blender/intern/moto/include/MT_Matrix3x3.h
2003-03-18 23:20:10 +00:00

216 lines
7.6 KiB
C++
Executable File

/**
* $Id$
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
/*
* Copyright (c) 2000 Gino van den Bergen <gino@acm.org>
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Gino van den Bergen makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
#ifndef MT_MATRIX3X3_H
#define MT_MATRIX3X3_H
#include <MT_assert.h>
#include "MT_Vector3.h"
#include "MT_Quaternion.h"
class MT_Matrix3x3 {
public:
MT_Matrix3x3() {}
MT_Matrix3x3(const float *m) { setValue(m); }
MT_Matrix3x3(const double *m) { setValue(m); }
MT_Matrix3x3(const MT_Quaternion& q) { setRotation(q); }
MT_Matrix3x3(const MT_Quaternion& q, const MT_Vector3& s) {
setRotation(q);
scale(s[0], s[1], s[2]);
}
MT_Matrix3x3(const MT_Vector3& euler) { setEuler(euler); }
MT_Matrix3x3(const MT_Vector3& euler, const MT_Vector3& s) {
setEuler(euler);
scale(s[0], s[1], s[2]);
}
MT_Matrix3x3(MT_Scalar xx, MT_Scalar xy, MT_Scalar xz,
MT_Scalar yx, MT_Scalar yy, MT_Scalar yz,
MT_Scalar zx, MT_Scalar zy, MT_Scalar zz) {
setValue(xx, xy, xz,
yx, yy, yz,
zx, zy, zz);
}
MT_Vector3& operator[](int i) { return m_el[i]; }
const MT_Vector3& operator[](int i) const { return m_el[i]; }
void setValue(const float *m) {
m_el[0][0] = *m++; m_el[1][0] = *m++; m_el[2][0] = *m++; m++;
m_el[0][1] = *m++; m_el[1][1] = *m++; m_el[2][1] = *m++; m++;
m_el[0][2] = *m++; m_el[1][2] = *m++; m_el[2][2] = *m;
}
void setValue(const double *m) {
m_el[0][0] = *m++; m_el[1][0] = *m++; m_el[2][0] = *m++; m++;
m_el[0][1] = *m++; m_el[1][1] = *m++; m_el[2][1] = *m++; m++;
m_el[0][2] = *m++; m_el[1][2] = *m++; m_el[2][2] = *m;
}
void setValue(MT_Scalar xx, MT_Scalar xy, MT_Scalar xz,
MT_Scalar yx, MT_Scalar yy, MT_Scalar yz,
MT_Scalar zx, MT_Scalar zy, MT_Scalar zz) {
m_el[0][0] = xx; m_el[0][1] = xy; m_el[0][2] = xz;
m_el[1][0] = yx; m_el[1][1] = yy; m_el[1][2] = yz;
m_el[2][0] = zx; m_el[2][1] = zy; m_el[2][2] = zz;
}
void setRotation(const MT_Quaternion& q) {
MT_Scalar d = q.length2();
MT_assert(!MT_fuzzyZero2(d));
MT_Scalar s = MT_Scalar(2.0) / d;
MT_Scalar xs = q[0] * s, ys = q[1] * s, zs = q[2] * s;
MT_Scalar wx = q[3] * xs, wy = q[3] * ys, wz = q[3] * zs;
MT_Scalar xx = q[0] * xs, xy = q[0] * ys, xz = q[0] * zs;
MT_Scalar yy = q[1] * ys, yz = q[1] * zs, zz = q[2] * zs;
setValue(MT_Scalar(1.0) - (yy + zz), xy - wz , xz + wy,
xy + wz , MT_Scalar(1.0) - (xx + zz), yz - wx,
xz - wy , yz + wx, MT_Scalar(1.0) - (xx + yy));
}
/**
* setEuler
* @param euler a const reference to a MT_Vector3 of euler angles
* These angles are used to produce a rotation matrix. The euler
* angles are applied in ZYX order. I.e a vector is first rotated
* about X then Y and then Z
**/
void setEuler(const MT_Vector3& euler) {
MT_Scalar ci = cos(euler[0]);
MT_Scalar cj = cos(euler[1]);
MT_Scalar ch = cos(euler[2]);
MT_Scalar si = sin(euler[0]);
MT_Scalar sj = sin(euler[1]);
MT_Scalar sh = sin(euler[2]);
MT_Scalar cc = ci * ch;
MT_Scalar cs = ci * sh;
MT_Scalar sc = si * ch;
MT_Scalar ss = si * sh;
setValue(cj * ch, sj * sc - cs, sj * cc + ss,
cj * sh, sj * ss + cc, sj * cs - sc,
-sj, cj * si, cj * ci);
}
void scale(MT_Scalar x, MT_Scalar y, MT_Scalar z) {
m_el[0][0] *= x; m_el[0][1] *= y; m_el[0][2] *= z;
m_el[1][0] *= x; m_el[1][1] *= y; m_el[1][2] *= z;
m_el[2][0] *= x; m_el[2][1] *= y; m_el[2][2] *= z;
}
MT_Matrix3x3 scaled(MT_Scalar x, MT_Scalar y, MT_Scalar z) const {
return MT_Matrix3x3(m_el[0][0] * x, m_el[0][1] * y, m_el[0][2] * z,
m_el[1][0] * x, m_el[1][1] * y, m_el[1][2] * z,
m_el[2][0] * x, m_el[2][1] * y, m_el[2][2] * z);
}
void setIdentity() {
setValue(MT_Scalar(1.0), MT_Scalar(0.0), MT_Scalar(0.0),
MT_Scalar(0.0), MT_Scalar(1.0), MT_Scalar(0.0),
MT_Scalar(0.0), MT_Scalar(0.0), MT_Scalar(1.0));
}
void getValue(float *m) const {
*m++ = (float) m_el[0][0]; *m++ = (float) m_el[1][0]; *m++ = (float) m_el[2][0]; *m++ = (float) 0.0;
*m++ = (float) m_el[0][1]; *m++ = (float) m_el[1][1]; *m++ = (float) m_el[2][1]; *m++ = (float) 0.0;
*m++ = (float) m_el[0][2]; *m++ = (float) m_el[1][2]; *m++ = (float) m_el[2][2]; *m = (float) 0.0;
}
void getValue(double *m) const {
*m++ = m_el[0][0]; *m++ = m_el[1][0]; *m++ = m_el[2][0]; *m++ = 0.0;
*m++ = m_el[0][1]; *m++ = m_el[1][1]; *m++ = m_el[2][1]; *m++ = 0.0;
*m++ = m_el[0][2]; *m++ = m_el[1][2]; *m++ = m_el[2][2]; *m = 0.0;
}
MT_Quaternion getRotation() const;
MT_Matrix3x3& operator*=(const MT_Matrix3x3& m);
MT_Scalar tdot(int c, const MT_Vector3& v) const {
return m_el[0][c] * v[0] + m_el[1][c] * v[1] + m_el[2][c] * v[2];
}
MT_Scalar cofac(int r1, int c1, int r2, int c2) const {
return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1];
}
MT_Scalar determinant() const;
MT_Matrix3x3 adjoint() const;
MT_Matrix3x3 absolute() const;
MT_Matrix3x3 transposed() const;
void transpose();
MT_Matrix3x3 inverse() const;
void invert();
protected:
MT_Vector3 m_el[3];
};
MT_Vector3 operator*(const MT_Matrix3x3& m, const MT_Vector3& v);
MT_Vector3 operator*(const MT_Vector3& v, const MT_Matrix3x3& m);
MT_Matrix3x3 operator*(const MT_Matrix3x3& m1, const MT_Matrix3x3& m2);
MT_Matrix3x3 MT_multTransposeLeft(const MT_Matrix3x3& m1, const MT_Matrix3x3& m2);
MT_Matrix3x3 MT_multTransposeRight(const MT_Matrix3x3& m1, const MT_Matrix3x3& m2);
inline MT_OStream& operator<<(MT_OStream& os, const MT_Matrix3x3& m) {
return os << m[0] << GEN_endl << m[1] << GEN_endl << m[2] << GEN_endl;
}
#ifdef GEN_INLINED
#include "MT_Matrix3x3.inl"
#endif
#endif