This allows checking e.g. stdenv.hostPlatform.isGnu, just like isMusl
or isUClibc. It was already possible to check for glibc with
stdenv.hostPlatform.libc == "glibc", but when that doesn't line up
with how every other platform check works, this is apparently
sufficiently non-obvious that we've ended up with stuff like adding
glibc.static if !isMusl, which is obviously wrong.
Adds pkgsCross.wasm32 and pkgsCross.wasm64. Use it to build Nixpkgs
with a WebAssembly toolchain.
stdenv/cross: use static overlay on isWasm
isWasm doesn’t make sense dynamically linked.
* add generic x86_32 support
- Add support for i386-i586.
- Add `isx86_32` predicate that can replace most uses of `isi686`.
- `isi686` is reinterpreted to mean "exactly i686 arch, and not say i585 or i386".
- This branch was used to build working i586 kernel running on i586 hardware.
* revert `isi[345]86`, remove dead code
- Remove changes to dead code in `doubles.nix` and `for-meta.nix`.
- Remove `isi[345]86` predicates since other cpu families don't have specific model predicates.
* remove i386-linux since linux not supported on that cpu
This has been not touched in 6 years. Let's remove it to cause less
problems when adding new cross-compiling infrastructure.
This also simplify gcc significantly.
Following legacy packing conventions, `isArm` was defined just for
32-bit ARM instruction set. This is confusing to non packagers though,
because Aarch64 is an ARM instruction set.
The official ARM overview for ARMv8[1] is surprisingly not confusing,
given the overall state of affairs for ARM naming conventions, and
offers us a solution. It divides the nomenclature into three levels:
```
ISA: ARMv8 {-A, -R, -M}
/ \
Mode: Aarch32 Aarch64
| / \
Encoding: A64 A32 T32
```
At the top is the overall v8 instruction set archicture. Second are the
two modes, defined by bitwidth but differing in other semantics too, and
buttom are the encodings, (hopefully?) isomorphic if they encode the
same mode.
The 32 bit encodings are mostly backwards compatible with previous
non-Thumb and Thumb encodings, and if so we can pun the mode names to
instead mean "sets of compatable or isomorphic encodings", and then
voilà we have nice names for 32-bit and 64-bit arm instruction sets
which do not use the word ARM so as to not confused either laymen or
experienced ARM packages.
[1]: https://developer.arm.com/products/architecture/a-profile
(cherry picked from commit ba52ae50488de85a9cf60a3a04f1c9ca7122ec74)
Following legacy packing conventions, `isArm` was defined just for
32-bit ARM instruction set. This is confusing to non packagers though,
because Aarch64 is an ARM instruction set.
The official ARM overview for ARMv8[1] is surprisingly not confusing,
given the overall state of affairs for ARM naming conventions, and
offers us a solution. It divides the nomenclature into three levels:
```
ISA: ARMv8 {-A, -R, -M}
/ \
Mode: Aarch32 Aarch64
| / \
Encoding: A64 A32 T32
```
At the top is the overall v8 instruction set archicture. Second are the
two modes, defined by bitwidth but differing in other semantics too, and
buttom are the encodings, (hopefully?) isomorphic if they encode the
same mode.
The 32 bit encodings are mostly backwards compatible with previous
non-Thumb and Thumb encodings, and if so we can pun the mode names to
instead mean "sets of compatable or isomorphic encodings", and then
voilà we have nice names for 32-bit and 64-bit arm instruction sets
which do not use the word ARM so as to not confused either laymen or
experienced ARM packages.
[1]: https://developer.arm.com/products/architecture/a-profile
The isSeccomputable flag treated Linux without seccomp as just a
normal variant, when it really should be treated as a special case
incurring complexity debt to support.
The isKexecable flag treated Linux without kexec as just a normal
variant, when it really should be treated as a special case incurring
complexity debt to support.
Should have commited on here and on merged master to begin with, but I
didn't, so instead I cherry-pick.
(cherry picked from commit 88c04a8b6b6714a61c8a28ec8bbd5ecf580ed2c7)
I noticed LLVM accepts `ios` as its own OS in platform triples; a
recent change as far as I know. I see it also accepts `macos*` for macOS
(formerly OS X). If it's now customary to distinguish iOS like so
(rather than guessing from the aarch, lets add both so our OSes are
still disjoint, and make Darwin a family instead.
But changing the config everywhere would probably be a mass rebuild, and
I'm not sure how well other software supports OSes besides "darwin", so
I'm keeping that the default name for macOS for now.
Note this doesn't actually provide musl support yet,
just improves our "system" code to understand
musl-based triples and non-glibc linux configurations.
This does break the API of being able to import any lib file and get
its libs, however I'm not sure people did this.
I made this while exploring being able to swap out docFn with a stub
in #2305, to avoid functor performance problems. I don't know if that
is going to move forward (or if it is a problem or not,) but after
doing all this work figured I'd put it up anyway :)
Two notable advantages to this approach:
1. when a lib inherits another lib's functions, it doesn't
automatically get put in to the scope of lib
2. when a lib implements a new obscure functions, it doesn't
automatically get put in to the scope of lib
Using the test script (later in this commit) I got the following diff
on the API:
+ diff master fixed-lib
11764a11765,11766
> .types.defaultFunctor
> .types.defaultTypeMerge
11774a11777,11778
> .types.isOptionType
> .types.isType
11781a11786
> .types.mkOptionType
11788a11794
> .types.setType
11795a11802
> .types.types
This means that this commit _adds_ to the API, however I can't find a
way to fix these last remaining discrepancies. At least none are
_removed_.
Test script (run with nix-repl in the PATH):
#!/bin/sh
set -eux
repl() {
suff=${1:-}
echo "(import ./lib)$suff" \
| nix-repl 2>&1
}
attrs_to_check() {
repl "${1:-}" \
| tr ';' $'\n' \
| grep "\.\.\." \
| cut -d' ' -f2 \
| sed -e "s/^/${1:-}./" \
| sort
}
summ() {
repl "${1:-}" \
| tr ' ' $'\n' \
| sort \
| uniq
}
deep_summ() {
suff="${1:-}"
depth="${2:-4}"
depth=$((depth - 1))
summ "$suff"
for attr in $(attrs_to_check "$suff" | grep -v "types.types"); do
if [ $depth -eq 0 ]; then
summ "$attr" | sed -e "s/^/$attr./"
else
deep_summ "$attr" "$depth" | sed -e "s/^/$attr./"
fi
done
}
(
cd nixpkgs
#git add .
#git commit -m "Auto-commit, sorry" || true
git checkout fixed-lib
deep_summ > ../fixed-lib
git checkout master
deep_summ > ../master
)
if diff master fixed-lib; then
echo "SHALLOW MATCH!"
fi
(
cd nixpkgs
git checkout fixed-lib
repl .types
)