Instead of intersecting system strings, we filter with the sort of
patterns used in `meta.platforms`.
Indicating this change `forTheseSystems` has been renamed to
`forMatchingSystems`, since the given list is now patterns to match, and
not the systems themselves. [Just as with `meta.platforms`, systems
strings are also supported for backwards compatibility.]
This is more flexible, and makes the `forMatchingSystems` and
packagePlatforms` cases more analogous.
- `isGNU` to `isHurd`, my sedding did not catch
- Simplify cross compilation in general
- Be more careful about python
- no more `gdbCross` in all-packages
Fewer packages are only built on one platform. Eventually we should
have each package encode its own requirements on build host and target
(as we do for build already) and use that to test automatically.
Second attempt at pull request #25275
This reverts commit b70924bd80918d153a5e2023afd7647ae7b24a12,
reapplying 2282a5774cd80567644a44d31585bf965a55f9ec
This reverts commit 2282a5774cd80567644a44d31585bf965a55f9ec, reversing
changes made to 14adea91566019549f33392d4710d9babd0108d7.
The lib tests are bloking nixpkgs-unstable, and I don't like debugging
it soon enough.
There is no more `cygwin` OS, but instead a `cygnus` abi. "win32"
and "mingw32" parse as `windows`. Add a 3-part hack because autotools
breaks on explicit abi with windows-like (e.g. "i686-pc-windows-gnu").
Also change cross triples to conform
The old hard-coded lists are now used to test system parsing.
In the process, make an `assertTrue` in release lib for eval tests; also
use it in release-cross
[N.B., this package also applies to the commits that follow it in the same
PR.]
In most cases, buildPackages = pkgs so things work just as before. For
cross compiling, however, buildPackages is resolved as the previous
bootstrapping stage. This allows us to avoid the mkDerivation hacks cross
compiling currently uses today.
To avoid a massive refactor, callPackage will splice together both package
sets. Again to avoid churn, it uses the old `nativeDrv` vs `crossDrv` to do
so. So now, whether cross compiling or not, packages with get a `nativeDrv`
and `crossDrv`---in the non-cross-compiling case they are simply the same
derivation. This is good because it reduces the divergence between the
cross and non-cross dataflow. See `pkgs/top-level/splice.nix` for a comment
along the lines of the preceding paragraph, and the code that does this
splicing.
Also, `forceNativeDrv` is replaced with `forceNativePackages`. The latter
resolves `pkgs` unless the host platform is different from the build
platform, in which case it resolves to `buildPackages`. Note that the
target platform is not important here---it will not prevent
`forcedNativePackages` from resolving to `pkgs`.
--------
Temporarily, we make preserve some dubious decisions in the name of preserving
hashes:
Most importantly, we don't distinguish between "host" and "target" in the
autoconf sense. This leads to the proliferation of *Cross derivations
currently used. What we ought to is resolve native deps of the cross "build
packages" (build = host != target) package set against the "vanilla
packages" (build = host = target) package set. Instead, "build packages"
uses itself, with (informally) target != build in all cases.
This is wrong because it violates the "sliding window" principle of
bootstrapping stages that shifting the platform triple of one stage to the
left coincides with the next stage's platform triple. Only because we don't
explicitly distinguish between "host" and "target" does it appear that the
"sliding window" principle is preserved--indeed it is over the reductionary
"platform double" of just "build" and "host/target".
Additionally, we build libc, libgcc, etc in the same stage as the compilers
themselves, which is wrong because they are used at runtime, not build
time. Fixing this is somewhat subtle, and the solution and problem will be
better explained in the commit that does fix it.
Commits after this will solve both these issues, at the expense of breaking
cross hashes. Native hashes won't be broken, thankfully.
--------
Did the temporary ugliness pan out? Of the packages that currently build in
`release-cross.nix`, the only ones that have their hash changed are
`*.gcc.crossDrv` and `bootstrapTools.*.coreutilsMinimal`. In both cases I
think it doesn't matter.
1. GCC when doing a `build = host = target = foreign` build (maximally
cross), still defines environment variables like `CPATH`[1] with
packages. This seems assuredly wrong because whether gcc dynamically
links those, or the programs built by gcc dynamically link those---I
have no idea which case is reality---they should be foreign. Therefore,
in all likelihood, I just made the gcc less broken.
2. Coreutils (ab)used the old cross-compiling infrastructure to depend on
a native version of itself. When coreutils was overwritten to be built
with fewer features, the native version it used would also be
overwritten because the binding was tight. Now it uses the much looser
`BuildPackages.coreutils` which is just fine as a richer build dep
doesn't cause any problems and avoids a rebuild.
So, in conclusion I'd say the conservatism payed off. Onward to actually
raking the muck in the next PR!
[1]: https://gcc.gnu.org/onlinedocs/gcc/Environment-Variables.html
These derivations do not care about the target platform, and thus should
not be affected by cross-compiling. Currently, these tests *fail*, but they
will be fixed soon by a latter PR. The release-cross job doesn't block a
channel, so this should be no problem.
Mingw(32) is rather poorly maintaned and has quite a lot of bugs. And
because our Windows cross builds were also poorly maintained and most of
the cross-tests were broken as well, I'm just taking this step and try
to switch to mingw-w64 for everything "cross Windows".
Signed-off-by: aszlig <aszlig@redmoonstudios.org>