, attributes);
}
void AttributeNode::compile(SVMCompiler& compiler)
{
ShaderOutput *color_out = output("Color");
ShaderOutput *vector_out = output("Vector");
ShaderOutput *fac_out = output("Fac");
ShaderNodeType attr_node = NODE_ATTR;
AttributeStandard std = Attribute::name_standard(attribute.c_str());
int attr;
if(std != ATTR_STD_NONE)
attr = compiler.attribute(std);
else
attr = compiler.attribute(attribute);
if(bump == SHADER_BUMP_DX)
attr_node = NODE_ATTR_BUMP_DX;
else if(bump == SHADER_BUMP_DY)
attr_node = NODE_ATTR_BUMP_DY;
if(!color_out->links.empty() || !vector_out->links.empty()) {
if(!color_out->links.empty()) {
compiler.add_node(attr_node, attr, compiler.stack_assign(color_out), NODE_ATTR_FLOAT3);
}
if(!vector_out->links.empty()) {
compiler.add_node(attr_node, attr, compiler.stack_assign(vector_out), NODE_ATTR_FLOAT3);
}
}
if(!fac_out->links.empty()) {
compiler.add_node(attr_node, attr, compiler.stack_assign(fac_out), NODE_ATTR_FLOAT);
}
}
void AttributeNode::compile(OSLCompiler& compiler)
{
if(bump == SHADER_BUMP_DX)
compiler.parameter("bump_offset", "dx");
else if(bump == SHADER_BUMP_DY)
compiler.parameter("bump_offset", "dy");
else
compiler.parameter("bump_offset", "center");
if(Attribute::name_standard(attribute.c_str()) != ATTR_STD_NONE)
compiler.parameter("name", (string("geom:") + attribute.c_str()).c_str());
else
compiler.parameter("name", attribute.c_str());
compiler.add(this, "node_attribute");
}
/* Camera */
NODE_DEFINE(CameraNode)
{
NodeType* type = NodeType::add("camera_info", create, NodeType::SHADER);
SOCKET_OUT_VECTOR(view_vector, "View Vector");
SOCKET_OUT_FLOAT(view_z_depth, "View Z Depth");
SOCKET_OUT_FLOAT(view_distance, "View Distance");
return type;
}
CameraNode::CameraNode()
: ShaderNode(node_type)
{
}
void CameraNode::compile(SVMCompiler& compiler)
{
ShaderOutput *vector_out = output("View Vector");
ShaderOutput *z_depth_out = output("View Z Depth");
ShaderOutput *distance_out = output("View Distance");
compiler.add_node(NODE_CAMERA,
compiler.stack_assign(vector_out),
compiler.stack_assign(z_depth_out),
compiler.stack_assign(distance_out));
}
void CameraNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_camera");
}
/* Fresnel */
NODE_DEFINE(FresnelNode)
{
NodeType* type = NodeType::add("fresnel", create, NodeType::SHADER);
SOCKET_IN_NORMAL(normal, "Normal", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL);
SOCKET_IN_FLOAT(IOR, "IOR", 1.45f);
SOCKET_OUT_FLOAT(fac, "Fac");
return type;
}
FresnelNode::FresnelNode()
: ShaderNode(node_type)
{
}
void FresnelNode::compile(SVMCompiler& compiler)
{
ShaderInput *normal_in = input("Normal");
ShaderInput *IOR_in = input("IOR");
ShaderOutput *fac_out = output("Fac");
compiler.add_node(NODE_FRESNEL,
compiler.stack_assign(IOR_in),
__float_as_int(IOR),
compiler.encode_uchar4(
compiler.stack_assign_if_linked(normal_in),
compiler.stack_assign(fac_out)));
}
void FresnelNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_fresnel");
}
/* Layer Weight */
NODE_DEFINE(LayerWeightNode)
{
NodeType* type = NodeType::add("layer_weight", create, NodeType::SHADER);
SOCKET_IN_NORMAL(normal, "Normal", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL);
SOCKET_IN_FLOAT(blend, "Blend", 0.5f);
SOCKET_OUT_FLOAT(fresnel, "Fresnel");
SOCKET_OUT_FLOAT(facing, "Facing");
return type;
}
LayerWeightNode::LayerWeightNode()
: ShaderNode(node_type)
{
}
void LayerWeightNode::compile(SVMCompiler& compiler)
{
ShaderInput *normal_in = input("Normal");
ShaderInput *blend_in = input("Blend");
ShaderOutput *fresnel_out = output("Fresnel");
ShaderOutput *facing_out = output("Facing");
if(!fresnel_out->links.empty()) {
compiler.add_node(NODE_LAYER_WEIGHT,
compiler.stack_assign_if_linked(blend_in),
__float_as_int(blend),
compiler.encode_uchar4(NODE_LAYER_WEIGHT_FRESNEL,
compiler.stack_assign_if_linked(normal_in),
compiler.stack_assign(fresnel_out)));
}
if(!facing_out->links.empty()) {
compiler.add_node(NODE_LAYER_WEIGHT,
compiler.stack_assign_if_linked(blend_in),
__float_as_int(blend),
compiler.encode_uchar4(NODE_LAYER_WEIGHT_FACING,
compiler.stack_assign_if_linked(normal_in),
compiler.stack_assign(facing_out)));
}
}
void LayerWeightNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_layer_weight");
}
/* Wireframe */
NODE_DEFINE(WireframeNode)
{
NodeType* type = NodeType::add("wireframe", create, NodeType::SHADER);
SOCKET_BOOLEAN(use_pixel_size, "Use Pixel Size", false);
SOCKET_IN_FLOAT(size, "Size", 0.01f);
SOCKET_OUT_FLOAT(fac, "Fac");
return type;
}
WireframeNode::WireframeNode()
: ShaderNode(node_type)
{
}
void WireframeNode::compile(SVMCompiler& compiler)
{
ShaderInput *size_in = input("Size");
ShaderOutput *fac_out = output("Fac");
NodeBumpOffset bump_offset = NODE_BUMP_OFFSET_CENTER;
if(bump == SHADER_BUMP_DX) {
bump_offset = NODE_BUMP_OFFSET_DX;
}
else if(bump == SHADER_BUMP_DY) {
bump_offset = NODE_BUMP_OFFSET_DY;
}
compiler.add_node(NODE_WIREFRAME,
compiler.stack_assign(size_in),
compiler.stack_assign(fac_out),
compiler.encode_uchar4(use_pixel_size,
bump_offset,
0, 0));
}
void WireframeNode::compile(OSLCompiler& compiler)
{
if(bump == SHADER_BUMP_DX) {
compiler.parameter("bump_offset", "dx");
}
else if(bump == SHADER_BUMP_DY) {
compiler.parameter("bump_offset", "dy");
}
else {
compiler.parameter("bump_offset", "center");
}
compiler.parameter(this, "use_pixel_size");
compiler.add(this, "node_wireframe");
}
/* Wavelength */
NODE_DEFINE(WavelengthNode)
{
NodeType* type = NodeType::add("wavelength", create, NodeType::SHADER);
SOCKET_IN_FLOAT(wavelength, "Wavelength", 500.0f);
SOCKET_OUT_COLOR(color, "Color");
return type;
}
WavelengthNode::WavelengthNode()
: ShaderNode(node_type)
{
}
void WavelengthNode::compile(SVMCompiler& compiler)
{
ShaderInput *wavelength_in = input("Wavelength");
ShaderOutput *color_out = output("Color");
compiler.add_node(NODE_WAVELENGTH,
compiler.stack_assign(wavelength_in),
compiler.stack_assign(color_out));
}
void WavelengthNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_wavelength");
}
/* Blackbody */
NODE_DEFINE(BlackbodyNode)
{
NodeType* type = NodeType::add("blackbody", create, NodeType::SHADER);
SOCKET_IN_FLOAT(temperature, "Temperature", 1200.0f);
SOCKET_OUT_COLOR(color, "Color");
return type;
}
BlackbodyNode::BlackbodyNode()
: ShaderNode(node_type)
{
}
void BlackbodyNode::constant_fold(const ConstantFolder& folder)
{
if(folder.all_inputs_constant()) {
folder.make_constant(svm_math_blackbody_color(temperature));
}
}
void BlackbodyNode::compile(SVMCompiler& compiler)
{
ShaderInput *temperature_in = input("Temperature");
ShaderOutput *color_out = output("Color");
compiler.add_node(NODE_BLACKBODY,
compiler.stack_assign(temperature_in),
compiler.stack_assign(color_out));
}
void BlackbodyNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_blackbody");
}
/* Output */
NODE_DEFINE(OutputNode)
{
NodeType* type = NodeType::add("output", create, NodeType::SHADER);
SOCKET_IN_CLOSURE(surface, "Surface");
SOCKET_IN_CLOSURE(volume, "Volume");
SOCKET_IN_FLOAT(displacement, "Displacement", 0.0f);
SOCKET_IN_NORMAL(normal, "Normal", make_float3(0.0f, 0.0f, 0.0f));
return type;
}
OutputNode::OutputNode()
: ShaderNode(node_type)
{
special_type = SHADER_SPECIAL_TYPE_OUTPUT;
}
void OutputNode::compile(SVMCompiler& compiler)
{
if(compiler.output_type() == SHADER_TYPE_DISPLACEMENT) {
ShaderInput *displacement_in = input("Displacement");
if(displacement_in->link) {
compiler.add_node(NODE_SET_DISPLACEMENT, compiler.stack_assign(displacement_in));
}
}
}
void OutputNode::compile(OSLCompiler& compiler)
{
if(compiler.output_type() == SHADER_TYPE_SURFACE)
compiler.add(this, "node_output_surface");
else if(compiler.output_type() == SHADER_TYPE_VOLUME)
compiler.add(this, "node_output_volume");
else if(compiler.output_type() == SHADER_TYPE_DISPLACEMENT)
compiler.add(this, "node_output_displacement");
}
/* Math */
NODE_DEFINE(MathNode)
{
NodeType* type = NodeType::add("math", create, NodeType::SHADER);
static NodeEnum type_enum;
type_enum.insert("add", NODE_MATH_ADD);
type_enum.insert("subtract", NODE_MATH_SUBTRACT);
type_enum.insert("multiply", NODE_MATH_MULTIPLY);
type_enum.insert("divide", NODE_MATH_DIVIDE);
type_enum.insert("sine", NODE_MATH_SINE);
type_enum.insert("cosine", NODE_MATH_COSINE);
type_enum.insert("tangent", NODE_MATH_TANGENT);
type_enum.insert("arcsine", NODE_MATH_ARCSINE);
type_enum.insert("arccosine", NODE_MATH_ARCCOSINE);
type_enum.insert("arctangent", NODE_MATH_ARCTANGENT);
type_enum.insert("power", NODE_MATH_POWER);
type_enum.insert("logarithm", NODE_MATH_LOGARITHM);
type_enum.insert("minimum", NODE_MATH_MINIMUM);
type_enum.insert("maximum", NODE_MATH_MAXIMUM);
type_enum.insert("round", NODE_MATH_ROUND);
type_enum.insert("less_than", NODE_MATH_LESS_THAN);
type_enum.insert("greater_than", NODE_MATH_GREATER_THAN);
type_enum.insert("modulo", NODE_MATH_MODULO);
type_enum.insert("absolute", NODE_MATH_ABSOLUTE);
SOCKET_ENUM(type, "Type", type_enum, NODE_MATH_ADD);
SOCKET_BOOLEAN(use_clamp, "Use Clamp", false);
SOCKET_IN_FLOAT(value1, "Value1", 0.0f);
SOCKET_IN_FLOAT(value2, "Value2", 0.0f);
SOCKET_OUT_FLOAT(value, "Value");
return type;
}
MathNode::MathNode()
: ShaderNode(node_type)
{
}
void MathNode::constant_fold(const ConstantFolder& folder)
{
if(folder.all_inputs_constant()) {
folder.make_constant_clamp(svm_math(type, value1, value2), use_clamp);
}
else {
folder.fold_math(type, use_clamp);
}
}
void MathNode::compile(SVMCompiler& compiler)
{
ShaderInput *value1_in = input("Value1");
ShaderInput *value2_in = input("Value2");
ShaderOutput *value_out = output("Value");
compiler.add_node(NODE_MATH, type, compiler.stack_assign(value1_in), compiler.stack_assign(value2_in));
compiler.add_node(NODE_MATH, compiler.stack_assign(value_out));
if(use_clamp) {
compiler.add_node(NODE_MATH, NODE_MATH_CLAMP, compiler.stack_assign(value_out));
compiler.add_node(NODE_MATH, compiler.stack_assign(value_out));
}
}
void MathNode::compile(OSLCompiler& compiler)
{
compiler.parameter(this, "type");
compiler.parameter(this, "use_clamp");
compiler.add(this, "node_math");
}
/* VectorMath */
NODE_DEFINE(VectorMathNode)
{
NodeType* type = NodeType::add("vector_math", create, NodeType::SHADER);
static NodeEnum type_enum;
type_enum.insert("add", NODE_VECTOR_MATH_ADD);
type_enum.insert("subtract", NODE_VECTOR_MATH_SUBTRACT);
type_enum.insert("average", NODE_VECTOR_MATH_AVERAGE);
type_enum.insert("dot_product", NODE_VECTOR_MATH_DOT_PRODUCT);
type_enum.insert("cross_product", NODE_VECTOR_MATH_CROSS_PRODUCT);
type_enum.insert("normalize", NODE_VECTOR_MATH_NORMALIZE);
SOCKET_ENUM(type, "Type", type_enum, NODE_VECTOR_MATH_ADD);
SOCKET_IN_VECTOR(vector1, "Vector1", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_IN_VECTOR(vector2, "Vector2", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_OUT_FLOAT(value, "Value");
SOCKET_OUT_VECTOR(vector, "Vector");
return type;
}
VectorMathNode::VectorMathNode()
: ShaderNode(node_type)
{
}
void VectorMathNode::constant_fold(const ConstantFolder& folder)
{
float value;
float3 vector;
if(folder.all_inputs_constant()) {
svm_vector_math(&value,
&vector,
type,
vector1,
vector2);
if(folder.output == output("Value")) {
folder.make_constant(value);
}
else if(folder.output == output("Vector")) {
folder.make_constant(vector);
}
}
else {
folder.fold_vector_math(type);
}
}
void VectorMathNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector1_in = input("Vector1");
ShaderInput *vector2_in = input("Vector2");
ShaderOutput *value_out = output("Value");
ShaderOutput *vector_out = output("Vector");
compiler.add_node(NODE_VECTOR_MATH,
type,
compiler.stack_assign(vector1_in),
compiler.stack_assign(vector2_in));
compiler.add_node(NODE_VECTOR_MATH,
compiler.stack_assign(value_out),
compiler.stack_assign(vector_out));
}
void VectorMathNode::compile(OSLCompiler& compiler)
{
compiler.parameter(this, "type");
compiler.add(this, "node_vector_math");
}
/* VectorTransform */
NODE_DEFINE(VectorTransformNode)
{
NodeType* type = NodeType::add("vector_transform", create, NodeType::SHADER);
static NodeEnum type_enum;
type_enum.insert("vector", NODE_VECTOR_TRANSFORM_TYPE_VECTOR);
type_enum.insert("point", NODE_VECTOR_TRANSFORM_TYPE_POINT);
type_enum.insert("normal", NODE_VECTOR_TRANSFORM_TYPE_NORMAL);
SOCKET_ENUM(type, "Type", type_enum, NODE_VECTOR_TRANSFORM_TYPE_VECTOR);
static NodeEnum space_enum;
space_enum.insert("world", NODE_VECTOR_TRANSFORM_CONVERT_SPACE_WORLD);
space_enum.insert("object", NODE_VECTOR_TRANSFORM_CONVERT_SPACE_OBJECT);
space_enum.insert("camera", NODE_VECTOR_TRANSFORM_CONVERT_SPACE_CAMERA);
SOCKET_ENUM(convert_from, "Convert From", space_enum, NODE_VECTOR_TRANSFORM_CONVERT_SPACE_WORLD);
SOCKET_ENUM(convert_to, "Convert To", space_enum, NODE_VECTOR_TRANSFORM_CONVERT_SPACE_OBJECT);
SOCKET_IN_VECTOR(vector, "Vector", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_OUT_VECTOR(vector, "Vector");
return type;
}
VectorTransformNode::VectorTransformNode()
: ShaderNode(node_type)
{
}
void VectorTransformNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
ShaderOutput *vector_out = output("Vector");
compiler.add_node(NODE_VECTOR_TRANSFORM,
compiler.encode_uchar4(type, convert_from, convert_to),
compiler.encode_uchar4(compiler.stack_assign(vector_in),
compiler.stack_assign(vector_out)));
}
void VectorTransformNode::compile(OSLCompiler& compiler)
{
compiler.parameter(this, "type");
compiler.parameter(this, "convert_from");
compiler.parameter(this, "convert_to");
compiler.add(this, "node_vector_transform");
}
/* BumpNode */
NODE_DEFINE(BumpNode)
{
NodeType* type = NodeType::add("bump", create, NodeType::SHADER);
SOCKET_BOOLEAN(invert, "Invert", false);
SOCKET_BOOLEAN(use_object_space, "UseObjectSpace", false);
/* this input is used by the user, but after graph transform it is no longer
* used and moved to sampler center/x/y instead */
SOCKET_IN_FLOAT(height, "Height", 1.0f);
SOCKET_IN_FLOAT(sample_center, "SampleCenter", 0.0f);
SOCKET_IN_FLOAT(sample_x, "SampleX", 0.0f);
SOCKET_IN_FLOAT(sample_y, "SampleY", 0.0f);
SOCKET_IN_NORMAL(normal, "Normal", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL);
SOCKET_IN_FLOAT(strength, "Strength", 1.0f);
SOCKET_IN_FLOAT(distance, "Distance", 0.1f);
SOCKET_OUT_NORMAL(normal, "Normal");
return type;
}
BumpNode::BumpNode()
: ShaderNode(node_type)
{
special_type = SHADER_SPECIAL_TYPE_BUMP;
}
void BumpNode::compile(SVMCompiler& compiler)
{
ShaderInput *center_in = input("SampleCenter");
ShaderInput *dx_in = input("SampleX");
ShaderInput *dy_in = input("SampleY");
ShaderInput *normal_in = input("Normal");
ShaderInput *strength_in = input("Strength");
ShaderInput *distance_in = input("Distance");
ShaderOutput *normal_out = output("Normal");
/* pack all parameters in the node */
compiler.add_node(NODE_SET_BUMP,
compiler.encode_uchar4(
compiler.stack_assign_if_linked(normal_in),
compiler.stack_assign(distance_in),
invert,
use_object_space),
compiler.encode_uchar4(
compiler.stack_assign(center_in),
compiler.stack_assign(dx_in),
compiler.stack_assign(dy_in),
compiler.stack_assign(strength_in)),
compiler.stack_assign(normal_out));
}
void BumpNode::compile(OSLCompiler& compiler)
{
compiler.parameter(this, "invert");
compiler.parameter(this, "use_object_space");
compiler.add(this, "node_bump");
}
void BumpNode::constant_fold(const ConstantFolder& folder)
{
ShaderInput *height_in = input("Height");
ShaderInput *normal_in = input("Normal");
if(height_in->link == NULL) {
if(normal_in->link == NULL) {
GeometryNode *geom = new GeometryNode();
folder.graph->add(geom);
folder.bypass(geom->output("Normal"));
}
else {
folder.bypass(normal_in->link);
}
}
/* TODO(sergey): Ignore bump with zero strength. */
}
/* Curve node */
CurvesNode::CurvesNode(const NodeType *node_type)
: ShaderNode(node_type)
{
}
void CurvesNode::constant_fold(const ConstantFolder& folder, ShaderInput *value_in)
{
ShaderInput *fac_in = input("Fac");
/* evaluate fully constant node */
if(folder.all_inputs_constant()) {
if(curves.size() == 0) {
return;
}
float3 pos = (value - make_float3(min_x, min_x, min_x)) / (max_x - min_x);
float3 result;
result[0] = rgb_ramp_lookup(curves.data(), pos[0], true, true, curves.size()).x;
result[1] = rgb_ramp_lookup(curves.data(), pos[1], true, true, curves.size()).y;
result[2] = rgb_ramp_lookup(curves.data(), pos[2], true, true, curves.size()).z;
folder.make_constant(interp(value, result, fac));
}
/* remove no-op node */
else if(!fac_in->link && fac == 0.0f) {
/* link is not null because otherwise all inputs are constant */
folder.bypass(value_in->link);
}
}
void CurvesNode::compile(SVMCompiler& compiler, int type, ShaderInput *value_in, ShaderOutput *value_out)
{
if(curves.size() == 0)
return;
ShaderInput *fac_in = input("Fac");
compiler.add_node(type,
compiler.encode_uchar4(compiler.stack_assign(fac_in),
compiler.stack_assign(value_in),
compiler.stack_assign(value_out)),
__float_as_int(min_x),
__float_as_int(max_x));
compiler.add_node(curves.size());
for(int i = 0; i < curves.size(); i++)
compiler.add_node(float3_to_float4(curves[i]));
}
void CurvesNode::compile(OSLCompiler& compiler, const char* name)
{
if(curves.size() == 0)
return;
compiler.parameter_color_array("ramp", curves);
compiler.parameter(this, "min_x");
compiler.parameter(this, "max_x");
compiler.add(this, name);
}
void CurvesNode::compile(SVMCompiler& /*compiler*/)
{
assert(0);
}
void CurvesNode::compile(OSLCompiler& /*compiler*/)
{
assert(0);
}
/* RGBCurvesNode */
NODE_DEFINE(RGBCurvesNode)
{
NodeType* type = NodeType::add("rgb_curves", create, NodeType::SHADER);
SOCKET_COLOR_ARRAY(curves, "Curves", array<float3>());
SOCKET_FLOAT(min_x, "Min X", 0.0f);
SOCKET_FLOAT(max_x, "Max X", 1.0f);
SOCKET_IN_FLOAT(fac, "Fac", 0.0f);
SOCKET_IN_COLOR(value, "Color", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_OUT_COLOR(value, "Color");
return type;
}
RGBCurvesNode::RGBCurvesNode()
: CurvesNode(node_type)
{
}
void RGBCurvesNode::constant_fold(const ConstantFolder& folder)
{
CurvesNode::constant_fold(folder, input("Color"));
}
void RGBCurvesNode::compile(SVMCompiler& compiler)
{
CurvesNode::compile(compiler, NODE_RGB_CURVES, input("Color"), output("Color"));
}
void RGBCurvesNode::compile(OSLCompiler& compiler)
{
CurvesNode::compile(compiler, "node_rgb_curves");
}
/* VectorCurvesNode */
NODE_DEFINE(VectorCurvesNode)
{
NodeType* type = NodeType::add("vector_curves", create, NodeType::SHADER);
SOCKET_VECTOR_ARRAY(curves, "Curves", array<float3>());
SOCKET_FLOAT(min_x, "Min X", 0.0f);
SOCKET_FLOAT(max_x, "Max X", 1.0f);
SOCKET_IN_FLOAT(fac, "Fac", 0.0f);
SOCKET_IN_VECTOR(value, "Vector", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_OUT_VECTOR(value, "Vector");
return type;
}
VectorCurvesNode::VectorCurvesNode()
: CurvesNode(node_type)
{
}
void VectorCurvesNode::constant_fold(const ConstantFolder& folder)
{
CurvesNode::constant_fold(folder, input("Vector"));
}
void VectorCurvesNode::compile(SVMCompiler& compiler)
{
CurvesNode::compile(compiler, NODE_VECTOR_CURVES, input("Vector"), output("Vector"));
}
void VectorCurvesNode::compile(OSLCompiler& compiler)
{
CurvesNode::compile(compiler, "node_vector_curves");
}
/* RGBRampNode */
NODE_DEFINE(RGBRampNode)
{
NodeType* type = NodeType::add("rgb_ramp", create, NodeType::SHADER);
SOCKET_COLOR_ARRAY(ramp, "Ramp", array<float3>());
SOCKET_FLOAT_ARRAY(ramp_alpha, "Ramp Alpha", array<float>());
SOCKET_BOOLEAN(interpolate, "Interpolate", true);
SOCKET_IN_FLOAT(fac, "Fac", 0.0f);
SOCKET_OUT_COLOR(color, "Color");
SOCKET_OUT_FLOAT(alpha, "Alpha");
return type;
}
RGBRampNode::RGBRampNode()
: ShaderNode(node_type)
{
}
void RGBRampNode::constant_fold(const ConstantFolder& folder)
{
if(ramp.size() == 0 || ramp.size() != ramp_alpha.size())
return;
if(folder.all_inputs_constant()) {
float f = clamp(fac, 0.0f, 1.0f) * (ramp.size() - 1);
/* clamp int as well in case of NaN */
int i = clamp((int)f, 0, ramp.size()-1);
float t = f - (float)i;
bool use_lerp = interpolate && t > 0.0f;
if(folder.output == output("Color")) {
float3 color = rgb_ramp_lookup(ramp.data(), fac, use_lerp, false, ramp.size());
folder.make_constant(color);
}
else if(folder.output == output("Alpha")) {
float alpha = float_ramp_lookup(ramp_alpha.data(), fac, use_lerp, false, ramp_alpha.size());
folder.make_constant(alpha);
}
}
}
void RGBRampNode::compile(SVMCompiler& compiler)
{
if(ramp.size() == 0 || ramp.size() != ramp_alpha.size())
return;
ShaderInput *fac_in = input("Fac");
ShaderOutput *color_out = output("Color");
ShaderOutput *alpha_out = output("Alpha");
compiler.add_node(NODE_RGB_RAMP,
compiler.encode_uchar4(
compiler.stack_assign(fac_in),
compiler.stack_assign_if_linked(color_out),
compiler.stack_assign_if_linked(alpha_out)),
interpolate);
compiler.add_node(ramp.size());
for(int i = 0; i < ramp.size(); i++)
compiler.add_node(make_float4(ramp[i].x, ramp[i].y, ramp[i].z, ramp_alpha[i]));
}
void RGBRampNode::compile(OSLCompiler& compiler)
{
if(ramp.size() == 0 || ramp.size() != ramp_alpha.size())
return;
compiler.parameter_color_array("ramp_color", ramp);
compiler.parameter_array("ramp_alpha", ramp_alpha.data(), ramp_alpha.size());
compiler.parameter(this, "interpolate");
compiler.add(this, "node_rgb_ramp");
}
/* Set Normal Node */
NODE_DEFINE(SetNormalNode)
{
NodeType* type = NodeType::add("set_normal", create, NodeType::SHADER);
SOCKET_IN_VECTOR(direction, "Direction", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_OUT_NORMAL(normal, "Normal");
return type;
}
SetNormalNode::SetNormalNode()
: ShaderNode(node_type)
{
}
void SetNormalNode::compile(SVMCompiler& compiler)
{
ShaderInput *direction_in = input("Direction");
ShaderOutput *normal_out = output("Normal");
compiler.add_node(NODE_CLOSURE_SET_NORMAL,
compiler.stack_assign(direction_in),
compiler.stack_assign(normal_out));
}
void SetNormalNode::compile(OSLCompiler& compiler)
{
compiler.add(this, "node_set_normal");
}
/* OSLNode */
OSLNode::OSLNode()
: ShaderNode(new NodeType(NodeType::SHADER))
{
special_type = SHADER_SPECIAL_TYPE_SCRIPT;
}
OSLNode::~OSLNode()
{
delete type;
}
ShaderNode *OSLNode::clone() const
{
return OSLNode::create(this->inputs.size(), this);
}
OSLNode* OSLNode::create(size_t num_inputs, const OSLNode *from)
{
/* allocate space for the node itself and parameters, aligned to 16 bytes
* assuming that's the most parameter types need */
size_t node_size = align_up(sizeof(OSLNode), 16);
size_t inputs_size = align_up(SocketType::max_size(), 16) * num_inputs;
char *node_memory = (char*) operator new(node_size + inputs_size);
memset(node_memory, 0, node_size + inputs_size);
if(!from) {
return new(node_memory) OSLNode();
}
else {
/* copy input default values and node type for cloning */
memcpy(node_memory + node_size, (char*)from + node_size, inputs_size);
OSLNode *node = new(node_memory) OSLNode(*from);
node->type = new NodeType(*(from->type));
return node;
}
}
char* OSLNode::input_default_value()
{
/* pointer to default value storage, which is the same as our actual value */
size_t num_inputs = type->inputs.size();
size_t inputs_size = align_up(SocketType::max_size(), 16) * num_inputs;
return (char*)this + align_up(sizeof(OSLNode), 16) + inputs_size;
}
void OSLNode::add_input(ustring name, SocketType::Type socket_type)
{
char *memory = input_default_value();
size_t offset = memory - (char*)this;
const_cast<NodeType*>(type)->register_input(name, name, socket_type, offset, memory, NULL, NULL, SocketType::LINKABLE);
}
void OSLNode::add_output(ustring name, SocketType::Type socket_type)
{
const_cast<NodeType*>(type)->register_output(name, name, socket_type);
}
void OSLNode::compile(SVMCompiler&)
{
/* doesn't work for SVM, obviously ... */
}
void OSLNode::compile(OSLCompiler& compiler)
{
if(!filepath.empty())
compiler.add(this, filepath.c_str(), true);
else
compiler.add(this, bytecode_hash.c_str(), false);
}
/* Normal Map */
NODE_DEFINE(NormalMapNode)
{
NodeType* type = NodeType::add("normal_map", create, NodeType::SHADER);
static NodeEnum space_enum;
space_enum.insert("tangent", NODE_NORMAL_MAP_TANGENT);
space_enum.insert("object", NODE_NORMAL_MAP_OBJECT);
space_enum.insert("world", NODE_NORMAL_MAP_WORLD);
space_enum.insert("blender_object", NODE_NORMAL_MAP_BLENDER_OBJECT);
space_enum.insert("blender_world", NODE_NORMAL_MAP_BLENDER_WORLD);
SOCKET_ENUM(space, "Space", space_enum, NODE_TANGENT_RADIAL);
SOCKET_STRING(attribute, "Attribute", ustring(""));
SOCKET_IN_NORMAL(normal_osl, "NormalIn", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL);
SOCKET_IN_FLOAT(strength, "Strength", 1.0f);
SOCKET_IN_COLOR(color, "Color", make_float3(0.5f, 0.5f, 1.0f));
SOCKET_OUT_NORMAL(normal, "Normal");
return type;
}
NormalMapNode::NormalMapNode()
: ShaderNode(node_type)
{
}
void NormalMapNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
if(shader->has_surface && space == NODE_NORMAL_MAP_TANGENT) {
if(attribute == ustring("")) {
attributes->add(ATTR_STD_UV_TANGENT);
attributes->add(ATTR_STD_UV_TANGENT_SIGN);
}
else {
attributes->add(ustring((string(attribute.c_str()) + ".tangent").c_str()));
attributes->add(ustring((string(attribute.c_str()) + ".tangent_sign").c_str()));
}
attributes->add(ATTR_STD_VERTEX_NORMAL);
}
ShaderNode::attributes(shader, attributes);
}
void NormalMapNode::compile(SVMCompiler& compiler)
{
ShaderInput *color_in = input("Color");
ShaderInput *strength_in = input("Strength");
ShaderOutput *normal_out = output("Normal");
int attr = 0, attr_sign = 0;
if(space == NODE_NORMAL_MAP_TANGENT) {
if(attribute == ustring("")) {
attr = compiler.attribute(ATTR_STD_UV_TANGENT);
attr_sign = compiler.attribute(ATTR_STD_UV_TANGENT_SIGN);
}
else {
attr = compiler.attribute(ustring((string(attribute.c_str()) + ".tangent").c_str()));
attr_sign = compiler.attribute(ustring((string(attribute.c_str()) + ".tangent_sign").c_str()));
}
}
compiler.add_node(NODE_NORMAL_MAP,
compiler.encode_uchar4(
compiler.stack_assign(color_in),
compiler.stack_assign(strength_in),
compiler.stack_assign(normal_out),
space),
attr, attr_sign);
}
void NormalMapNode::compile(OSLCompiler& compiler)
{
if(space == NODE_NORMAL_MAP_TANGENT) {
if(attribute == ustring("")) {
compiler.parameter("attr_name", ustring("geom:tangent"));
compiler.parameter("attr_sign_name", ustring("geom:tangent_sign"));
}
else {
compiler.parameter("attr_name", ustring((string(attribute.c_str()) + ".tangent").c_str()));
compiler.parameter("attr_sign_name", ustring((string(attribute.c_str()) + ".tangent_sign").c_str()));
}
}
compiler.parameter(this, "space");
compiler.add(this, "node_normal_map");
}
/* Tangent */
NODE_DEFINE(TangentNode)
{
NodeType* type = NodeType::add("tangent", create, NodeType::SHADER);
static NodeEnum direction_type_enum;
direction_type_enum.insert("radial", NODE_TANGENT_RADIAL);
direction_type_enum.insert("uv_map", NODE_TANGENT_UVMAP);
SOCKET_ENUM(direction_type, "Direction Type", direction_type_enum, NODE_TANGENT_RADIAL);
static NodeEnum axis_enum;
axis_enum.insert("x", NODE_TANGENT_AXIS_X);
axis_enum.insert("y", NODE_TANGENT_AXIS_Y);
axis_enum.insert("z", NODE_TANGENT_AXIS_Z);
SOCKET_ENUM(axis, "Axis", axis_enum, NODE_TANGENT_AXIS_X);
SOCKET_STRING(attribute, "Attribute", ustring(""));
SOCKET_IN_NORMAL(normal_osl, "NormalIn", make_float3(0.0f, 0.0f, 0.0f), SocketType::LINK_NORMAL | SocketType::OSL_INTERNAL);
SOCKET_OUT_NORMAL(tangent, "Tangent");
return type;
}
TangentNode::TangentNode()
: ShaderNode(node_type)
{
}
void TangentNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
if(shader->has_surface) {
if(direction_type == NODE_TANGENT_UVMAP) {
if(attribute == ustring(""))
attributes->add(ATTR_STD_UV_TANGENT);
else
attributes->add(ustring((string(attribute.c_str()) + ".tangent").c_str()));
}
else
attributes->add(ATTR_STD_GENERATED);
}
ShaderNode::attributes(shader, attributes);
}
void TangentNode::compile(SVMCompiler& compiler)
{
ShaderOutput *tangent_out = output("Tangent");
int attr;
if(direction_type == NODE_TANGENT_UVMAP) {
if(attribute == ustring(""))
attr = compiler.attribute(ATTR_STD_UV_TANGENT);
else
attr = compiler.attribute(ustring((string(attribute.c_str()) + ".tangent").c_str()));
}
else
attr = compiler.attribute(ATTR_STD_GENERATED);
compiler.add_node(NODE_TANGENT,
compiler.encode_uchar4(
compiler.stack_assign(tangent_out),
direction_type,
axis), attr);
}
void TangentNode::compile(OSLCompiler& compiler)
{
if(direction_type == NODE_TANGENT_UVMAP) {
if(attribute == ustring(""))
compiler.parameter("attr_name", ustring("geom:tangent"));
else
compiler.parameter("attr_name", ustring((string(attribute.c_str()) + ".tangent").c_str()));
}
compiler.parameter(this, "direction_type");
compiler.parameter(this, "axis");
compiler.add(this, "node_tangent");
}
CCL_NAMESPACE_END