blender/intern/cycles/device/device_cpu.cpp
Sergey Sharybin f2c54df625 Cycles: Expose image image extension mapping to the image manager
Currently only two mappings are supported by API, which is Repeat (old behavior)
and new Clip behavior. Internally this extension is being converted to periodic
flag which was already supported but wasn't exposed.

There's no support for OpenCL yet because of the way how we pack images into a
single texture.

Those settings are not exposed to UI or anywhere else and there should be no
functional changes so far.
2015-07-21 21:58:19 +02:00

458 lines
11 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <string.h>
/* So ImathMath is included before our kernel_cpu_compat. */
#ifdef WITH_OSL
# if defined(_MSC_VER)
/* Prevent OSL from polluting the context with weird macros from windows.h.
* TODO(sergey): Ideally it's only enough to have class/struct declarations in
* the header and skip header include here.
*/
# define NOGDI
# define NOMINMAX
# define WIN32_LEAN_AND_MEAN
# endif
# include <OSL/oslexec.h>
#endif
#include "device.h"
#include "device_intern.h"
#include "kernel.h"
#include "kernel_compat_cpu.h"
#include "kernel_types.h"
#include "kernel_globals.h"
#include "osl_shader.h"
#include "osl_globals.h"
#include "buffers.h"
#include "util_debug.h"
#include "util_foreach.h"
#include "util_function.h"
#include "util_logging.h"
#include "util_opengl.h"
#include "util_progress.h"
#include "util_system.h"
#include "util_thread.h"
CCL_NAMESPACE_BEGIN
class CPUDevice : public Device
{
public:
TaskPool task_pool;
KernelGlobals kernel_globals;
#ifdef WITH_OSL
OSLGlobals osl_globals;
#endif
CPUDevice(DeviceInfo& info, Stats &stats, bool background)
: Device(info, stats, background)
{
#ifdef WITH_OSL
kernel_globals.osl = &osl_globals;
#endif
/* do now to avoid thread issues */
system_cpu_support_sse2();
system_cpu_support_sse3();
system_cpu_support_sse41();
system_cpu_support_avx();
system_cpu_support_avx2();
}
~CPUDevice()
{
task_pool.stop();
}
void mem_alloc(device_memory& mem, MemoryType /*type*/)
{
mem.device_pointer = mem.data_pointer;
mem.device_size = mem.memory_size();
stats.mem_alloc(mem.device_size);
}
void mem_copy_to(device_memory& /*mem*/)
{
/* no-op */
}
void mem_copy_from(device_memory& /*mem*/,
int /*y*/, int /*w*/, int /*h*/,
int /*elem*/)
{
/* no-op */
}
void mem_zero(device_memory& mem)
{
memset((void*)mem.device_pointer, 0, mem.memory_size());
}
void mem_free(device_memory& mem)
{
if(mem.device_pointer) {
mem.device_pointer = 0;
stats.mem_free(mem.device_size);
mem.device_size = 0;
}
}
void const_copy_to(const char *name, void *host, size_t size)
{
kernel_const_copy(&kernel_globals, name, host, size);
}
void tex_alloc(const char *name,
device_memory& mem,
InterpolationType interpolation,
bool periodic)
{
VLOG(1) << "Texture allocate: " << name << ", " << mem.memory_size() << " bytes.";
kernel_tex_copy(&kernel_globals,
name,
mem.data_pointer,
mem.data_width,
mem.data_height,
mem.data_depth,
interpolation,
periodic);
mem.device_pointer = mem.data_pointer;
mem.device_size = mem.memory_size();
stats.mem_alloc(mem.device_size);
}
void tex_free(device_memory& mem)
{
if(mem.device_pointer) {
mem.device_pointer = 0;
stats.mem_free(mem.device_size);
mem.device_size = 0;
}
}
void *osl_memory()
{
#ifdef WITH_OSL
return &osl_globals;
#else
return NULL;
#endif
}
void thread_run(DeviceTask *task)
{
if(task->type == DeviceTask::PATH_TRACE)
thread_path_trace(*task);
else if(task->type == DeviceTask::FILM_CONVERT)
thread_film_convert(*task);
else if(task->type == DeviceTask::SHADER)
thread_shader(*task);
}
class CPUDeviceTask : public DeviceTask {
public:
CPUDeviceTask(CPUDevice *device, DeviceTask& task)
: DeviceTask(task)
{
run = function_bind(&CPUDevice::thread_run, device, this);
}
};
void thread_path_trace(DeviceTask& task)
{
if(task_pool.canceled()) {
if(task.need_finish_queue == false)
return;
}
KernelGlobals kg = kernel_globals;
#ifdef WITH_OSL
OSLShader::thread_init(&kg, &kernel_globals, &osl_globals);
#endif
RenderTile tile;
void(*path_trace_kernel)(KernelGlobals*, float*, unsigned int*, int, int, int, int, int);
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2())
path_trace_kernel = kernel_cpu_avx2_path_trace;
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx())
path_trace_kernel = kernel_cpu_avx_path_trace;
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41())
path_trace_kernel = kernel_cpu_sse41_path_trace;
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3())
path_trace_kernel = kernel_cpu_sse3_path_trace;
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2())
path_trace_kernel = kernel_cpu_sse2_path_trace;
else
#endif
path_trace_kernel = kernel_cpu_path_trace;
while(task.acquire_tile(this, tile)) {
float *render_buffer = (float*)tile.buffer;
uint *rng_state = (uint*)tile.rng_state;
int start_sample = tile.start_sample;
int end_sample = tile.start_sample + tile.num_samples;
for(int sample = start_sample; sample < end_sample; sample++) {
if(task.get_cancel() || task_pool.canceled()) {
if(task.need_finish_queue == false)
break;
}
for(int y = tile.y; y < tile.y + tile.h; y++) {
for(int x = tile.x; x < tile.x + tile.w; x++) {
path_trace_kernel(&kg, render_buffer, rng_state,
sample, x, y, tile.offset, tile.stride);
}
}
tile.sample = sample + 1;
task.update_progress(&tile);
}
task.release_tile(tile);
if(task_pool.canceled()) {
if(task.need_finish_queue == false)
break;
}
}
#ifdef WITH_OSL
OSLShader::thread_free(&kg);
#endif
}
void thread_film_convert(DeviceTask& task)
{
float sample_scale = 1.0f/(task.sample + 1);
if(task.rgba_half) {
void(*convert_to_half_float_kernel)(KernelGlobals *, uchar4 *, float *, float, int, int, int, int);
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2())
convert_to_half_float_kernel = kernel_cpu_avx2_convert_to_half_float;
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx())
for(int y = task.y; y < task.y + task.h; y++)
convert_to_half_float_kernel = kernel_cpu_avx_convert_to_half_float;
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41())
convert_to_half_float_kernel = kernel_cpu_sse41_convert_to_half_float;
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3())
convert_to_half_float_kernel = kernel_cpu_sse3_convert_to_half_float;
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2())
convert_to_half_float_kernel = kernel_cpu_sse2_convert_to_half_float;
else
#endif
convert_to_half_float_kernel = kernel_cpu_convert_to_half_float;
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
convert_to_half_float_kernel(&kernel_globals, (uchar4*)task.rgba_half, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
else {
void(*convert_to_byte_kernel)(KernelGlobals *, uchar4 *, float *, float, int, int, int, int);
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2())
convert_to_byte_kernel = kernel_cpu_avx2_convert_to_byte;
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx())
convert_to_byte_kernel = kernel_cpu_avx_convert_to_byte;
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41())
convert_to_byte_kernel = kernel_cpu_sse41_convert_to_byte;
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3())
convert_to_byte_kernel = kernel_cpu_sse3_convert_to_byte;
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2())
convert_to_byte_kernel = kernel_cpu_sse2_convert_to_byte;
else
#endif
convert_to_byte_kernel = kernel_cpu_convert_to_byte;
for(int y = task.y; y < task.y + task.h; y++)
for(int x = task.x; x < task.x + task.w; x++)
convert_to_byte_kernel(&kernel_globals, (uchar4*)task.rgba_byte, (float*)task.buffer,
sample_scale, x, y, task.offset, task.stride);
}
}
void thread_shader(DeviceTask& task)
{
KernelGlobals kg = kernel_globals;
#ifdef WITH_OSL
OSLShader::thread_init(&kg, &kernel_globals, &osl_globals);
#endif
void(*shader_kernel)(KernelGlobals*, uint4*, float4*, int, int, int, int);
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
if(system_cpu_support_avx2())
shader_kernel = kernel_cpu_avx2_shader;
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
if(system_cpu_support_avx())
shader_kernel = kernel_cpu_avx_shader;
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
if(system_cpu_support_sse41())
shader_kernel = kernel_cpu_sse41_shader;
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
if(system_cpu_support_sse3())
shader_kernel = kernel_cpu_sse3_shader;
else
#endif
#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
if(system_cpu_support_sse2())
shader_kernel = kernel_cpu_sse2_shader;
else
#endif
shader_kernel = kernel_cpu_shader;
for(int sample = 0; sample < task.num_samples; sample++) {
for(int x = task.shader_x; x < task.shader_x + task.shader_w; x++)
shader_kernel(&kg, (uint4*)task.shader_input, (float4*)task.shader_output,
task.shader_eval_type, x, task.offset, sample);
if(task.get_cancel() || task_pool.canceled())
break;
task.update_progress(NULL);
}
#ifdef WITH_OSL
OSLShader::thread_free(&kg);
#endif
}
int get_split_task_count(DeviceTask& task)
{
if(task.type == DeviceTask::SHADER)
return task.get_subtask_count(TaskScheduler::num_threads(), 256);
else
return task.get_subtask_count(TaskScheduler::num_threads());
}
void task_add(DeviceTask& task)
{
/* split task into smaller ones */
list<DeviceTask> tasks;
if(task.type == DeviceTask::SHADER)
task.split(tasks, TaskScheduler::num_threads(), 256);
else
task.split(tasks, TaskScheduler::num_threads());
foreach(DeviceTask& task, tasks)
task_pool.push(new CPUDeviceTask(this, task));
}
void task_wait()
{
task_pool.wait_work();
}
void task_cancel()
{
task_pool.cancel();
}
};
Device *device_cpu_create(DeviceInfo& info, Stats &stats, bool background)
{
return new CPUDevice(info, stats, background);
}
void device_cpu_info(vector<DeviceInfo>& devices)
{
DeviceInfo info;
info.type = DEVICE_CPU;
info.description = system_cpu_brand_string();
info.id = "CPU";
info.num = 0;
info.advanced_shading = true;
info.pack_images = false;
devices.insert(devices.begin(), info);
}
string device_cpu_capabilities(void)
{
string capabilities = "";
capabilities += system_cpu_support_sse2() ? "SSE2 " : "";
capabilities += system_cpu_support_sse3() ? "SSE3 " : "";
capabilities += system_cpu_support_sse41() ? "SSE41 " : "";
capabilities += system_cpu_support_avx() ? "AVX " : "";
capabilities += system_cpu_support_avx2() ? "AVX2" : "";
if(capabilities[capabilities.size() - 1] == ' ')
capabilities.resize(capabilities.size() - 1);
return capabilities;
}
CCL_NAMESPACE_END