This is a standard environment that doesn't contain a C/C++
compiler. This is mostly to prevent trivial builders like runCommand
and substituteAll from pulling in gcc for simple configuration changes
on NixOS.
- add missing types in module definitions
- add missing 'defaultText' in module definitions
- wrap example with 'literalExample' where necessary in module definitions
Setting nixosVersion to something custom is useful for meaningful GRUB
menus and /nix/store paths, but actuallly changing it rebulids the
whole system path (because of `nixos-version` script and manual
pages). Also, changing it is not a particularly good idea because you
can then be differentitated from other NixOS users by a lot of
programs that read /etc/os-release.
This patch introduces an alternative option that does all you want
from nixosVersion, but rebuilds only the very top system level and
/etc while using your label in the names of system /nix/store paths,
GRUB and other boot loaders' menus, getty greetings and so on.
This seems to have combined badly with the systemd upgrade, we'll revert
for now and revisit after the 14.04 branch.
This reverts commit ad80532881119b642d63c7d126e46f4e26cdb0be, reversing
changes made to 1c5d3c78831b5d1aee3b46c2e5cabe7af14bc1d1.
Using pkgs.lib on the spine of module evaluation is problematic
because the pkgs argument depends on the result of module
evaluation. To prevent an infinite recursion, pkgs and some of the
modules are evaluated twice, which is inefficient. Using ‘with lib’
prevents this problem.
Currently switch-to-configuration.pl uses system() calls to interact
with DBus. This can be error prone, especially when we are parsing
output that could change. In this commit, almost all calls to the
systemctl binary have been replaced with equivalent operations via DBus.
You can now say:
systemd.containers.foo.config =
{ services.openssh.enable = true;
services.openssh.ports = [ 2022 ];
users.extraUsers.root.openssh.authorizedKeys.keys = [ "ssh-dss ..." ];
};
which defines a NixOS instance with the given configuration running
inside a lightweight container.
You can also manage the configuration of the container independently
from the host:
systemd.containers.foo.path = "/nix/var/nix/profiles/containers/foo";
where "path" is a NixOS system profile. It can be created/updated by
doing:
$ nix-env --set -p /nix/var/nix/profiles/containers/foo \
-f '<nixos>' -A system -I nixos-config=foo.nix
The container configuration (foo.nix) should define
boot.isContainer = true;
to optimise away the building of a kernel and initrd. This is done
automatically when using the "config" route.
On the host, a lightweight container appears as the service
"container-<name>.service". The container is like a regular NixOS
(virtual) machine, except that it doesn't have its own kernel. It has
its own root file system (by default /var/lib/containers/<name>), but
shares the Nix store of the host (as a read-only bind mount). It also
has access to the network devices of the host.
Currently, if the configuration of the container changes, running
"nixos-rebuild switch" on the host will cause the container to be
rebooted. In the future we may want to send some message to the
container so that it can activate the new container configuration
without rebooting.
Containers are not perfectly isolated yet. In particular, the host's
/sys/fs/cgroup is mounted (writable!) in the guest.