Initial import.

This commit is contained in:
XMRig 2017-04-15 09:02:08 +03:00
commit ed320731e9
93 changed files with 21078 additions and 0 deletions

1
.gitignore vendored Normal file
View File

@ -0,0 +1 @@
/build

127
CMakeLists.txt Normal file
View File

@ -0,0 +1,127 @@
cmake_minimum_required(VERSION 3.0)
project(xmrig C)
set(HEADERS
compat.h
algo/cryptonight/cryptonight.h
elist.h
xmrig.h
version.h
options.h
cpu.h
persistent_memory.h
stratum.h
stats.h
util.h
donate.h
)
set(HEADERS_CRYPTO
crypto/c_groestl.h
crypto/c_blake256.h
crypto/c_jh.h
crypto/c_skein.h
crypto/oaes_lib.h
crypto/oaes_config.h
crypto/aesb.h
)
set(HEADERS_COMPAT
compat/winansi.h
)
set(HEADERS_UTILS
utils/applog.h
utils/threads.h
utils/summary.h
)
set(SOURCES
xmrig.c
algo/cryptonight/cryptonight_common.c
util.c
options.c
cpu.c
stratum.c
stats.c
memory.c
)
set(SOURCES_CRYPTO
crypto/c_keccak.c
crypto/c_groestl.c
crypto/c_blake256.c
crypto/c_jh.c
crypto/c_skein.c
crypto/oaes_lib.c
crypto/aesb.c
)
set(SOURCES_UTILS
utils/applog.c
utils/summary.c
)
if (WIN32)
set(SOURCES_OS win/cpu_win.c win/memory_win.c win/xmrig_win.c compat/winansi.c)
set(EXTRA_LIBS ws2_32)
add_definitions(/D_WIN32_WINNT=0x600)
else()
set(SOURCES_OS unix/cpu_unix.c unix/memory_unix.c unix/xmrig_unix.c)
set(EXTRA_LIBS pthread)
endif()
include_directories(.)
add_definitions(/DUSE_NATIVE_THREADS)
add_definitions(/D_GNU_SOURCE)
add_definitions(/DDEBUG_THREADS)
if ("${CMAKE_BUILD_TYPE}" STREQUAL "")
set(CMAKE_BUILD_TYPE Release)
endif()
#set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -maes -mbmi2")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -maes -Wno-pointer-to-int-cast")
set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} -Ofast -funroll-loops -fvariable-expansion-in-unroller -ftree-loop-if-convert-stores -fmerge-all-constants -fbranch-target-load-optimize2")
set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} -gdwarf-2")
#set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} -fprofile-generate")
#set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} -fprofile-use -fprofile-correction")
if (WIN32)
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -static")
endif()
include_directories(compat/jansson)
add_subdirectory(compat/jansson)
find_package(CURL REQUIRED)
if (CURL_FOUND)
include_directories(${CURL_INCLUDE_DIRS})
add_definitions(/DCURL_STATICLIB)
link_directories(${CURL_LIBRARIES})
endif()
if (CMAKE_SIZEOF_VOID_P EQUAL 8)
add_subdirectory(algo/cryptonight/bmi2)
set(CRYPTONIGHT64
algo/cryptonight/cryptonight_av1_aesni.c
algo/cryptonight/cryptonight_av2_aesni_wolf.c
algo/cryptonight/cryptonight_av4_legacy.c
algo/cryptonight/cryptonight_av5_aesni_experimental.c
)
add_executable(xmrig ${HEADERS} ${HEADERS_CRYPTO} ${SOURCES} ${SOURCES_CRYPTO} ${HEADERS_UTILS} ${SOURCES_UTILS} ${HEADERS_COMPAT} ${SOURCES_COMPAT} ${SOURCES_OS} ${CRYPTONIGHT64})
target_link_libraries(xmrig jansson curl cryptonight_av3_aesni_bmi2 ${EXTRA_LIBS})
else()
set(CRYPTONIGHT32
algo/cryptonight/cryptonight_av1_aesni32.c
algo/cryptonight/cryptonight_av4_legacy.c
)
add_executable(xmrig32 ${HEADERS} ${HEADERS_CRYPTO} ${SOURCES} ${SOURCES_CRYPTO} ${HEADERS_UTILS} ${SOURCES_UTILS} ${HEADERS_COMPAT} ${SOURCES_COMPAT} ${SOURCES_OS} ${CRYPTONIGHT32})
target_link_libraries(xmrig32 jansson -L${CURL_LIBRARIES} ${EXTRA_LIBS})
endif()
source_group("HEADERS" FILES ${HEADERS})

674
LICENSE Normal file

File diff suppressed because it is too large Load Diff

94
README.md Normal file
View File

@ -0,0 +1,94 @@
# XMRig
XMRig is high performance Monero (XMR) CPU miner, with the official full Windows support.
Based on cpuminer-multi with heavy optimizations/rewrites and removing a lot of legacy code.
#### Table of contents
* [Features](#features)
* [Download](#download)
* [Usage](#usage)
* [Build](#build)
* [Other information](#other-information)
## Features
* High performance, faster than others (290+ H/s on i7 6700).
* Official Windows support.
* Small Windows executable, only 350 KB without dependencies.
* Support for backup (failover) mining server.
* keepalived support.
* Command line options compatible with cpuminer.
* It's open source software.
## Download
* Binary releases: https://github.com/xmrig/xmrig/releases
* Git tree: https://github.com/xmrig/xmrig.git
* Clone with `git clone https://github.com/xmrig/xmrig.git`
## Usage
### Basic example
```
xmrig.exe -o xmr-eu.dwarfpool.com:8005 -b xmr-usa.dwarfpool.com:8005 -u YOUR_WALLET -p x -k
```
### Options
```
-o, --url=URL URL of mining server
-b, --backup-url=URL URL of backup mining server
-O, --userpass=U:P username:password pair for mining server
-u, --user=USERNAME username for mining server
-p, --pass=PASSWORD password for mining server
-t, --threads=N number of miner threads
-v, --av=N algorithm variation, 0 auto select
-k, --keepalive send keepalived for prevent timeout (need pool support)
-r, --retries=N number of times to retry before switch to backup server (default: 5)
-R, --retry-pause=N time to pause between retries (default: 5)
--cpu-affinity set process affinity to cpu core(s), mask 0x3 for cores 0 and 1
--no-color disable colored output
--donate-level=N donate level, default 5% (5 minutes in 100 minutes)
-B, --background run the miner in the background
-c, --config=FILE load a JSON-format configuration file
-h, --help display this help and exit
-V, --version output version information and exit
```
## Build
### Ubuntu (Debian-based distros)
```
sudo apt-get install git build-essential cmake libcurl4-openssl-dev
git clone https://github.com/xmrig/xmrig.git
cd xmrig
mkdir build
cd build
cmake ..
make
```
### Windows
It's complicated, you need [MSYS2](http://www.msys2.org/), custom libcurl build, and of course CMake too.
Configure options for libcurl:
```
./configure --disable-shared --enable-optimize --enable-threaded-resolver --disable-libcurl-option --disable-ares --disable-rt --disable-ftp --disable-file --disable-ldap --disable-ldaps --disable-rtsp --disable-dict --disable-telnet --disable-tftp --disable-pop3 --disable-imap --disable-smb --disable-smtp --disable-gopher --disable-manual --disable-ipv6 --disable-sspi --disable-crypto-auth --disable-ntlm-wb --disable-tls-srp --disable-unix-sockets --without-zlib --without-winssl --without-ssl --without-libssh2 --without-nghttp2 --disable-cookies --without-ca-bundle
```
CMake options:
```
cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release -DCURL_INCLUDE_DIR="c:\<path>\curl-7.53.1\include" -DCURL_LIBRARY="c:\<path>\curl-7.53.1\lib\.libs"
```
## Other information
* Now only support 64 bit operating systems (Windows/Linux).
* No HTTP support, only stratum protocol support.
* No TLS support.
* Default donation 5% (5 minutes in 100 minutes) can be reduced to 1% via command line option `--donate-level`.
### CPU mining performance
* **i7-6700** - 290+ H/s (4 threads, cpu affinity 0xAA)
* **Dual E5620** - 377 H/s (12 threads, cpu affinity 0xEEEE)
Please note performance is highly dependent on system load. The numbers above are obtained on an idle system. Tasks heavily using a processor cache, such as video playback, can greatly degrade hashrate. Optimal number of threads depends on the size of the L3 cache of a processor, 1 thread requires 2 MB of cache.
### Maximum performance checklist
* Idle operating system.
* Do not exceed optimal thread count.
* Use modern CPUs with AES-NI instructuon set.
* Try setup optimal cpu affinity.
* Enable fast memory (Large/Huge pages).

View File

@ -0,0 +1,2 @@
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mbmi2")
add_library(cryptonight_av3_aesni_bmi2 STATIC ../cryptonight_av3_aesni_bmi2.c)

View File

@ -0,0 +1,72 @@
/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2016-2017 XMRig <support@xmrig.com>
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __CRYPTONIGHT_H__
#define __CRYPTONIGHT_H__
#include <stddef.h>
#include <stdint.h>
#define MEMORY (1 << 21) /* 2 MiB */
#define MEMORY_M128I (MEMORY >> 4) // 2 MiB / 16 = 128 ki * __m128i
#define ITER (1 << 20)
#define AES_BLOCK_SIZE 16
#define AES_KEY_SIZE 32 /*16*/
#define INIT_SIZE_BLK 8
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE) // 128
#define INIT_SIZE_M128I (INIT_SIZE_BYTE >> 4) // 8
#pragma pack(push, 1)
union hash_state {
uint8_t b[200];
uint64_t w[25];
};
#pragma pack(pop)
#pragma pack(push, 1)
union cn_slow_hash_state {
union hash_state hs;
struct {
uint8_t k[64];
uint8_t init[INIT_SIZE_BYTE];
};
};
#pragma pack(pop)
struct cryptonight_ctx {
union cn_slow_hash_state state;
uint8_t text[INIT_SIZE_BYTE] __attribute((aligned(16)));
uint64_t a[2] __attribute__((aligned(16)));
uint64_t b[2] __attribute__((aligned(16)));
uint64_t c[2] __attribute__((aligned(16)));
};
extern void (* const extra_hashes[4])(const void *, size_t, char *);
void cryptonight_init(int variant);
void cryptonight_hash(void* output, const void* input, size_t input_len);
int scanhash_cryptonight(int thr_id, uint32_t *hash, uint32_t *restrict pdata, const uint32_t *restrict ptarget, uint32_t max_nonce, unsigned long *restrict hashes_done, const char *memory, struct cryptonight_ctx *persistentctx);
#endif /* __CRYPTONIGHT_H__ */

View File

@ -0,0 +1,216 @@
/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2016-2017 XMRig <support@xmrig.com>
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <x86intrin.h>
#include <string.h>
#include "cryptonight.h"
#include "crypto/c_keccak.h"
static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2)
{
__m128i tmp4;
*tmp2 = _mm_shuffle_epi32(*tmp2, 0xFF);
tmp4 = _mm_slli_si128(*tmp1, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
*tmp1 = _mm_xor_si128(*tmp1, *tmp2);
}
static inline void ExpandAESKey256_sub2(__m128i *tmp1, __m128i *tmp3)
{
__m128i tmp2, tmp4;
tmp4 = _mm_aeskeygenassist_si128(*tmp1, 0x00);
tmp2 = _mm_shuffle_epi32(tmp4, 0xAA);
tmp4 = _mm_slli_si128(*tmp3, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
*tmp3 = _mm_xor_si128(*tmp3, tmp2);
}
// Special thanks to Intel for helping me
// with ExpandAESKey256() and its subroutines
static inline void ExpandAESKey256(char *keybuf)
{
__m128i tmp1, tmp2, tmp3, *keys;
keys = (__m128i *)keybuf;
tmp1 = _mm_load_si128((__m128i *)keybuf);
tmp3 = _mm_load_si128((__m128i *)(keybuf+0x10));
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x01);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[2] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[3] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x02);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[4] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[5] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x04);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[6] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[7] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x08);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[8] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[9] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x10);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[10] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[11] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x20);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[12] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[13] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x40);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[14] = tmp1;
}
void cryptonight_av1_aesni(void *restrict output, const void *restrict input, const char *restrict memory, struct cryptonight_ctx *restrict ctx)
{
keccak((const uint8_t *)input, 76, (uint8_t *) &ctx->state.hs, 200);
uint8_t ExpandedKey[256];
size_t i, j;
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, ctx->state.hs.b, AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
__m128i *longoutput, *expkey, *xmminput;
longoutput = (__m128i *) memory;
expkey = (__m128i *)ExpandedKey;
xmminput = (__m128i *)ctx->text;
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE)
{
for(j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
_mm_store_si128(&(longoutput[(i >> 4)]), xmminput[0]);
_mm_store_si128(&(longoutput[(i >> 4) + 1]), xmminput[1]);
_mm_store_si128(&(longoutput[(i >> 4) + 2]), xmminput[2]);
_mm_store_si128(&(longoutput[(i >> 4) + 3]), xmminput[3]);
_mm_store_si128(&(longoutput[(i >> 4) + 4]), xmminput[4]);
_mm_store_si128(&(longoutput[(i >> 4) + 5]), xmminput[5]);
_mm_store_si128(&(longoutput[(i >> 4) + 6]), xmminput[6]);
_mm_store_si128(&(longoutput[(i >> 4) + 7]), xmminput[7]);
}
for (i = 0; i < 2; i++)
{
ctx->a[i] = ((uint64_t *)ctx->state.k)[i] ^ ((uint64_t *)ctx->state.k)[i+4];
ctx->b[i] = ((uint64_t *)ctx->state.k)[i+2] ^ ((uint64_t *)ctx->state.k)[i+6];
}
__m128i a_x = _mm_load_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0]);
__m128i b_x = _mm_load_si128((__m128i *) ctx->b);
uint64_t c[2] __attribute((aligned(16)));
uint64_t d[2] __attribute((aligned(16)));
for (i = 0; __builtin_expect(i < 0x80000, 1); i++) {
__m128i c_x = _mm_aesenc_si128(a_x, _mm_load_si128((__m128i *) ctx->a));
_mm_store_si128((__m128i *) c, c_x);
uint64_t *restrict d_ptr = (uint64_t *) &memory[c[0] & 0x1FFFF0];
_mm_store_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0], _mm_xor_si128(b_x, c_x));
b_x = c_x;
d[0] = d_ptr[0];
d[1] = d_ptr[1];
{
unsigned __int128 res = (unsigned __int128) c[0] * d[0];
d_ptr[0] = ctx->a[0] += res >> 64;
d_ptr[1] = ctx->a[1] += (uint64_t) res;
}
ctx->a[0] ^= d[0];
ctx->a[1] ^= d[1];
a_x = _mm_load_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0]);
}
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, &ctx->state.hs.b[32], AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE) {
xmminput[0] = _mm_xor_si128(longoutput[(i >> 4)], xmminput[0]);
xmminput[1] = _mm_xor_si128(longoutput[(i >> 4) + 1], xmminput[1]);
xmminput[2] = _mm_xor_si128(longoutput[(i >> 4) + 2], xmminput[2]);
xmminput[3] = _mm_xor_si128(longoutput[(i >> 4) + 3], xmminput[3]);
xmminput[4] = _mm_xor_si128(longoutput[(i >> 4) + 4], xmminput[4]);
xmminput[5] = _mm_xor_si128(longoutput[(i >> 4) + 5], xmminput[5]);
xmminput[6] = _mm_xor_si128(longoutput[(i >> 4) + 6], xmminput[6]);
xmminput[7] = _mm_xor_si128(longoutput[(i >> 4) + 7], xmminput[7]);
for(j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
}
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
keccakf((uint64_t *) &ctx->state.hs, 24);
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
}

View File

@ -0,0 +1,239 @@
/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2016-2017 XMRig <support@xmrig.com>
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <x86intrin.h>
#include <string.h>
#include "cryptonight.h"
#include "crypto/c_keccak.h"
static inline uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t *product_hi) {
// multiplier = ab = a * 2^32 + b
// multiplicand = cd = c * 2^32 + d
// ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d
uint64_t a = multiplier >> 32;
uint64_t b = multiplier & 0xFFFFFFFF;
uint64_t c = multiplicand >> 32;
uint64_t d = multiplicand & 0xFFFFFFFF;
//uint64_t ac = a * c;
uint64_t ad = a * d;
//uint64_t bc = b * c;
uint64_t bd = b * d;
uint64_t adbc = ad + (b * c);
uint64_t adbc_carry = adbc < ad ? 1 : 0;
// multiplier * multiplicand = product_hi * 2^64 + product_lo
uint64_t product_lo = bd + (adbc << 32);
uint64_t product_lo_carry = product_lo < bd ? 1 : 0;
*product_hi = (a * c) + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry;
return product_lo;
}
static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2)
{
__m128i tmp4;
*tmp2 = _mm_shuffle_epi32(*tmp2, 0xFF);
tmp4 = _mm_slli_si128(*tmp1, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
*tmp1 = _mm_xor_si128(*tmp1, *tmp2);
}
static inline void ExpandAESKey256_sub2(__m128i *tmp1, __m128i *tmp3)
{
__m128i tmp2, tmp4;
tmp4 = _mm_aeskeygenassist_si128(*tmp1, 0x00);
tmp2 = _mm_shuffle_epi32(tmp4, 0xAA);
tmp4 = _mm_slli_si128(*tmp3, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
*tmp3 = _mm_xor_si128(*tmp3, tmp2);
}
// Special thanks to Intel for helping me
// with ExpandAESKey256() and its subroutines
static inline void ExpandAESKey256(char *keybuf)
{
__m128i tmp1, tmp2, tmp3, *keys;
keys = (__m128i *)keybuf;
tmp1 = _mm_load_si128((__m128i *)keybuf);
tmp3 = _mm_load_si128((__m128i *)(keybuf+0x10));
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x01);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[2] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[3] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x02);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[4] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[5] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x04);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[6] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[7] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x08);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[8] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[9] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x10);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[10] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[11] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x20);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[12] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[13] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x40);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[14] = tmp1;
}
void cryptonight_av1_aesni32(void *restrict output, const void *restrict input, const char *restrict memory, struct cryptonight_ctx *restrict ctx)
{
keccak((const uint8_t *)input, 76, (uint8_t *) &ctx->state.hs, 200);
uint8_t ExpandedKey[256];
size_t i, j;
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, ctx->state.hs.b, AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
__m128i *longoutput, *expkey, *xmminput;
longoutput = (__m128i *) memory;
expkey = (__m128i *)ExpandedKey;
xmminput = (__m128i *)ctx->text;
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE)
{
for(j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
_mm_store_si128(&(longoutput[(i >> 4)]), xmminput[0]);
_mm_store_si128(&(longoutput[(i >> 4) + 1]), xmminput[1]);
_mm_store_si128(&(longoutput[(i >> 4) + 2]), xmminput[2]);
_mm_store_si128(&(longoutput[(i >> 4) + 3]), xmminput[3]);
_mm_store_si128(&(longoutput[(i >> 4) + 4]), xmminput[4]);
_mm_store_si128(&(longoutput[(i >> 4) + 5]), xmminput[5]);
_mm_store_si128(&(longoutput[(i >> 4) + 6]), xmminput[6]);
_mm_store_si128(&(longoutput[(i >> 4) + 7]), xmminput[7]);
}
for (i = 0; i < 2; i++)
{
ctx->a[i] = ((uint64_t *)ctx->state.k)[i] ^ ((uint64_t *)ctx->state.k)[i+4];
ctx->b[i] = ((uint64_t *)ctx->state.k)[i+2] ^ ((uint64_t *)ctx->state.k)[i+6];
}
__m128i a_x = _mm_load_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0]);
__m128i b_x = _mm_load_si128((__m128i *) ctx->b);
uint64_t c[2] __attribute((aligned(16)));
uint64_t d[2] __attribute((aligned(16)));
uint64_t hi;
for (i = 0; __builtin_expect(i < 0x80000, 1); i++) {
__m128i c_x = _mm_aesenc_si128(a_x, _mm_load_si128((__m128i *) ctx->a));
_mm_store_si128((__m128i *) c, c_x);
uint64_t *restrict d_ptr = (uint64_t *) &memory[c[0] & 0x1FFFF0];
_mm_store_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0], _mm_xor_si128(b_x, c_x));
b_x = c_x;
d[0] = d_ptr[0];
d[1] = d_ptr[1];
d_ptr[1] = ctx->a[1] += mul128(c[0], d[0], &hi);
d_ptr[0] = ctx->a[0] += hi;
ctx->a[0] ^= d[0];
ctx->a[1] ^= d[1];
a_x = _mm_load_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0]);
}
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, &ctx->state.hs.b[32], AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE) {
xmminput[0] = _mm_xor_si128(longoutput[(i >> 4)], xmminput[0]);
xmminput[1] = _mm_xor_si128(longoutput[(i >> 4) + 1], xmminput[1]);
xmminput[2] = _mm_xor_si128(longoutput[(i >> 4) + 2], xmminput[2]);
xmminput[3] = _mm_xor_si128(longoutput[(i >> 4) + 3], xmminput[3]);
xmminput[4] = _mm_xor_si128(longoutput[(i >> 4) + 4], xmminput[4]);
xmminput[5] = _mm_xor_si128(longoutput[(i >> 4) + 5], xmminput[5]);
xmminput[6] = _mm_xor_si128(longoutput[(i >> 4) + 6], xmminput[6]);
xmminput[7] = _mm_xor_si128(longoutput[(i >> 4) + 7], xmminput[7]);
for(j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
}
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
keccakf((uint64_t *) &ctx->state.hs, 24);
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
}

View File

@ -0,0 +1,237 @@
/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2016-2017 XMRig <support@xmrig.com>
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <x86intrin.h>
#include "cryptonight.h"
#include "crypto/c_keccak.h"
static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2)
{
__m128i tmp4;
*tmp2 = _mm_shuffle_epi32(*tmp2, 0xFF);
tmp4 = _mm_slli_si128(*tmp1, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
*tmp1 = _mm_xor_si128(*tmp1, *tmp2);
}
static inline void ExpandAESKey256_sub2(__m128i *tmp1, __m128i *tmp3)
{
__m128i tmp2, tmp4;
tmp4 = _mm_aeskeygenassist_si128(*tmp1, 0x00);
tmp2 = _mm_shuffle_epi32(tmp4, 0xAA);
tmp4 = _mm_slli_si128(*tmp3, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
*tmp3 = _mm_xor_si128(*tmp3, tmp2);
}
// Special thanks to Intel for helping me
// with ExpandAESKey256() and its subroutines
static inline void ExpandAESKey256(char *keybuf)
{
__m128i tmp1, tmp2, tmp3, *keys;
keys = (__m128i *)keybuf;
tmp1 = _mm_load_si128((__m128i *)keybuf);
tmp3 = _mm_load_si128((__m128i *)(keybuf+0x10));
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x01);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[2] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[3] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x02);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[4] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[5] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x04);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[6] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[7] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x08);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[8] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[9] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x10);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[10] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[11] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x20);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[12] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[13] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x40);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[14] = tmp1;
}
void cryptonight_av2_aesni_wolf(void *restrict output, const void *restrict input, const char *restrict memory, struct cryptonight_ctx *restrict ctx)
{
keccak((const uint8_t *) input, 76, (uint8_t *) &ctx->state.hs, 200);
uint8_t ExpandedKey[256];
size_t i, j;
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, ctx->state.hs.b, AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
__m128i *longoutput, *expkey, *xmminput;
longoutput = (__m128i *)memory;
expkey = (__m128i *)ExpandedKey;
xmminput = (__m128i *)ctx->text;
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE)
{
for(j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
_mm_store_si128(&(longoutput[(i >> 4)]), xmminput[0]);
_mm_store_si128(&(longoutput[(i >> 4) + 1]), xmminput[1]);
_mm_store_si128(&(longoutput[(i >> 4) + 2]), xmminput[2]);
_mm_store_si128(&(longoutput[(i >> 4) + 3]), xmminput[3]);
_mm_store_si128(&(longoutput[(i >> 4) + 4]), xmminput[4]);
_mm_store_si128(&(longoutput[(i >> 4) + 5]), xmminput[5]);
_mm_store_si128(&(longoutput[(i >> 4) + 6]), xmminput[6]);
_mm_store_si128(&(longoutput[(i >> 4) + 7]), xmminput[7]);
}
for (i = 0; i < 2; i++)
{
ctx->a[i] = ((uint64_t *)ctx->state.k)[i] ^ ((uint64_t *)ctx->state.k)[i+4];
ctx->b[i] = ((uint64_t *)ctx->state.k)[i+2] ^ ((uint64_t *)ctx->state.k)[i+6];
}
__m128i b_x = _mm_load_si128((__m128i *)ctx->b);
uint64_t a[2] __attribute((aligned(16))), b[2] __attribute((aligned(16)));
a[0] = ctx->a[0];
a[1] = ctx->a[1];
for(i = 0; __builtin_expect(i < 0x80000, 1); i++)
{
__m128i c_x = _mm_load_si128((__m128i *)&memory[a[0] & 0x1FFFF0]);
__m128i a_x = _mm_load_si128((__m128i *)a);
uint64_t c[2];
c_x = _mm_aesenc_si128(c_x, a_x);
_mm_store_si128((__m128i *)c, c_x);
__builtin_prefetch(&memory[c[0] & 0x1FFFF0], 0, 1);
b_x = _mm_xor_si128(b_x, c_x);
_mm_store_si128((__m128i *)&memory[a[0] & 0x1FFFF0], b_x);
uint64_t *nextblock = (uint64_t *)&memory[c[0] & 0x1FFFF0];
uint64_t b[2];
b[0] = nextblock[0];
b[1] = nextblock[1];
{
uint64_t hi, lo;
// hi,lo = 64bit x 64bit multiply of c[0] and b[0]
__asm__("mulq %3\n\t"
: "=d" (hi),
"=a" (lo)
: "%a" (c[0]),
"rm" (b[0])
: "cc" );
a[0] += hi;
a[1] += lo;
}
uint64_t *dst = (uint64_t *) &memory[c[0] & 0x1FFFF0];
dst[0] = a[0];
dst[1] = a[1];
a[0] ^= b[0];
a[1] ^= b[1];
b_x = c_x;
__builtin_prefetch(&memory[a[0] & 0x1FFFF0], 0, 3);
}
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, &ctx->state.hs.b[32], AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
//for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE)
// aesni_parallel_xor(&ctx->text, ExpandedKey, &ctx->long_state[i]);
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE)
{
xmminput[0] = _mm_xor_si128(longoutput[(i >> 4)], xmminput[0]);
xmminput[1] = _mm_xor_si128(longoutput[(i >> 4) + 1], xmminput[1]);
xmminput[2] = _mm_xor_si128(longoutput[(i >> 4) + 2], xmminput[2]);
xmminput[3] = _mm_xor_si128(longoutput[(i >> 4) + 3], xmminput[3]);
xmminput[4] = _mm_xor_si128(longoutput[(i >> 4) + 4], xmminput[4]);
xmminput[5] = _mm_xor_si128(longoutput[(i >> 4) + 5], xmminput[5]);
xmminput[6] = _mm_xor_si128(longoutput[(i >> 4) + 6], xmminput[6]);
xmminput[7] = _mm_xor_si128(longoutput[(i >> 4) + 7], xmminput[7]);
for(j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
}
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
keccakf((uint64_t *) &ctx->state.hs, 24);
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
}

View File

@ -0,0 +1,214 @@
/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2016-2017 XMRig <support@xmrig.com>
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <x86intrin.h>
#include <string.h>
#include "cryptonight.h"
#include "crypto/c_keccak.h"
static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2)
{
__m128i tmp4;
*tmp2 = _mm_shuffle_epi32(*tmp2, 0xFF);
tmp4 = _mm_slli_si128(*tmp1, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
*tmp1 = _mm_xor_si128(*tmp1, *tmp2);
}
static inline void ExpandAESKey256_sub2(__m128i *tmp1, __m128i *tmp3)
{
__m128i tmp2, tmp4;
tmp4 = _mm_aeskeygenassist_si128(*tmp1, 0x00);
tmp2 = _mm_shuffle_epi32(tmp4, 0xAA);
tmp4 = _mm_slli_si128(*tmp3, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
*tmp3 = _mm_xor_si128(*tmp3, tmp2);
}
// Special thanks to Intel for helping me
// with ExpandAESKey256() and its subroutines
static inline void ExpandAESKey256(char *keybuf)
{
__m128i tmp1, tmp2, tmp3, *keys;
keys = (__m128i *)keybuf;
tmp1 = _mm_load_si128((__m128i *)keybuf);
tmp3 = _mm_load_si128((__m128i *)(keybuf+0x10));
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x01);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[2] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[3] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x02);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[4] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[5] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x04);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[6] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[7] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x08);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[8] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[9] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x10);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[10] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[11] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x20);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[12] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[13] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x40);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[14] = tmp1;
}
void cryptonight_av3_aesni_bmi2(void *restrict output, const void *restrict input, const char *restrict memory, struct cryptonight_ctx *restrict ctx)
{
keccak((const uint8_t *) input, 76, (uint8_t *) &ctx->state.hs, 200);
uint8_t ExpandedKey[256];
size_t i, j;
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, ctx->state.hs.b, AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
__m128i *longoutput, *expkey, *xmminput;
longoutput = (__m128i *) memory;
expkey = (__m128i *)ExpandedKey;
xmminput = (__m128i *)ctx->text;
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE)
{
for(j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
_mm_store_si128(&(longoutput[(i >> 4)]), xmminput[0]);
_mm_store_si128(&(longoutput[(i >> 4) + 1]), xmminput[1]);
_mm_store_si128(&(longoutput[(i >> 4) + 2]), xmminput[2]);
_mm_store_si128(&(longoutput[(i >> 4) + 3]), xmminput[3]);
_mm_store_si128(&(longoutput[(i >> 4) + 4]), xmminput[4]);
_mm_store_si128(&(longoutput[(i >> 4) + 5]), xmminput[5]);
_mm_store_si128(&(longoutput[(i >> 4) + 6]), xmminput[6]);
_mm_store_si128(&(longoutput[(i >> 4) + 7]), xmminput[7]);
}
for (i = 0; i < 2; i++)
{
ctx->a[i] = ((uint64_t *)ctx->state.k)[i] ^ ((uint64_t *)ctx->state.k)[i+4];
ctx->b[i] = ((uint64_t *)ctx->state.k)[i+2] ^ ((uint64_t *)ctx->state.k)[i+6];
}
__m128i a_x = _mm_load_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0]);
__m128i b_x = _mm_load_si128((__m128i *) ctx->b);
uint64_t c[2] __attribute((aligned(16)));
uint64_t d[2] __attribute((aligned(16)));
uint64_t hi;
for (i = 0; __builtin_expect(i < 0x80000, 1); i++) {
__m128i c_x = _mm_aesenc_si128(a_x, _mm_load_si128((__m128i *) ctx->a));
_mm_store_si128((__m128i *) c, c_x);
uint64_t *restrict d_ptr = (uint64_t *) &memory[c[0] & 0x1FFFF0];
_mm_store_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0], _mm_xor_si128(b_x, c_x));
b_x = c_x;
d[0] = d_ptr[0];
d[1] = d_ptr[1];
d_ptr[1] = ctx->a[1] += _mulx_u64(c[0], d[0], &hi);
d_ptr[0] = ctx->a[0] += hi;
ctx->a[0] ^= d[0];
ctx->a[1] ^= d[1];
a_x = _mm_load_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0]);
}
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, &ctx->state.hs.b[32], AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE) {
xmminput[0] = _mm_xor_si128(longoutput[(i >> 4)], xmminput[0]);
xmminput[1] = _mm_xor_si128(longoutput[(i >> 4) + 1], xmminput[1]);
xmminput[2] = _mm_xor_si128(longoutput[(i >> 4) + 2], xmminput[2]);
xmminput[3] = _mm_xor_si128(longoutput[(i >> 4) + 3], xmminput[3]);
xmminput[4] = _mm_xor_si128(longoutput[(i >> 4) + 4], xmminput[4]);
xmminput[5] = _mm_xor_si128(longoutput[(i >> 4) + 5], xmminput[5]);
xmminput[6] = _mm_xor_si128(longoutput[(i >> 4) + 6], xmminput[6]);
xmminput[7] = _mm_xor_si128(longoutput[(i >> 4) + 7], xmminput[7]);
for(j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
}
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
keccakf((uint64_t *) &ctx->state.hs, 24);
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
}

View File

@ -0,0 +1,151 @@
/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2016-2017 XMRig <support@xmrig.com>
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <x86intrin.h>
#include <string.h>
#include "cryptonight.h"
#include "compat.h"
#include "crypto/c_keccak.h"
#include "crypto/aesb.h"
#include "crypto/oaes_lib.h"
static inline uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t *product_hi) {
// multiplier = ab = a * 2^32 + b
// multiplicand = cd = c * 2^32 + d
// ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d
uint64_t a = multiplier >> 32;
uint64_t b = multiplier & 0xFFFFFFFF;
uint64_t c = multiplicand >> 32;
uint64_t d = multiplicand & 0xFFFFFFFF;
//uint64_t ac = a * c;
uint64_t ad = a * d;
//uint64_t bc = b * c;
uint64_t bd = b * d;
uint64_t adbc = ad + (b * c);
uint64_t adbc_carry = adbc < ad ? 1 : 0;
// multiplier * multiplicand = product_hi * 2^64 + product_lo
uint64_t product_lo = bd + (adbc << 32);
uint64_t product_lo_carry = product_lo < bd ? 1 : 0;
*product_hi = (a * c) + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry;
return product_lo;
}
static inline void mul_sum_xor_dst(const uint8_t* a, uint8_t* c, uint8_t* dst) {
uint64_t hi, lo = mul128(((uint64_t*) a)[0], ((uint64_t*) dst)[0], &hi) + ((uint64_t*) c)[1];
hi += ((uint64_t*) c)[0];
((uint64_t*) c)[0] = ((uint64_t*) dst)[0] ^ hi;
((uint64_t*) c)[1] = ((uint64_t*) dst)[1] ^ lo;
((uint64_t*) dst)[0] = hi;
((uint64_t*) dst)[1] = lo;
}
static inline void xor_blocks(uint8_t* a, const uint8_t* b) {
((uint64_t*) a)[0] ^= ((uint64_t*) b)[0];
((uint64_t*) a)[1] ^= ((uint64_t*) b)[1];
}
static inline void xor_blocks_dst(const uint8_t* a, const uint8_t* b, uint8_t* dst) {
((uint64_t*) dst)[0] = ((uint64_t*) a)[0] ^ ((uint64_t*) b)[0];
((uint64_t*) dst)[1] = ((uint64_t*) a)[1] ^ ((uint64_t*) b)[1];
}
void cryptonight_av4_legacy(void *restrict output, const void *restrict input, const char *restrict memory, struct cryptonight_ctx *restrict ctx) {
oaes_ctx *aes_ctx = (oaes_ctx*) oaes_alloc();
size_t i, j;
keccak((const uint8_t *)input, 76, (uint8_t *) &ctx->state.hs, 200);
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
oaes_key_import_data(aes_ctx, ctx->state.hs.b, AES_KEY_SIZE);
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 0], aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 1], aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 2], aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 3], aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 4], aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 5], aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 6], aes_ctx->key->exp_data);
aesb_pseudo_round_mut(&ctx->text[AES_BLOCK_SIZE * 7], aes_ctx->key->exp_data);
memcpy((void *) &memory[i], ctx->text, INIT_SIZE_BYTE);
}
xor_blocks_dst(&ctx->state.k[0], &ctx->state.k[32], (uint8_t*) ctx->a);
xor_blocks_dst(&ctx->state.k[16], &ctx->state.k[48], (uint8_t*) ctx->b);
for (i = 0; likely(i < ITER / 4); ++i) {
/* Dependency chain: address -> read value ------+
* written value <-+ hard function (AES or MUL) <+
* next address <-+
*/
/* Iteration 1 */
j = ctx->a[0] & 0x1FFFF0;
aesb_single_round((const uint8_t*) &memory[j], (uint8_t *) ctx->c, (const uint8_t *) ctx->a);
xor_blocks_dst((const uint8_t*) ctx->c, (const uint8_t*) ctx->b, (uint8_t*) &memory[j]);
/* Iteration 2 */
mul_sum_xor_dst((const uint8_t*) ctx->c, (uint8_t*) ctx->a, (uint8_t*) &memory[ctx->c[0] & 0x1FFFF0]);
/* Iteration 3 */
j = ctx->a[0] & 0x1FFFF0;
aesb_single_round(&memory[j], (uint8_t *) ctx->b, (uint8_t *) ctx->a);
xor_blocks_dst((const uint8_t*) ctx->b, (const uint8_t*) ctx->c, (uint8_t*) &memory[j]);
/* Iteration 4 */
mul_sum_xor_dst((const uint8_t*) ctx->b, (uint8_t*) ctx->a, (uint8_t*) &memory[ctx->b[0] & 0x1FFFF0]);
}
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
oaes_key_import_data(aes_ctx, &ctx->state.hs.b[32], AES_KEY_SIZE);
for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE) {
xor_blocks(&ctx->text[0 * AES_BLOCK_SIZE], &memory[i + 0 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[0 * AES_BLOCK_SIZE], aes_ctx->key->exp_data);
xor_blocks(&ctx->text[1 * AES_BLOCK_SIZE], &memory[i + 1 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[1 * AES_BLOCK_SIZE], aes_ctx->key->exp_data);
xor_blocks(&ctx->text[2 * AES_BLOCK_SIZE], &memory[i + 2 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[2 * AES_BLOCK_SIZE], aes_ctx->key->exp_data);
xor_blocks(&ctx->text[3 * AES_BLOCK_SIZE], &memory[i + 3 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[3 * AES_BLOCK_SIZE], aes_ctx->key->exp_data);
xor_blocks(&ctx->text[4 * AES_BLOCK_SIZE], &memory[i + 4 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[4 * AES_BLOCK_SIZE], aes_ctx->key->exp_data);
xor_blocks(&ctx->text[5 * AES_BLOCK_SIZE], &memory[i + 5 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[5 * AES_BLOCK_SIZE], aes_ctx->key->exp_data);
xor_blocks(&ctx->text[6 * AES_BLOCK_SIZE], &memory[i + 6 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[6 * AES_BLOCK_SIZE], aes_ctx->key->exp_data);
xor_blocks(&ctx->text[7 * AES_BLOCK_SIZE], &memory[i + 7 * AES_BLOCK_SIZE]);
aesb_pseudo_round_mut(&ctx->text[7 * AES_BLOCK_SIZE], aes_ctx->key->exp_data);
}
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
keccakf((uint64_t *) &ctx->state.hs, 24);
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
oaes_free((OAES_CTX **) &aes_ctx);
}

View File

@ -0,0 +1,248 @@
/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2016-2017 XMRig <support@xmrig.com>
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <x86intrin.h>
#include <string.h>
#include "cryptonight.h"
#include "crypto/c_keccak.h"
static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2)
{
__m128i tmp4;
*tmp2 = _mm_shuffle_epi32(*tmp2, 0xFF);
tmp4 = _mm_slli_si128(*tmp1, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
*tmp1 = _mm_xor_si128(*tmp1, *tmp2);
}
static inline void ExpandAESKey256_sub2(__m128i *tmp1, __m128i *tmp3)
{
__m128i tmp2, tmp4;
tmp4 = _mm_aeskeygenassist_si128(*tmp1, 0x00);
tmp2 = _mm_shuffle_epi32(tmp4, 0xAA);
tmp4 = _mm_slli_si128(*tmp3, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
*tmp3 = _mm_xor_si128(*tmp3, tmp2);
}
// Special thanks to Intel for helping me
// with ExpandAESKey256() and its subroutines
static inline void ExpandAESKey256(char *keybuf)
{
__m128i tmp1, tmp2, tmp3, *keys;
keys = (__m128i *)keybuf;
tmp1 = _mm_load_si128((__m128i *)keybuf);
tmp3 = _mm_load_si128((__m128i *)(keybuf+0x10));
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x01);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[2] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[3] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x02);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[4] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[5] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x04);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[6] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[7] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x08);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[8] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[9] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x10);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[10] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[11] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x20);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[12] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[13] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x40);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[14] = tmp1;
}
void cryptonight_av5_aesni_experimental(void *restrict output, const void *restrict input, const char *restrict memory, struct cryptonight_ctx *restrict ctx)
{
keccak((const uint8_t *)input, 76, (uint8_t *) &ctx->state.hs, 200);
uint8_t ExpandedKey[256];
size_t i, j;
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, ctx->state.hs.b, AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
__m128i *longoutput, *expkey, *xmminput;
longoutput = (__m128i *) memory;
expkey = (__m128i *) ExpandedKey;
xmminput = (__m128i *)ctx->text;
// prefetch expkey, all of xmminput and enough longoutput for 4 loops
_mm_prefetch(xmminput, _MM_HINT_T0 );
_mm_prefetch(xmminput + 4, _MM_HINT_T0 );
for (i = 0; i < 64; i += 16) {
_mm_prefetch(longoutput + i, _MM_HINT_T0);
_mm_prefetch(longoutput + i + 4, _MM_HINT_T0);
_mm_prefetch(longoutput + i + 8, _MM_HINT_T0);
_mm_prefetch(longoutput + i + 12, _MM_HINT_T0);
}
_mm_prefetch(expkey, _MM_HINT_T0);
_mm_prefetch(expkey + 4, _MM_HINT_T0);
_mm_prefetch(expkey + 8, _MM_HINT_T0);
for (i = 0; __builtin_expect(i < MEMORY_M128I, 1); i += INIT_SIZE_M128I) {
__builtin_prefetch(longoutput + i + 64, 1, 0);
__builtin_prefetch(longoutput + i + 68, 1, 0);
for(j = 0; j < 10; j++) {
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
_mm_store_si128(&(longoutput[i ]), xmminput[0]);
_mm_store_si128(&(longoutput[i + 1 ]), xmminput[1]);
_mm_store_si128(&(longoutput[i + 2 ]), xmminput[2]);
_mm_store_si128(&(longoutput[i + 3 ]), xmminput[3]);
_mm_store_si128(&(longoutput[i + 4 ]), xmminput[4]);
_mm_store_si128(&(longoutput[i + 5 ]), xmminput[5]);
_mm_store_si128(&(longoutput[i + 6 ]), xmminput[6]);
_mm_store_si128(&(longoutput[i + 7 ]), xmminput[7]);
}
ctx->a[0] = ((uint64_t *) ctx->state.k)[0] ^ ((uint64_t *) ctx->state.k)[4];
ctx->b[0] = ((uint64_t *) ctx->state.k)[2] ^ ((uint64_t *) ctx->state.k)[6];
ctx->a[1] = ((uint64_t *) ctx->state.k)[1] ^ ((uint64_t *) ctx->state.k)[5];
ctx->b[1] = ((uint64_t *) ctx->state.k)[3] ^ ((uint64_t *) ctx->state.k)[7];
__m128i a_x = _mm_load_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0]);
__m128i b_x = _mm_load_si128((__m128i *) ctx->b);
uint64_t c[2] __attribute((aligned(16)));
uint64_t d[2] __attribute((aligned(16)));
for (i = 0; __builtin_expect(i < 0x80000, 1); i++) {
__m128i c_x = _mm_aesenc_si128(a_x, _mm_load_si128((__m128i *) ctx->a));
_mm_store_si128((__m128i *) c, c_x);
uint64_t *restrict d_ptr = (uint64_t *) &memory[c[0] & 0x1FFFF0];
_mm_store_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0], _mm_xor_si128(b_x, c_x));
b_x = c_x;
d[0] = d_ptr[0];
d[1] = d_ptr[1];
{
unsigned __int128 res = (unsigned __int128) c[0] * d[0];
d_ptr[0] = ctx->a[0] += res >> 64;
d_ptr[1] = ctx->a[1] += (uint64_t) res;
}
ctx->a[0] ^= d[0];
ctx->a[1] ^= d[1];
a_x = _mm_load_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0]);
}
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, &ctx->state.hs.b[32], AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
_mm_prefetch(xmminput, _MM_HINT_T0 );
_mm_prefetch(xmminput + 4, _MM_HINT_T0 );
for (i = 0; i < 64; i += 16) {
_mm_prefetch(longoutput + i, _MM_HINT_T0);
_mm_prefetch(longoutput + i + 4, _MM_HINT_T0);
_mm_prefetch(longoutput + i + 8, _MM_HINT_T0);
_mm_prefetch(longoutput + i + 12, _MM_HINT_T0);
}
_mm_prefetch(expkey, _MM_HINT_T0);
_mm_prefetch(expkey + 4, _MM_HINT_T0);
_mm_prefetch(expkey + 8, _MM_HINT_T0);
for (i = 0; __builtin_expect(i < MEMORY_M128I, 1); i += INIT_SIZE_M128I) {
_mm_prefetch(longoutput + i + 64, _MM_HINT_T0);
_mm_prefetch(longoutput + i + 68, _MM_HINT_T0);
xmminput[0] = _mm_xor_si128(longoutput[i ], xmminput[0]);
xmminput[1] = _mm_xor_si128(longoutput[i + 1], xmminput[1]);
xmminput[2] = _mm_xor_si128(longoutput[i + 2], xmminput[2]);
xmminput[3] = _mm_xor_si128(longoutput[i + 3], xmminput[3]);
xmminput[4] = _mm_xor_si128(longoutput[i + 4], xmminput[4]);
xmminput[5] = _mm_xor_si128(longoutput[i + 5], xmminput[5]);
xmminput[6] = _mm_xor_si128(longoutput[i + 6], xmminput[6]);
xmminput[7] = _mm_xor_si128(longoutput[i + 7], xmminput[7]);
for(j = 0; j < 10; j++) {
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
}
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
keccakf((uint64_t *) &ctx->state.hs, 24);
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
}

View File

@ -0,0 +1,142 @@
/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2016-2017 XMRig <support@xmrig.com>
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#ifndef BUILD_TEST
# include "xmrig.h"
#endif
#include "crypto/c_groestl.h"
#include "crypto/c_blake256.h"
#include "crypto/c_jh.h"
#include "crypto/c_skein.h"
#include "cryptonight.h"
#include "options.h"
#if defined(__x86_64__)
void cryptonight_av1_aesni(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx);
void cryptonight_av2_aesni_wolf(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx);
void cryptonight_av3_aesni_bmi2(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx);
void cryptonight_av5_aesni_experimental(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx);
#elif defined(__i386__)
void cryptonight_av1_aesni32(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx);
#endif
void cryptonight_av4_legacy(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx);
void (*cryptonight_hash_ctx)(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx) = NULL;
void cryptonight_init(int variant)
{
switch (variant) {
#if defined(__x86_64__)
case XMR_VARIANT_AESNI:
cryptonight_hash_ctx = cryptonight_av1_aesni;
break;
case XMR_VARIANT_AESNI_WOLF:
cryptonight_hash_ctx = cryptonight_av2_aesni_wolf;
break;
case XMR_VARIANT_AESNI_BMI2:
cryptonight_hash_ctx = cryptonight_av3_aesni_bmi2;
break;
case XMR_VARIANT_EXPERIMENTAL:
cryptonight_hash_ctx = cryptonight_av5_aesni_experimental;
break;
#elif defined(__i386__)
case XMR_VARIANT_AESNI:
cryptonight_hash_ctx = cryptonight_av1_aesni32;
break;
#endif
case XMR_VARIANT_LEGACY:
cryptonight_hash_ctx = cryptonight_av4_legacy;
break;
default:
break;
}
}
static inline void do_blake_hash(const void* input, size_t len, char* output) {
blake256_hash((uint8_t*)output, input, len);
}
static inline void do_groestl_hash(const void* input, size_t len, char* output) {
groestl(input, len * 8, (uint8_t*)output);
}
static inline void do_jh_hash(const void* input, size_t len, char* output) {
jh_hash(32 * 8, input, 8 * len, (uint8_t*)output);
}
static inline void do_skein_hash(const void* input, size_t len, char* output) {
skein_hash(8 * 32, input, 8 * len, (uint8_t*)output);
}
void (* const extra_hashes[4])(const void *, size_t, char *) = {do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash};
void cryptonight_hash(void* output, const void* input, size_t len) {
uint8_t *memory __attribute((aligned(16))) = (uint8_t *) malloc(MEMORY);
struct cryptonight_ctx *ctx = (struct cryptonight_ctx*)malloc(sizeof(struct cryptonight_ctx));
cryptonight_hash_ctx(output, input, memory, ctx);
free(memory);
free(ctx);
}
#ifndef BUILD_TEST
int scanhash_cryptonight(int thr_id, uint32_t *hash, uint32_t *restrict pdata, const uint32_t *restrict ptarget, uint32_t max_nonce, unsigned long *restrict hashes_done, const char *restrict memory, struct cryptonight_ctx *persistentctx) {
uint32_t *nonceptr = (uint32_t*) (((char*)pdata) + 39);
uint32_t n = *nonceptr - 1;
const uint32_t first_nonce = n + 1;
do {
*nonceptr = ++n;
cryptonight_hash_ctx(hash, pdata, memory, persistentctx);
if (unlikely(hash[7] < ptarget[7])) {
*hashes_done = n - first_nonce + 1;
return true;
}
} while (likely((n <= max_nonce && !work_restart[thr_id].restart)));
*hashes_done = n - first_nonce + 1;
return 0;
}
#endif

47
compat.h Normal file
View File

@ -0,0 +1,47 @@
/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2016-2017 XMRig <support@xmrig.com>
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __COMPAT_H__
#define __COMPAT_H__
#define unlikely(expr) (__builtin_expect(!!(expr), 0))
#define likely(expr) (__builtin_expect(!!(expr), 1))
#ifdef WIN32
#include <windows.h>
#define sleep(secs) Sleep((secs) * 1000)
enum {
PRIO_PROCESS = 0,
};
static inline int setpriority(int which, int who, int prio)
{
return -!SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_IDLE);
}
#endif /* WIN32 */
#endif /* __COMPAT_H__ */

View File

@ -0,0 +1,23 @@
cmake_minimum_required (VERSION 2.8)
project (jansson C)
add_definitions(-DHAVE_CONFIG_H)
# Add the lib sources.
file(GLOB JANSSON_SRC *.c)
set(JANSSON_HDR_PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/hashtable.h
${CMAKE_CURRENT_SOURCE_DIR}/jansson_private.h
${CMAKE_CURRENT_SOURCE_DIR}/strbuffer.h
${CMAKE_CURRENT_SOURCE_DIR}/utf.h
${CMAKE_CURRENT_SOURCE_DIR}/jansson_private_config.h)
set(JANSSON_HDR_PUBLIC
${CMAKE_CURRENT_SOURCE_DIR}/jansson_config.h
${CMAKE_CURRENT_SOURCE_DIR}/jansson.h)
add_library(jansson STATIC
${JANSSON_SRC}
${JANSSON_HDR_PRIVATE}
${JANSSON_HDR_PUBLIC})

19
compat/jansson/LICENSE Normal file
View File

@ -0,0 +1,19 @@
Copyright (c) 2009-2014 Petri Lehtinen <petri@digip.org>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

446
compat/jansson/dump.c Normal file

File diff suppressed because it is too large Load Diff

63
compat/jansson/error.c Normal file
View File

@ -0,0 +1,63 @@
#include <string.h>
#include "jansson_private.h"
void jsonp_error_init(json_error_t *error, const char *source)
{
if(error)
{
error->text[0] = '\0';
error->line = -1;
error->column = -1;
error->position = 0;
if(source)
jsonp_error_set_source(error, source);
else
error->source[0] = '\0';
}
}
void jsonp_error_set_source(json_error_t *error, const char *source)
{
size_t length;
if(!error || !source)
return;
length = strlen(source);
if(length < JSON_ERROR_SOURCE_LENGTH)
strncpy(error->source, source, length + 1);
else {
size_t extra = length - JSON_ERROR_SOURCE_LENGTH + 4;
strncpy(error->source, "...", 3);
strncpy(error->source + 3, source + extra, length - extra + 1);
}
}
void jsonp_error_set(json_error_t *error, int line, int column,
size_t position, const char *msg, ...)
{
va_list ap;
va_start(ap, msg);
jsonp_error_vset(error, line, column, position, msg, ap);
va_end(ap);
}
void jsonp_error_vset(json_error_t *error, int line, int column,
size_t position, const char *msg, va_list ap)
{
if(!error)
return;
if(error->text[0] != '\0') {
/* error already set */
return;
}
error->line = line;
error->column = column;
error->position = (int)position;
vsnprintf(error->text, JSON_ERROR_TEXT_LENGTH, msg, ap);
error->text[JSON_ERROR_TEXT_LENGTH - 1] = '\0';
}

356
compat/jansson/hashtable.c Normal file

File diff suppressed because it is too large Load Diff

176
compat/jansson/hashtable.h Normal file
View File

@ -0,0 +1,176 @@
/*
* Copyright (c) 2009-2016 Petri Lehtinen <petri@digip.org>
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the MIT license. See LICENSE for details.
*/
#ifndef HASHTABLE_H
#define HASHTABLE_H
#include <stdlib.h>
#include "jansson.h"
struct hashtable_list {
struct hashtable_list *prev;
struct hashtable_list *next;
};
/* "pair" may be a bit confusing a name, but think of it as a
key-value pair. In this case, it just encodes some extra data,
too */
struct hashtable_pair {
struct hashtable_list list;
struct hashtable_list ordered_list;
size_t hash;
json_t *value;
char key[1];
};
struct hashtable_bucket {
struct hashtable_list *first;
struct hashtable_list *last;
};
typedef struct hashtable {
size_t size;
struct hashtable_bucket *buckets;
size_t order; /* hashtable has pow(2, order) buckets */
struct hashtable_list list;
struct hashtable_list ordered_list;
} hashtable_t;
#define hashtable_key_to_iter(key_) \
(&(container_of(key_, struct hashtable_pair, key)->ordered_list))
/**
* hashtable_init - Initialize a hashtable object
*
* @hashtable: The (statically allocated) hashtable object
*
* Initializes a statically allocated hashtable object. The object
* should be cleared with hashtable_close when it's no longer used.
*
* Returns 0 on success, -1 on error (out of memory).
*/
int hashtable_init(hashtable_t *hashtable);
/**
* hashtable_close - Release all resources used by a hashtable object
*
* @hashtable: The hashtable
*
* Destroys a statically allocated hashtable object.
*/
void hashtable_close(hashtable_t *hashtable);
/**
* hashtable_set - Add/modify value in hashtable
*
* @hashtable: The hashtable object
* @key: The key
* @serial: For addition order of keys
* @value: The value
*
* If a value with the given key already exists, its value is replaced
* with the new value. Value is "stealed" in the sense that hashtable
* doesn't increment its refcount but decreases the refcount when the
* value is no longer needed.
*
* Returns 0 on success, -1 on failure (out of memory).
*/
int hashtable_set(hashtable_t *hashtable, const char *key, json_t *value);
/**
* hashtable_get - Get a value associated with a key
*
* @hashtable: The hashtable object
* @key: The key
*
* Returns value if it is found, or NULL otherwise.
*/
void *hashtable_get(hashtable_t *hashtable, const char *key);
/**
* hashtable_del - Remove a value from the hashtable
*
* @hashtable: The hashtable object
* @key: The key
*
* Returns 0 on success, or -1 if the key was not found.
*/
int hashtable_del(hashtable_t *hashtable, const char *key);
/**
* hashtable_clear - Clear hashtable
*
* @hashtable: The hashtable object
*
* Removes all items from the hashtable.
*/
void hashtable_clear(hashtable_t *hashtable);
/**
* hashtable_iter - Iterate over hashtable
*
* @hashtable: The hashtable object
*
* Returns an opaque iterator to the first element in the hashtable.
* The iterator should be passed to hashtable_iter_* functions.
* The hashtable items are not iterated over in any particular order.
*
* There's no need to free the iterator in any way. The iterator is
* valid as long as the item that is referenced by the iterator is not
* deleted. Other values may be added or deleted. In particular,
* hashtable_iter_next() may be called on an iterator, and after that
* the key/value pair pointed by the old iterator may be deleted.
*/
void *hashtable_iter(hashtable_t *hashtable);
/**
* hashtable_iter_at - Return an iterator at a specific key
*
* @hashtable: The hashtable object
* @key: The key that the iterator should point to
*
* Like hashtable_iter() but returns an iterator pointing to a
* specific key.
*/
void *hashtable_iter_at(hashtable_t *hashtable, const char *key);
/**
* hashtable_iter_next - Advance an iterator
*
* @hashtable: The hashtable object
* @iter: The iterator
*
* Returns a new iterator pointing to the next element in the
* hashtable or NULL if the whole hastable has been iterated over.
*/
void *hashtable_iter_next(hashtable_t *hashtable, void *iter);
/**
* hashtable_iter_key - Retrieve the key pointed by an iterator
*
* @iter: The iterator
*/
void *hashtable_iter_key(void *iter);
/**
* hashtable_iter_value - Retrieve the value pointed by an iterator
*
* @iter: The iterator
*/
void *hashtable_iter_value(void *iter);
/**
* hashtable_iter_set - Set the value pointed by an iterator
*
* @iter: The iterator
* @value: The value to set
*/
void hashtable_iter_set(void *iter, json_t *value);
#endif

View File

@ -0,0 +1,277 @@
/* Generate sizeof(uint32_t) bytes of as random data as possible to seed
the hash function.
*/
#ifdef HAVE_CONFIG_H
#include <jansson_private_config.h>
#endif
#include <stdio.h>
#include <time.h>
#ifdef HAVE_STDINT_H
#include <stdint.h>
#endif
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#ifdef HAVE_SCHED_H
#include <sched.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#if defined(_WIN32)
/* For GetModuleHandle(), GetProcAddress() and GetCurrentProcessId() */
#include <windows.h>
#endif
#include "jansson.h"
static uint32_t buf_to_uint32(char *data) {
size_t i;
uint32_t result = 0;
for (i = 0; i < sizeof(uint32_t); i++)
result = (result << 8) | (unsigned char)data[i];
return result;
}
/* /dev/urandom */
#if !defined(_WIN32) && defined(USE_URANDOM)
static int seed_from_urandom(uint32_t *seed) {
/* Use unbuffered I/O if we have open(), close() and read(). Otherwise
fall back to fopen() */
char data[sizeof(uint32_t)];
int ok;
#if defined(HAVE_OPEN) && defined(HAVE_CLOSE) && defined(HAVE_READ)
int urandom;
urandom = open("/dev/urandom", O_RDONLY);
if (urandom == -1)
return 1;
ok = read(urandom, data, sizeof(uint32_t)) == sizeof(uint32_t);
close(urandom);
#else
FILE *urandom;
urandom = fopen("/dev/urandom", "rb");
if (!urandom)
return 1;
ok = fread(data, 1, sizeof(uint32_t), urandom) == sizeof(uint32_t);
fclose(urandom);
#endif
if (!ok)
return 1;
*seed = buf_to_uint32(data);
return 0;
}
#endif
/* Windows Crypto API */
#if defined(_WIN32) && defined(USE_WINDOWS_CRYPTOAPI)
#include <wincrypt.h>
typedef BOOL (WINAPI *CRYPTACQUIRECONTEXTA)(HCRYPTPROV *phProv, LPCSTR pszContainer, LPCSTR pszProvider, DWORD dwProvType, DWORD dwFlags);
typedef BOOL (WINAPI *CRYPTGENRANDOM)(HCRYPTPROV hProv, DWORD dwLen, BYTE *pbBuffer);
typedef BOOL (WINAPI *CRYPTRELEASECONTEXT)(HCRYPTPROV hProv, DWORD dwFlags);
static int seed_from_windows_cryptoapi(uint32_t *seed)
{
HINSTANCE hAdvAPI32 = NULL;
CRYPTACQUIRECONTEXTA pCryptAcquireContext = NULL;
CRYPTGENRANDOM pCryptGenRandom = NULL;
CRYPTRELEASECONTEXT pCryptReleaseContext = NULL;
HCRYPTPROV hCryptProv = 0;
BYTE data[sizeof(uint32_t)];
int ok;
hAdvAPI32 = GetModuleHandle(TEXT("advapi32.dll"));
if(hAdvAPI32 == NULL)
return 1;
pCryptAcquireContext = (CRYPTACQUIRECONTEXTA)GetProcAddress(hAdvAPI32, "CryptAcquireContextA");
if (!pCryptAcquireContext)
return 1;
pCryptGenRandom = (CRYPTGENRANDOM)GetProcAddress(hAdvAPI32, "CryptGenRandom");
if (!pCryptGenRandom)
return 1;
pCryptReleaseContext = (CRYPTRELEASECONTEXT)GetProcAddress(hAdvAPI32, "CryptReleaseContext");
if (!pCryptReleaseContext)
return 1;
if (!pCryptAcquireContext(&hCryptProv, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT))
return 1;
ok = pCryptGenRandom(hCryptProv, sizeof(uint32_t), data);
pCryptReleaseContext(hCryptProv, 0);
if (!ok)
return 1;
*seed = buf_to_uint32((char *)data);
return 0;
}
#endif
/* gettimeofday() and getpid() */
static int seed_from_timestamp_and_pid(uint32_t *seed) {
#ifdef HAVE_GETTIMEOFDAY
/* XOR of seconds and microseconds */
struct timeval tv;
gettimeofday(&tv, NULL);
*seed = (uint32_t)tv.tv_sec ^ (uint32_t)tv.tv_usec;
#else
/* Seconds only */
*seed = (uint32_t)time(NULL);
#endif
/* XOR with PID for more randomness */
#if defined(_WIN32)
*seed ^= (uint32_t)GetCurrentProcessId();
#elif defined(HAVE_GETPID)
*seed ^= (uint32_t)getpid();
#endif
return 0;
}
static uint32_t generate_seed() {
uint32_t seed;
int done = 0;
#if !defined(_WIN32) && defined(USE_URANDOM)
if (!done && seed_from_urandom(&seed) == 0)
done = 1;
#endif
#if defined(_WIN32) && defined(USE_WINDOWS_CRYPTOAPI)
if (!done && seed_from_windows_cryptoapi(&seed) == 0)
done = 1;
#endif
if (!done) {
/* Fall back to timestamp and PID if no better randomness is
available */
seed_from_timestamp_and_pid(&seed);
}
/* Make sure the seed is never zero */
if (seed == 0)
seed = 1;
return seed;
}
volatile uint32_t hashtable_seed = 0;
#if defined(HAVE_ATOMIC_BUILTINS) && (defined(HAVE_SCHED_YIELD) || !defined(_WIN32))
static volatile char seed_initialized = 0;
void json_object_seed(size_t seed) {
uint32_t new_seed = (uint32_t)seed;
if (hashtable_seed == 0) {
if (__atomic_test_and_set(&seed_initialized, __ATOMIC_RELAXED) == 0) {
/* Do the seeding ourselves */
if (new_seed == 0)
new_seed = generate_seed();
__atomic_store_n(&hashtable_seed, new_seed, __ATOMIC_RELEASE);
} else {
/* Wait for another thread to do the seeding */
do {
#ifdef HAVE_SCHED_YIELD
sched_yield();
#endif
} while(__atomic_load_n(&hashtable_seed, __ATOMIC_ACQUIRE) == 0);
}
}
}
#elif defined(HAVE_SYNC_BUILTINS) && (defined(HAVE_SCHED_YIELD) || !defined(_WIN32))
void json_object_seed(size_t seed) {
uint32_t new_seed = (uint32_t)seed;
if (hashtable_seed == 0) {
if (new_seed == 0) {
/* Explicit synchronization fences are not supported by the
__sync builtins, so every thread getting here has to
generate the seed value.
*/
new_seed = generate_seed();
}
do {
if (__sync_bool_compare_and_swap(&hashtable_seed, 0, new_seed)) {
/* We were the first to seed */
break;
} else {
/* Wait for another thread to do the seeding */
#ifdef HAVE_SCHED_YIELD
sched_yield();
#endif
}
} while(hashtable_seed == 0);
}
}
#elif defined(_WIN32)
static long seed_initialized = 0;
void json_object_seed(size_t seed) {
uint32_t new_seed = (uint32_t)seed;
if (hashtable_seed == 0) {
if (InterlockedIncrement(&seed_initialized) == 1) {
/* Do the seeding ourselves */
if (new_seed == 0)
new_seed = generate_seed();
hashtable_seed = new_seed;
} else {
/* Wait for another thread to do the seeding */
do {
SwitchToThread();
} while (hashtable_seed == 0);
}
}
}
#else
/* Fall back to a thread-unsafe version */
void json_object_seed(size_t seed) {
uint32_t new_seed = (uint32_t)seed;
if (hashtable_seed == 0) {
if (new_seed == 0)
new_seed = generate_seed();
hashtable_seed = new_seed;
}
}
#endif

311
compat/jansson/jansson.h Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,43 @@
/*
* Copyright (c) 2010-2016 Petri Lehtinen <petri@digip.org>
*
* Jansson is free software; you can redistribute it and/or modify
* it under the terms of the MIT license. See LICENSE for details.
*
*
* This file specifies a part of the site-specific configuration for
* Jansson, namely those things that affect the public API in
* jansson.h.
*
* The configure script copies this file to jansson_config.h and
* replaces @var@ substitutions by values that fit your system. If you
* cannot run the configure script, you can do the value substitution
* by hand.
*/
#ifndef JANSSON_CONFIG_H
#define JANSSON_CONFIG_H
/* If your compiler supports the inline keyword in C, JSON_INLINE is
defined to `inline', otherwise empty. In C++, the inline is always
supported. */
#ifdef __cplusplus
#define JSON_INLINE inline
#else
#define JSON_INLINE inline
#endif
/* If your compiler supports the `long long` type and the strtoll()
library function, JSON_INTEGER_IS_LONG_LONG is defined to 1,
otherwise to 0. */
#define JSON_INTEGER_IS_LONG_LONG 1
/* If locale.h and localeconv() are available, define to 1,
otherwise to 0. */
#define JSON_HAVE_LOCALECONV 1
/* Maximum recursion depth for parsing JSON input.
This limits the depth of e.g. array-within-array constructions. */
#define JSON_PARSER_MAX_DEPTH 2048
#endif

View File

@ -0,0 +1,108 @@
/*
* Copyright (c) 2009-2016 Petri Lehtinen <petri@digip.org>
*
* Jansson is free software; you can redistribute it and/or modify
* it under the terms of the MIT license. See LICENSE for details.
*/
#ifndef JANSSON_PRIVATE_H
#define JANSSON_PRIVATE_H
#include <stddef.h>
#include "jansson.h"
#include "hashtable.h"
#include "strbuffer.h"
#define container_of(ptr_, type_, member_) \
((type_ *)((char *)ptr_ - offsetof(type_, member_)))
/* On some platforms, max() may already be defined */
#ifndef max
#define max(a, b) ((a) > (b) ? (a) : (b))
#endif
/* va_copy is a C99 feature. In C89 implementations, it's sometimes
available as __va_copy. If not, memcpy() should do the trick. */
#ifndef va_copy
#ifdef __va_copy
#define va_copy __va_copy
#else
#define va_copy(a, b) memcpy(&(a), &(b), sizeof(va_list))
#endif
#endif
typedef struct {
json_t json;
hashtable_t hashtable;
int visited;
} json_object_t;
typedef struct {
json_t json;
size_t size;
size_t entries;
json_t **table;
int visited;
} json_array_t;
typedef struct {
json_t json;
char *value;
size_t length;
} json_string_t;
typedef struct {
json_t json;
double value;
} json_real_t;
typedef struct {
json_t json;
json_int_t value;
} json_integer_t;
#define json_to_object(json_) container_of(json_, json_object_t, json)
#define json_to_array(json_) container_of(json_, json_array_t, json)
#define json_to_string(json_) container_of(json_, json_string_t, json)
#define json_to_real(json_) container_of(json_, json_real_t, json)
#define json_to_integer(json_) container_of(json_, json_integer_t, json)
/* Create a string by taking ownership of an existing buffer */
json_t *jsonp_stringn_nocheck_own(const char *value, size_t len);
/* Error message formatting */
void jsonp_error_init(json_error_t *error, const char *source);
void jsonp_error_set_source(json_error_t *error, const char *source);
void jsonp_error_set(json_error_t *error, int line, int column,
size_t position, const char *msg, ...);
void jsonp_error_vset(json_error_t *error, int line, int column,
size_t position, const char *msg, va_list ap);
/* Locale independent string<->double conversions */
int jsonp_strtod(strbuffer_t *strbuffer, double *out);
int jsonp_dtostr(char *buffer, size_t size, double value, int prec);
/* Wrappers for custom memory functions */
void* jsonp_malloc(size_t size);
void jsonp_free(void *ptr);
char *jsonp_strndup(const char *str, size_t length);
char *jsonp_strdup(const char *str);
char *jsonp_strndup(const char *str, size_t len);
/* Windows compatibility */
#if defined(_WIN32) || defined(WIN32)
# if defined(_MSC_VER) /* MS compiller */
# if (_MSC_VER < 1900) && !defined(snprintf) /* snprintf not defined yet & not introduced */
# define snprintf _snprintf
# endif
# if (_MSC_VER < 1500) && !defined(vsnprintf) /* vsnprintf not defined yet & not introduced */
# define vsnprintf(b,c,f,a) _vsnprintf(b,c,f,a)
# endif
# else /* Other Windows compiller, old definition */
# define snprintf _snprintf
# define vsnprintf _vsnprintf
# endif
#endif
#endif

View File

@ -0,0 +1,159 @@
/* jansson_private_config.h. Generated from jansson_private_config.h.in by configure. */
/* jansson_private_config.h.in. Generated from configure.ac by autoheader. */
/* Define to 1 if gcc's __atomic builtins are available */
#define HAVE_ATOMIC_BUILTINS 1
/* Define to 1 if you have the `close' function. */
#define HAVE_CLOSE 1
/* Define to 1 if you have the <dlfcn.h> header file. */
/* #undef HAVE_DLFCN_H */
/* Define to 1 if you have the <endian.h> header file. */
/* #undef HAVE_ENDIAN_H */
/* Define to 1 if you have the <fcntl.h> header file. */
#define HAVE_FCNTL_H 1
/* Define to 1 if you have the `getpid' function. */
#define HAVE_GETPID 1
/* Define to 1 if you have the `gettimeofday' function. */
#define HAVE_GETTIMEOFDAY 1
/* Define to 1 if you have the <inttypes.h> header file. */
#define HAVE_INTTYPES_H 1
/* Define to 1 if you have the `localeconv' function. */
#define HAVE_LOCALECONV 1
/* Define to 1 if you have the <locale.h> header file. */
#define HAVE_LOCALE_H 1
/* Define to 1 if the system has the type 'long long int'. */
#define HAVE_LONG_LONG_INT 1
/* Define to 1 if you have the <memory.h> header file. */
#define HAVE_MEMORY_H 1
/* Define to 1 if you have the `open' function. */
#define HAVE_OPEN 1
/* Define to 1 if you have the `read' function. */
#define HAVE_READ 1
/* Define to 1 if you have the <sched.h> header file. */
#define HAVE_SCHED_H 1
/* Define to 1 if you have the `sched_yield' function. */
#define HAVE_SCHED_YIELD 1
/* Define to 1 if you have the <stdint.h> header file. */
#define HAVE_STDINT_H 1
/* Define to 1 if you have the <stdlib.h> header file. */
#define HAVE_STDLIB_H 1
/* Define to 1 if you have the <strings.h> header file. */
#define HAVE_STRINGS_H 1
/* Define to 1 if you have the <string.h> header file. */
#define HAVE_STRING_H 1
/* Define to 1 if you have the `strtoll' function. */
#define HAVE_STRTOLL 1
/* Define to 1 if gcc's __sync builtins are available */
#define HAVE_SYNC_BUILTINS 1
/* Define to 1 if you have the <sys/param.h> header file. */
#define HAVE_SYS_PARAM_H 1
/* Define to 1 if you have the <sys/stat.h> header file. */
#define HAVE_SYS_STAT_H 1
/* Define to 1 if you have the <sys/time.h> header file. */
#define HAVE_SYS_TIME_H 1
/* Define to 1 if you have the <sys/types.h> header file. */
#define HAVE_SYS_TYPES_H 1
/* Define to 1 if you have the <unistd.h> header file. */
#define HAVE_UNISTD_H 1
/* Define to 1 if the system has the type 'unsigned long long int'. */
#define HAVE_UNSIGNED_LONG_LONG_INT 1
/* Number of buckets new object hashtables contain is 2 raised to this power.
E.g. 3 -> 2^3 = 8. */
#define INITIAL_HASHTABLE_ORDER 3
/* Define to the sub-directory where libtool stores uninstalled libraries. */
#define LT_OBJDIR ".libs/"
/* Name of package */
#define PACKAGE "jansson"
/* Define to the address where bug reports for this package should be sent. */
#define PACKAGE_BUGREPORT "petri@digip.org"
/* Define to the full name of this package. */
#define PACKAGE_NAME "jansson"
/* Define to the full name and version of this package. */
#define PACKAGE_STRING "jansson 2.9"
/* Define to the one symbol short name of this package. */
#define PACKAGE_TARNAME "jansson"
/* Define to the home page for this package. */
#define PACKAGE_URL ""
/* Define to the version of this package. */
#define PACKAGE_VERSION "2.9"
/* Define to 1 if you have the ANSI C header files. */
#define STDC_HEADERS 1
/* Define to 1 if /dev/urandom should be used for seeding the hash function */
#define USE_URANDOM 1
/* Define to 1 if CryptGenRandom should be used for seeding the hash function
*/
#define USE_WINDOWS_CRYPTOAPI 1
/* Version number of package */
#define VERSION "2.9"
/* Define for Solaris 2.5.1 so the uint32_t typedef from <sys/synch.h>,
<pthread.h>, or <semaphore.h> is not used. If the typedef were allowed, the
#define below would cause a syntax error. */
/* #undef _UINT32_T */
/* Define for Solaris 2.5.1 so the uint8_t typedef from <sys/synch.h>,
<pthread.h>, or <semaphore.h> is not used. If the typedef were allowed, the
#define below would cause a syntax error. */
/* #undef _UINT8_T */
/* Define to `__inline__' or `__inline' if that's what the C compiler
calls it, or to nothing if 'inline' is not supported under any name. */
#ifndef __cplusplus
/* #undef inline */
#endif
/* Define to the type of a signed integer type of width exactly 32 bits if
such a type exists and the standard includes do not define it. */
/* #undef int32_t */
/* Define to the type of an unsigned integer type of width exactly 16 bits if
such a type exists and the standard includes do not define it. */
/* #undef uint16_t */
/* Define to the type of an unsigned integer type of width exactly 32 bits if
such a type exists and the standard includes do not define it. */
/* #undef uint32_t */
/* Define to the type of an unsigned integer type of width exactly 8 bits if
such a type exists and the standard includes do not define it. */
/* #undef uint8_t */

1110
compat/jansson/load.c Normal file

File diff suppressed because it is too large Load Diff

381
compat/jansson/lookup3.h Normal file

File diff suppressed because it is too large Load Diff

69
compat/jansson/memory.c Normal file
View File

@ -0,0 +1,69 @@
/*
* Copyright (c) 2009-2016 Petri Lehtinen <petri@digip.org>
* Copyright (c) 2011-2012 Basile Starynkevitch <basile@starynkevitch.net>
*
* Jansson is free software; you can redistribute it and/or modify it
* under the terms of the MIT license. See LICENSE for details.
*/
#include <stdlib.h>
#include <string.h>
#include "jansson.h"
#include "jansson_private.h"
/* C89 allows these to be macros */
#undef malloc
#undef free
/* memory function pointers */
static json_malloc_t do_malloc = malloc;
static json_free_t do_free = free;
void *jsonp_malloc(size_t size)
{
if(!size)
return NULL;
return (*do_malloc)(size);
}
void jsonp_free(void *ptr)
{
if(!ptr)
return;
(*do_free)(ptr);
}
char *jsonp_strdup(const char *str)
{
return jsonp_strndup(str, strlen(str));
}
char *jsonp_strndup(const char *str, size_t len)
{
char *new_str;
new_str = jsonp_malloc(len + 1);
if(!new_str)
return NULL;
memcpy(new_str, str, len);
new_str[len] = '\0';
return new_str;
}
void json_set_alloc_funcs(json_malloc_t malloc_fn, json_free_t free_fn)
{
do_malloc = malloc_fn;
do_free = free_fn;
}
void json_get_alloc_funcs(json_malloc_t *malloc_fn, json_free_t *free_fn)
{
if (malloc_fn)
*malloc_fn = do_malloc;
if (free_fn)
*free_fn = do_free;
}

File diff suppressed because it is too large Load Diff

111
compat/jansson/strbuffer.c Normal file
View File

@ -0,0 +1,111 @@
/*
* Copyright (c) 2009-2016 Petri Lehtinen <petri@digip.org>
*
* Jansson is free software; you can redistribute it and/or modify
* it under the terms of the MIT license. See LICENSE for details.
*/
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <stdlib.h>
#include <string.h>
#include "jansson_private.h"
#include "strbuffer.h"
#define STRBUFFER_MIN_SIZE 16
#define STRBUFFER_FACTOR 2
#define STRBUFFER_SIZE_MAX ((size_t)-1)
int strbuffer_init(strbuffer_t *strbuff)
{
strbuff->size = STRBUFFER_MIN_SIZE;
strbuff->length = 0;
strbuff->value = jsonp_malloc(strbuff->size);
if(!strbuff->value)
return -1;
/* initialize to empty */
strbuff->value[0] = '\0';
return 0;
}
void strbuffer_close(strbuffer_t *strbuff)
{
if(strbuff->value)
jsonp_free(strbuff->value);
strbuff->size = 0;
strbuff->length = 0;
strbuff->value = NULL;
}
void strbuffer_clear(strbuffer_t *strbuff)
{
strbuff->length = 0;
strbuff->value[0] = '\0';
}
const char *strbuffer_value(const strbuffer_t *strbuff)
{
return strbuff->value;
}
char *strbuffer_steal_value(strbuffer_t *strbuff)
{
char *result = strbuff->value;
strbuff->value = NULL;
return result;
}
int strbuffer_append_byte(strbuffer_t *strbuff, char byte)
{
return strbuffer_append_bytes(strbuff, &byte, 1);
}
int strbuffer_append_bytes(strbuffer_t *strbuff, const char *data, size_t size)
{
if(size >= strbuff->size - strbuff->length)
{
size_t new_size;
char *new_value;
/* avoid integer overflow */
if (strbuff->size > STRBUFFER_SIZE_MAX / STRBUFFER_FACTOR
|| size > STRBUFFER_SIZE_MAX - 1
|| strbuff->length > STRBUFFER_SIZE_MAX - 1 - size)
return -1;
new_size = max(strbuff->size * STRBUFFER_FACTOR,
strbuff->length + size + 1);
new_value = jsonp_malloc(new_size);
if(!new_value)
return -1;
memcpy(new_value, strbuff->value, strbuff->length);
jsonp_free(strbuff->value);
strbuff->value = new_value;
strbuff->size = new_size;
}
memcpy(strbuff->value + strbuff->length, data, size);
strbuff->length += size;
strbuff->value[strbuff->length] = '\0';
return 0;
}
char strbuffer_pop(strbuffer_t *strbuff)
{
if(strbuff->length > 0) {
char c = strbuff->value[--strbuff->length];
strbuff->value[strbuff->length] = '\0';
return c;
}
else
return '\0';
}

Some files were not shown because too many files have changed in this diff Show More